world news

Crystal structure of (E)-N'-(3,4-di­hydroxy­benzyl­idene)-4-hy­droxy­benzohydrazide

In the title benzohydrazide derivative, C14H12N2O4, the azomethine C=N double bond has an E configuration. The hydrazide connecting bridge, (C=O)—(NH)—N=(CH), is nearly planar with C—C—N—N and C—N—N=C torsion angles of −177.33 (10) and −174.98 (12)°, respectively. The 4-hy­droxy­phenyl and 3,4-di­hydroxy­phenyl rings are slightly twisted, making a dihedral angle of 9.18 (6)°. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network, while further consolidated via π–π inter­actions [centroid–centroid distances = 3.6480 (8) and 3.7607 (8) Å]. The conformation is compared to those of related benzyl­idene-4-hy­droxy­benzohydrazide derivatives.




world news

Crystal structures of two isomeric 2-aryl-3-phenyl-1,3-thia­zepan-4-ones

The crystal of 6-(3-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1), C19H18N2O3S, has monoclinic (P21/n) symmetry while that of its isomer 6-(4-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2), has ortho­rhom­bic (Pca21) symmetry: compound 1 has two mol­ecules, A and B, in the asymmetric unit while 2 has one. In all three mol­ecules, the seven-membered thia­zepan ring exhibits a chair conformation with Q