science and technology

Student advisement on courses sequencing in teaching-focused business-schools

Students in teaching-focused business-schools need a level of assistance and advisement broader and more profound than what is needed in R1&R2 schools. We investigate the informal interdependencies among marketing, finance, operation, and management core courses in these schools. By conducting hypothesis tests on a large dataset, we identify a flexible network showing the preferred sequencing of these courses to improve students' performance as measured by the course grade. Better performances in this context may also lead to higher retention-rates and lower time-to-degree. We recommend taking Finance or Finance and Management as the first course(s). Marketing should be the next course before or concurrent with Operations Management. Regarding the lower division courses, it is recommended to take Statistics before Economics and Accounting courses and Accounting before or concurrent with Economics. We also consider the significant role of a milestone course that links the lower division and core courses.




science and technology

International Journal of Teaching and Case Studies




science and technology

Intelligence assistant using deep learning: use case in crop disease prediction

In India, 70% of the Indian population is dependent on agriculture, yet agriculture generates only 13% of the country's gross domestic product. Several factors contribute to high levels of stress among farmers in India, such as increased input costs, draughts, and reduced revenues. The problem lies in the absence of an integrated farm advisory system. A farmer needs help to bridge this information gap, and they need it early in the crop's lifecycle to prevent it from being destroyed by pests or diseases. This research involves developing deep learning algorithms such as <i>ResNet18</i> and <i>DenseNet121</i> to help farmers diagnose crop diseases earlier and take corrective actions. By using deep learning techniques to detect these crop diseases with images farmers can scan or click with their smartphones, we can fill in the knowledge gap. To facilitate the use of the models by farmers, they are deployed in Android-based smartphones.




science and technology

High quality management of higher education based on data mining

In order to improve the quality of higher education, student satisfaction, and employment rate, a data mining based high-quality management method for higher education is proposed. Firstly, construct a high-quality evaluation system for higher education based on the principles of education quality evaluation. Secondly, the association rule mining method is used to construct a university education quality management model and determine the weight of the impact indicators for high-quality management of university education. Finally, the fuzzy evaluation method is used to determine the high-quality evaluation function of higher education, and the results of high-quality evaluation of higher education are obtained. High-quality management strategies are developed based on the evaluation results to improve the quality of education. The experimental results show that the student satisfaction rate of this method can reach 99.3%, and the student employment rate can reach 99.9%.




science and technology

Evaluation method for the effectiveness of online course teaching reform in universities based on improved decision tree

Aiming at the problems of long evaluation time and poor evaluation accuracy of existing evaluation methods, an improved decision tree-based evaluation method for the effectiveness of college online course teaching reform is proposed. Firstly, the teaching mode of college online course is analysed, and an evaluation system is constructed to ensure the applicability of the evaluation method. Secondly, AHP entropy weight method is used to calculate the weights of evaluation indicators to ensure the accuracy and authority of evaluation results. Finally, the evaluation model based on decision tree algorithm is constructed and improved by fuzzy neural network to further optimise the evaluation results. The parameters of fuzzy neural network are adjusted and gradient descent method is used to optimise the evaluation results, so as to effectively evaluate the effect of college online course teaching reform. Through experiments, the evaluation time of the method is less than 5 ms, and the evaluation accuracy is more than 92.5%, which shows that the method is efficient and accurate, and provides an effective evaluation means for the teaching reform of online courses in colleges and universities.




science and technology

Reflections on strategies for psychological health education for college students based on data mining

In order to improve the mental health level of college students, a data mining based mental health education strategy for college students is proposed. Firstly, analyse the characteristics of data mining and its potential value in mental health education. Secondly, after denoising the mental health data of college students using wavelet transform, data mining methods are used to identify the psychological crisis status of college students. Finally, based on the psychological crisis status of college students, measures for mental health education are proposed from the following aspects: building a psychological counselling platform, launching psychological health promotion activities, establishing a psychological support network, strengthening academic guidance and stress management. The example analysis results show that after the application of the strategy in this article, the psychological health scores of college students have been effectively improved, with an average score of 93.5 points.




science and technology

A data classification method for innovation and entrepreneurship in applied universities based on nearest neighbour criterion

Aiming to improve the accuracy, recall, and F1 value of data classification, this paper proposes an applied university innovation and entrepreneurship data classification method based on the nearest neighbour criterion. Firstly, the decision tree algorithm is used to mine innovation and entrepreneurship data from applied universities. Then, dynamic weight is introduced to improve the similarity calculation method based on edit distance, and the improved method is used to realise data de-duplication to avoid data over fitting. Finally, the nearest neighbour criterion method is used to classify applied university innovation and entrepreneurship data, and cosine similarity is used to calculate the similarity between the samples to be classified and each sample in the training data, achieving data classification. The experimental results demonstrate that the proposed method achieves a maximum accuracy of 96.5% and an average F1 score of 0.91. These findings indicate a high level of accuracy, recall, and F1 value for data classification using the proposed method.




science and technology

Study on personalised recommendation method of English online learning resources based on improved collaborative filtering algorithm

In order to improve recommendation coverage, a personalised recommendation method for English online learning resources based on improved collaborative filtering algorithm is studied to enhance the comprehensiveness of personalised recommendation for learning resources. Use matrix decomposition to decompose the user English online learning resource rating matrix. Cluster low dimensional English online learning resources by improving the K-means clustering algorithm. Based on the clustering results, calculate the backfill value of English online learning resources and backfill the information matrix of low dimensional English online learning resources. Using an improved collaborative filtering algorithm to calculate the predicted score of learning resources, personalised recommendation of English online learning resources for users based on the predicted score. Experimental results have shown that this method can effectively backfill English online learning resources, and the resource backfilling effect is excellent, and it has a high recommendation coverage rate.




science and technology

An English MOOC similar resource clustering method based on grey correlation

Due to the problems of low clustering accuracy and efficiency in traditional similar resource clustering methods, this paper studies an English MOOC similar resource clustering method based on grey correlation. Principal component analysis was used to extract similar resource features of English MOOC, and feature selection methods was used to pre-process similar resource features of English MOOC. On this basis, based on the grey correlation method, the pre-processed English MOOC similar resource features are standardised, and the correlation degree between different English MOOC similar resource features is calculated. The English MOOC similar resource correlation matrix is constructed to achieve English MOOC similar resource clustering. The experimental results show that the contour coefficient of the proposed method is closer to one, and the clustering accuracy of similar resources in English MOOC is as high as 94.2%, with a clustering time of only 22.3 ms.




science and technology

Learning behaviour recognition method of English online course based on multimodal data fusion

The conventional methods for identifying English online course learning behaviours have the problems of low recognition accuracy and high time cost. Therefore, a multimodal data fusion-based method for identifying English online course learning behaviours is proposed. Firstly, the analytic hierarchy process is used for decision fusion of multimodal data of learning behaviour. Secondly, based on the fusion results of multimodal data, weight coefficients are set to minimise losses and extract learning behaviour features. Finally, based on the extracted learning behaviour characteristics, the optimal classification function is constructed to classify the learning behaviour of English online courses. Based on the transfer information of learning behaviour status, the identification of online course learning behaviour is completed. The experimental results show that the recognition accuracy of the proposed method is above 90%, and its recognition accuracy is and can shorten the recognition time of learning behaviour, with high practical application reliability.




science and technology

A method for evaluating the quality of college curriculum teaching reform based on data mining

In order to improve the evaluation effect of current university teaching reform, a new method for evaluating the quality of university course teaching reform is proposed based on data mining algorithms. Firstly, the optimal data clustering criterion was used to select evaluation indicators and a quality evaluation system for university curriculum teaching reform was established. Next, a reform quality evaluation model is constructed using BP neural network, and the training process is improved through genetic algorithm to obtain the model weight and threshold of the optimal solution. Finally, the calculated parameters are substituted into the model to achieve accurate evaluation of the quality of university curriculum teaching reform. Selecting evaluation accuracy and evaluation efficiency as evaluation indicators, the practicality of the proposed method was verified through experiments. The experimental results showed that the proposed method can mine teaching reform data and evaluate the quality of teaching reform. Its evaluation accuracy is higher than 96.3%, and the evaluation time is less than 10ms, which is much better than the comparison method, fully demonstrating the practicality of the method.




science and technology

Evaluation method of teaching reform quality in colleges and universities based on big data analysis

Research on the quality evaluation of teaching reforms plays an important role in promoting improvements in teaching quality. Therefore, an evaluation method of teaching reform quality in colleges and universities based on big data analysis is proposed. A multivariate logistic model is used to select the evaluation indicators for the quality evaluation of teaching reforms in universities. And clustering and cleaning of the evaluation indicator data are performed through big data analysis. The evaluation indicator data is used as input vectors, and the results of the teaching reform quality evaluation are used as output vectors. A support vector machine model based on the whale algorithm is built to obtain the relevant evaluation results. Experimental results show that the proposed method achieves a minimum recall rate of 98.7% for evaluation indicator data, the minimum data processing time of 96.3 ms, the accuracy rate consistently above 97.1%.




science and technology

A personalised recommendation method for English teaching resources on MOOC platform based on data mining

In order to enhance the accuracy of teaching resource recommendation results and optimise user experience, a personalised recommendation method for English teaching resources on the MOOC platform based on data mining is proposed. First, the learner's evaluation of resources and resource attributes are abstracted into the same space, and resource tags are established using the Knowledge graph. Then, interest preference constraints are introduced to mine sequential patterns of user historical learning behaviour in the MOOC platform. Finally, a graph neural network is used to construct a recommendation model, which adjusts users' short-term and short-term interest parameters to achieve dynamic personalised teaching recommendation resources. The experimental results show that the accuracy and recall of the resource recommendation results of the research method are always higher than 0.9, the normalised sorting gain is always higher than 0.5.




science and technology

Integrating MOOC online and offline English teaching resources based on convolutional neural network

In order to shorten the integration and sharing time of English teaching resources, a MOOC English online and offline mixed teaching resource integration model based on convolutional neural networks is proposed. The intelligent integration model of MOOC English online and offline hybrid teaching resources based on convolutional neural network is constructed. The intelligent integration unit of teaching resources uses the Arduino device recognition program based on convolutional neural network to complete the classification of hybrid teaching resources. Based on the classification results, an English online and offline mixed teaching resource library for Arduino device MOOC is constructed, to achieve intelligent integration of teaching resources. The experimental results show that when the regularisation coefficient is 0.00002, the convolutional neural network model has the best training effect and the fastest convergence speed. And the resource integration time of the method in this article should not exceed 2 s at most.




science and technology

Prediction method of college students' achievements based on learning behaviour data mining

This paper proposes a method for predicting college students' performance based on learning behaviour data mining. The method addresses the issue of limited sample size affecting prediction accuracy. It utilises the K-means clustering algorithm to mine learning behaviour data and employs a density-based approach to determine optimal clustering centres, which are then output as the results of the clustering process. These clustering results are used as input for an attention encoder-decoder model to extract features from the learning behaviour sequence, incorporating an attention mechanism, sequence feature generator, and decoder. The characteristics derived from the learning behaviour sequence are then used to establish a prediction model for college students' performance, employing support vector regression. Experimental results demonstrate that this method accurately predicts students' performance with a relative error of less than 4% by leveraging the results obtained from learning behaviour data mining.




science and technology

A method for evaluating the quality of teaching reform based on fuzzy comprehensive evaluation

In order to improve the comprehensiveness of evaluation results and reduce errors, a teaching reform quality evaluation method based on fuzzy comprehensive evaluation is proposed. Firstly, on the premise of meeting the principles of indicator selection, factor analysis is used to construct an evaluation indicator system. Then, calculate the weights of various evaluation indicators through fuzzy entropy, establish a fuzzy evaluation matrix, and calculate the weight vector of evaluation indicators. Finally, the fuzzy cognitive mapping method is introduced to improve the fuzzy comprehensive evaluation method, obtaining the final weight of the evaluation indicators. The weight is multiplied by the fuzzy evaluation matrix to obtain the comprehensive evaluation result. The experimental results show that the maximum relative error of the proposed method's evaluation results is about 2.0, the average comprehensive evaluation result is 92.3, and the determination coefficient is closer to 1, verifying the application effect of this method.




science and technology

International Journal of Business Intelligence and Data Mining




science and technology

Constitutional and international legal framework for the protection of genetic resources and associated traditional knowledge: a South African perspective

The value and utility of traditional knowledge in conserving and commercialising genetic resources are increasingly becoming apparent due to advances in biotechnology and bioprospecting. However, the absence of an international legally binding instrument within the WIPO system means that traditional knowledge associated with genetic resources is not sufficiently protected like other forms of intellectual property. This means that indigenous peoples and local communities (IPLCs) do not benefit from the commercial exploitation of these resources. The efficacy of domestic tools to protect traditional knowledge and in balancing the rights of IPLCs and intellectual property rights (IPRs) is still debated. This paper employs a doctrinal research methodology based on desktop research of international and regional law instruments and the Constitution of the Republic of South Africa, 1996, to determine the basis for balancing the protection of genetic resources and associated traditional knowledge with competing interests of IPLCs and IPRs in South Africa.




science and technology

Multiplication complexity in education activities with fair use principle of copyright in Indonesia

Copying and duplicating papers for educational purposes is a violation form of copyright in Indonesia. The principle of fair use in education is a form of structured violation. Copying and duplicating the papers of the authors for educational purposes has provided commercial (business) benefits for libraries and universities. The research method is conducted using the observation method in libraries and universities that duplicate papers. The method also uses the normative juridical method that connects duplication of the papers in libraries and universities with the fair use principle. The results explain the authors' loss from copying and duplicating of papers in libraries and universities. Therefore, copying and duplicating the papers can only be done by implementing the responsibility system. Copying and duplicating the papers of the authors' in libraries and universities can be allowed if they fulfil the elements of copyright protection in the new concept.




science and technology

Intellectual property management in technology management: a comprehensive bibliometric analysis during 2000-2022

Presently, there are many existing academic studies on the development, protection and operation of intellectual property management (IPM). Therefore, provides a comprehensive econometric analysis in order to provide scholars, with a clearer understanding of the evolution and development of IP management research during 2000 to 2022. The study is aiming to help scholars to better discern the expanding IPM research field from a multidimensional perspective. The database used for this analysis is the Web of Science Core Collection database. After retrieval through keywords and using a variety of tools such as CiteSpace, VOSviewer, Bibliometrix and HistCite, 1033 documents were refined to conduct the econometric analysis, and produce graphs. The findings indicate that the US is a highly active country/region in the field IP management research, and its expanding IP management research is branching out into other disciplines. The study also presents the future directions and possible challenges for IPM in technology management.




science and technology

Intellectual property protection for virtual assets and brands in the Metaverse: issues and challenges

Intellectual property rights face new obstacles and possibilities as a result of the emergence of the Metaverse, a simulation of the actual world. This paper explores the current status of intellectual property rights in the Metaverse and examines the challenges and opportunities for enforcement. The article describes virtual assets and investigates their copyright and trademark protection. It also examines the protection of user-generated content in the Metaverse and the potential liability for copyright infringement. The article concludes with a consideration of the technological and jurisdictional obstacles to enforcing intellectual property rights in the Metaverse, as well as possible solutions for stakeholders. This paper will appeal to lawyers, policymakers, developers of virtual assets, platform owners, and anyone interested in the convergence of technology and intellectual property rights.




science and technology

Emotional intelligence and managerial leadership in the fast moving consumer durable goods industry in India's perspective

Dynamic nature of the FMCG sector perpetually provides a tricky challenge for organisational leaders to nurture their employees. High demand for products, less shelf life and tough competitors always challenge the leaders to uphold their products in the market. Due to technology and e-commerce, many new competitors have joined the market, vying with the industry's veterans. Due to their unique business models that match client needs, these firms are expected to boost FMCG industry income in the future. Managers' leadership styles depend primarily on emotional intelligence. This quantitative study examines how emotional intelligence influences West Bengal FMCG senior managers' leadership styles. 500 FMCG managers were selected. PLS-SEM is used to study. Emotionally competent leaders choose transactional and transformational leadership styles depending on the occasion. Managers' transactional leadership style is strongly influenced by their sympathetic awareness, as shown by a path coefficient of 0.755. Transformational leadership style has a path coefficient of 0.693, indicating that managers' empathy affects their organisational management. Thus, sympathetic awareness and emotion regulation predict good management leadership.




science and technology

International Journal of Intellectual Property Management




science and technology

An evaluation of English distance information teaching quality based on decision tree classification algorithm

In order to overcome the problems of low evaluation accuracy and long evaluation time in traditional teaching quality evaluation methods, a method of English distance information teaching quality evaluation based on decision tree classification algorithm is proposed. Firstly, construct teaching quality evaluation indicators under different roles. Secondly, the information gain theory in decision tree classification algorithm is used to divide the attributes of teaching resources. Finally, the rough set theory is used to calculate the index weight and establish the risk evaluation index factor set. The result of teaching quality evaluation is obtained through fuzzy comprehensive evaluation method. The experimental results show that the accuracy rate of the teaching quality evaluation of this method can reach 99.2%, the recall rate of the English information teaching quality evaluation is 99%, and the time used for the English distance information teaching quality evaluation of this method is only 8.9 seconds.




science and technology

Research on construction of police online teaching platform based on blockchain and IPFS technology

Under the current framework of police online teaching, in order to effectively solve the lack of high-quality resources of the traditional platform, backward sharing technology, poor performance of the digital platform and the privacy problems faced by each subject in sharing. This paper designs and implements the online teaching platform based on blockchain and interplanetary file system (IPFS). Based on the architecture of a 'decentralised' police online teaching platform, the platform uses blockchain to store hashes of encrypted private information and user-set access control policies, while the real private information is stored in IPFS after encryption. In the realisation of privacy information security storage at the same time to ensure the effective control of the user's own information. In order to achieve flexible rights management, the system classifies private information. In addition, the difficulties of police online teaching and training reform in the era of big data are solved one by one from the aspects of communication mode, storage facilities, incentive mechanism and confidentiality system, which effectively improves the stability and security of police online teaching.




science and technology

Quantitative evaluation method of ideological and political teaching achievements based on collaborative filtering algorithm

In order to overcome the problems of large error, low evaluation accuracy and long evaluation time in traditional evaluation methods of ideological and political education, this paper designs a quantitative evaluation method of ideological and political education achievements based on collaborative filtering algorithm. First, the evaluation index system is constructed to divide the teaching achievement evaluation index data in a small scale; then, the quantised dataset is determined and the quantised index weight is calculated; finally, the collaborative filtering algorithm is used to generate a set with high similarity, construct a target index recommendation list, construct a quantitative evaluation function and solve the function value to complete the quantitative evaluation of teaching achievements. The results show that the evaluation error of this method is only 1.75%, the accuracy can reach 98%, and the time consumption is only 2.0 s, which shows that this method can improve the quantitative evaluation effect.




science and technology

The performance evaluation of teaching reform based on hierarchical multi-task deep learning

The research goal is to solve the problems of low accuracy and long time existing in traditional teaching reform performance evaluation methods, a performance evaluation method of teaching reform based on hierarchical multi-task deep learning is proposed. Under the principle of constructing the evaluation index system, the evaluation indicator system should be constructed. The weight of the evaluation index is calculated through the analytic hierarchy process, and the calculation result of the evaluation weight is taken as the model input sample. A hierarchical multi-task deep learning model for teaching reform performance evaluation is built, and the final teaching reform performance score is obtained. Through relevant experiments, it is proved that compared with the experimental comparison method, this method has the advantages of high evaluation accuracy and short time, and can be further applied in relevant fields.




science and technology

A risk identification method for abnormal accounting data based on weighted random forest

In order to improve the identification accuracy, accuracy and time-consuming of traditional financial risk identification methods, this paper proposes a risk identification method for financial abnormal data based on weighted random forest. Firstly, SMOTE algorithm is used to collect abnormal financial data; secondly, the original accounting data is decomposed into features, and the features of abnormal data are extracted through random forests; then, the index weight is calculated according to the entropy weight method; finally, the negative gradient fitting is used to determine the loss function, and the weighted random forest method is used to solve the loss function value, and the recognition result is obtained. The results show that the identification accuracy of this method can reach 99.9%, the accuracy rate can reach 96.06%, and the time consumption is only 6.8 seconds, indicating that the risk identification effect of this method is good.




science and technology

Research on evaluation method of e-commerce platform customer relationship based on decision tree algorithm

In order to overcome the problems of poor evaluation accuracy and long evaluation time in traditional customer relationship evaluation methods, this study proposes a new customer relationship evaluation method for e-commerce platform based on decision tree algorithm. Firstly, analyse the connotation and characteristics of customer relationship; secondly, the importance of customer relationship in e-commerce platform is determined by using decision tree algorithm by selecting and dividing attributes according to the information gain results. Finally, the decision tree algorithm is used to design the classifier, the weighted sampling method is used to obtain the training samples of the base classifier, and the multi-period excess income method is used to construct the customer relationship evaluation function to achieve customer relationship evaluation. The experimental results show that the accuracy of the customer relationship evaluation results of this method is 99.8%, and the evaluation time is only 51 minutes.




science and technology

Online allocation of teaching resources for ideological and political courses in colleges and universities based on differential search algorithm

In order to improve the classification accuracy and online allocation accuracy of teaching resources and shorten the allocation time, this paper proposes a new online allocation method of college ideological and political curriculum teaching resources based on differential search algorithm. Firstly, the feedback parameter model of teaching resources cleaning is constructed to complete the cleaning of teaching resources. Secondly, according to the results of anti-interference consideration, the linear feature extraction of ideological and political curriculum teaching resources is carried out. Finally, the online allocation objective function of teaching resources for ideological and political courses is constructed, and the differential search algorithm is used to optimise the objective function to complete the online allocation of resources. The experimental results show that this method can accurately classify the teaching resources of ideological and political courses, and can shorten the allocation time, with the highest allocation accuracy of 97%.




science and technology

Evaluation method of cross-border e-commerce supply chain innovation mode based on blockchain technology

In view of the low evaluation accuracy of the effectiveness of cross-border e-commerce supply chain innovation model and the low correlation coefficient of innovation model influencing factors, the evaluation method of cross-border e-commerce supply chain innovation model based on blockchain technology is studied. First, analyse the operation mode of cross-border e-commerce supply chain, and determine the key factors affecting the innovation mode; Then, the comprehensive integration weighting method is used to analyse the factors affecting innovation and calculate the weight value; Finally, the blockchain technology is introduced to build an evaluation model for the supply chain innovation model and realise the evaluation of the cross-border e-commerce supply chain innovation model. The experimental results show that the evaluation accuracy of the proposed method is high, and the highest correlation coefficient of the influencing factors of innovation mode is about 0.99, which is feasible.




science and technology

Risk assessment method of power grid construction project investment based on grey relational analysis

In view of the problems of low accuracy, long time consuming and low efficiency of the existing engineering investment risk assessment method; this paper puts forward the investment risk assessment method of power grid construction project based on grey correlation analysis. Firstly, classify the risks of power grid construction project; secondly, determine the primary index and secondary index of investment risk assessment of power grid construction project; then construct the correlation coefficient matrix of power grid project investment risk to calculate the correlation degree and weight of investment risk index; finally, adopt the grey correlation analysis method to construct investment risk assessment function to realise investment risk assessment. The experimental results show that the average accuracy of evaluating the investment risk of power grid construction projects using the method is 95.08%, and the maximum time consuming is 49 s, which proves that the method has high accuracy, short time consuming and high evaluation efficiency.




science and technology

Student's classroom behaviour recognition method based on abstract hidden Markov model

In order to improve the standardisation of mutual information index, accuracy rate and recall rate of student classroom behaviour recognition method, this paper proposes a student's classroom behaviour recognition method based on abstract hidden Markov model (HMM). After cleaning the students' classroom behaviour data, improve the data quality through interpolation and standardisation, and then divide the types of students' classroom behaviour. Then, in support vector machine, abstract HMM is used to calculate the output probability density of support vector machine. Finally, according to the characteristic interval of classroom behaviour, we can judge the category of behaviour characteristics. The experiment shows that normalised mutual information (NMI) index of this method is closer to one, and the maximum AUC-PR index can reach 0.82, which shows that this method can identify students' classroom behaviour more effectively and reliably.




science and technology

A data mining method based on label mapping for long-term and short-term browsing behaviour of network users

In order to improve the speedup and recognition accuracy of the recognition process, this paper designs a data mining method based on label mapping for long-term and short-term browsing behaviour of network users. First, after removing the noise information in the behaviour sequence, calculate the similarity of behaviour characteristics. Then, multi-source behaviour data is mapped to the same dimension, and a behaviour label mapping layer and a behaviour data mining layer are established. Finally, the similarity of the tag matrix is calculated based on the similarity calculation results, and the mining results are output using SVM binary classification process. Experimental results show that the acceleration ratio of this method exceeds 0.9; area under curve receiver operating characteristic curve (AUC-ROC) value increases rapidly in a short time, and the maximum value can reach 0.95, indicating that the mining precision of this method is high.




science and technology

Research on fast mining of enterprise marketing investment databased on improved association rules

Because of the problems of low mining precision and slow mining speed in traditional enterprise marketing investment data mining methods, a fast mining method for enterprise marketing investment databased on improved association rules is proposed. First, the enterprise marketing investment data is collected through the crawler framework, and then the collected data is cleaned. Then, the cleaned data features are extracted, and the correlation degree between features is calculated. Finally, according to the calculation results, all data items are used as constraints to reduce the number of frequent itemsets. A pruning strategy is designed in advance. Combined with the constraints, the Apriori algorithm of association rules is improved, and the improved algorithm is used to calculate all frequent itemsets, Obtain fast mining results of enterprise marketing investment data. The experimental results show that the proposed method is fast and accurate in data mining of enterprise marketing investment.




science and technology

An evaluation of customer trust in e-commerce market based on entropy weight analytic hierarchy process

In order to solve the problems of large generalisation error, low recall rate and low retrieval accuracy of customer evaluation information in traditional trust evaluation methods, an evaluation method of customer trust in e-commerce market based on entropy weight analytic hierarchy process was designed. Firstly, build an evaluation index system of customer trust in e-commerce market. Secondly, the customer trust matrix is established, and the index weight is calculated by using the analytic hierarchy process and entropy weight method. Finally, five-scale Likert method is used to analyse the indicator factors and establish a comment set, and the trust evaluation value is obtained by combining the indicator membership. The experiment shows that the maximum generalisation error of this method is only 0.029, the recall rate is 97.5%, and the retrieval accuracy of customer evaluation information is closer to 1.




science and technology

Study on marketing strategy innovation of mobile payment service under internet environment

In order to overcome the problems of low efficiency, low user satisfaction and poor customer growth rate under the traditional marketing strategy, this paper studies the innovative strategy of mobile payment business marketing strategy under the internet environment. First of all, study the status quo of mobile payment business marketing in the internet environment, obtain mobile payment business data through questionnaire survey, and analyse the problems in mobile payment business marketing. Secondly, build a user profile of mobile payment business marketing, and classify user attributes, consumption characteristics and user activity through K-means clustering method; Finally, the marketing strategy is innovated from three aspects: product marketing, pricing marketing and channel marketing. The results show that the marketing benefit after the application of this strategy is 19.52 million yuan, the user satisfaction can reach 98.9%, and the customer growth rate can reach 21.3%, improving the marketing benefit of mobile payment business.




science and technology

International Journal of Information Technology and Management




science and technology

General Data Protection Regulation: new ethical and constitutional aspects, along with new challenges to information law

The EU 'General Data Protection Regulation' (GDPR) marked the most important step towards reforming data privacy regulation in recent years, as it has brought about significant changes in data process in various sectors, ranging from healthcare to banking and beyond. Various concerns have been raised, and as a consequence of these, certain parts of the text of the GDPR itself have already started to become questionable due to rapid technological progress, including, for example, the use of information technology, automatisation processes and advanced algorithms in individual decision-making activities. The road to GDPR compliance by all European Union members may prove to be a long one and it is clear that only time will tell how GDPR matters will evolve and unfold. In this paper, we aim to offer a review of the practical, ethical and constitutional aspects of the new regulation and examine all the controversies that the new technology has given rise to in the course of the regulation's application.




science and technology

Can artificial intelligence replace whistle-blowers in the business sector?

The major technological developments have changed the traditional way of doing business. These developments have facilitated whistle-blowing. Access to data is easier and faster and communicating with the public can be done in seconds. Another development is the artificial intelligence (AI) which enters the business workplace in different forms challenging the traditional working relations. The combination of these concepts gives the idea of artificial whistle-blowing or robot whistle-blowing. The concept is that a machine should conceive and report relevant wrongdoing avoiding the traditional model of whistle-blowing where the employee is the person who should report. This concept, yet unexplored, presents interesting positive and negative aspects. The purpose of this contribution is to present the idea of artificial whistle-blowing and its advantages and disadvantages for the business sector. As a conclusion, this paper suggests that the concept of artificial whistle-blowing needs still to be researched and an optimal solution, for the time being, is to permit artificial whistle-blowing as a helping tool for the employees to detect wrongdoings but report them themselves.




science and technology

Auditing the Performing Rights Society - investigating a new European Union Collective Management Organization member audit method

The European Union Rights Management Directive 2014/26/EU, provides regulatory oversight of European Union (EU) Collective Management Organizations (CMOs). However, the Directive has no provision indicating how members of EU CMOs may conduct non-financial audits of their CMO income and reporting. This paper addresses the problem of a lack of an audit method through a case study of the five writer members of the music group Duran Duran, who have been members of the UK's CMO for performing rights - the Performing Rights Society (PRS) for over 35 years. The paper argues a new audit CMO member method that can address the lacunae regarding the absence of CMO member right to audit a CMO and an applicable CMO audit method.




science and technology

The right to access information under the GDPR

The present paper offers a critique of the General Data Protection Regulation in the realm of access to information. Even though the GDPR supports the constitutionally obvious position that the right to data protection does not outweigh other equally important rights, the enhanced protection of the right to the protection of personal data leads to the potential neglect of other constitutional rights, such as that of access to information. Data protection and access to information authorities should be established both on an EU, as well as at national level as a single authority. Scientific research must be facilitated through access to a multitude of information. The present article explores the question of data ownership and aims to propose a new system that will enhance access to information. A key tool of our research will be the comparative overview of existing legislative systems and a review of the different approaches in the case-law of independent authorities.




science and technology

National ICT policy challenges for developing countries: a grounded theory informed literature review

This paper presents a review of the literature on the challenges of national information and communication technology (ICT) policies in the context of African countries. National ICT policies have been aligned with socio-development agendas of African countries. However, the policies have not delivered the expected outcomes due to many challenges. Studies have been conducted in isolation to highlight the challenges in the policy process. The study used grounded theory informed literature review to holistically analyse the problems in the context of African countries. The results were categorised in the typology of the policy process to understand the challenges from a broad perspective. The problems were categorised into agenda setting, policy formulation, legal frameworks, implementation and evaluation. In addition, there were constraints related to policy monitoring in the policy phases and imbalance of power among the policy stakeholders. The review suggests areas of further research.




science and technology

International Journal of Technology Policy and Law




science and technology

A survey on predicting at-risk students through learning analytics

This paper analyses the adoption of learning analytics to predict at-risk students. A total of 233 research articles between 2004 and 2023 were collected from Scopus for this study. They were analysed in terms of the relevant types and sources of data, targets of prediction, learning analytics methods, and performance metrics. The results show that data related to students' academic performance, socio-demographics, and learning behaviours have been commonly collected. Most studies have addressed the identification of students who have a higher chance of poor academic performance or dropping out of their courses. Decision trees, random forests, and artificial neural networks are the most frequently used techniques for prediction, with ensemble methods gaining popularity in recent years. Classification accuracy, recall, sensitivity, and true positive rate are commonly used as performance metrics for evaluation. The results reveal the potential of learning analytics for informing timely and evidence-based support for at-risk students.




science and technology

International Journal of Innovation and Learning




science and technology

Demand forecast for bike sharing rentals

For decades, data analytics has been instrumental in helping companies enhance their performance and achieve growth. By leveraging data analytics and visualisation, businesses have reaped numerous benefits, including the ability to identify emerging trends, analyse relationships and patterns within data, conduct in-depth analysis, and gain valuable insights from these patterns. Given the current demands of the industry, it is crucial to thoroughly explore these concepts to capitalise on the advantages they offer. This research specifically focuses on examining a dataset from Capital Bikes in Washington DC, providing a comprehensive understanding of data analytics and visualisation.




science and technology

Transformative advances in volatility prediction: unveiling an innovative model selection method using exponentially weighted information criteria

Using information criteria is a common method for making a decision about which model to use for forecasting. There are many different methods for evaluating forecasting models, such as MAE, RMSE, MAPE, and Theil-U, among others. After the creation of AIC, AICc, HQ, BIC, and BICc, the two criteria that have become the most popular and commonly utilised are Bayesian IC and Akaike's IC. In this investigation, we are innovative in our use of exponential weighting to get the log-likelihood of the information criteria for model selection, which means that we propose assigning greater weight to more recent data in order to reflect their increased precision. All research data is from the major stock markets' daily observations, which include the USA (GSPC, DJI), Europe (FTSE 100, AEX, and FCHI), and Asia (Nikkei).




science and technology

Stock market response to mergers and acquisitions: comparison between China and India

This research delves into the wealth effect of shareholders from bidding firms created by mergers and acquisitions (M&A) in China and India, two of the world's most populous nations. The study reveals that on average, M&A deals create wealth for shareholders of the acquiring firms, as determined by abnormal percentage returns in a five-day event window. Regarding the further classification of acquiring firms based on industry, the abnormal percentage returns vary in different sectors in both countries. In China, shareholders benefit in seven out of ten industries, while in India, they gain in five out of nine industries. Moreover, the stock markets' responses vary depending on the type of M&A in each country. Cross-industry M&A deals in China generate higher gains for shareholders than within-industry deals, whereas, in India, within-industry M&A deals generate higher gains.




science and technology

A study on value chain of mushroom for value addition: challenges, opportunities and prospects of cultivation of mushroom

This research was carried out with an objective of studying the existing mushroom value chain, identifying demand-supply gap, carrying out SWOT analysis to explore challenges, proposing action plan and presenting finally standard operating procedure for enhancing value chain effectiveness. Data was collected from 71 actors identified in the oyster mushroom value chain in Tumakuru Taluk, Karnataka State, India and analysed. Analysis showed that there were five different models of value chain, and the shortest value chain was the most profitable one. Based on the respondents' perceptions, mushroom cultivation offers many opportunities such as creating employment, improving economic condition and diet. Meanwhile they face challenges like, pest attack, hike in input materials' prices, lack of technical guidance during farming, finance support, inefficient marketing system. There is a need to address demand-supply gap, invest more in facilities and related research, integrate all the actors in value chain to enhance productivity.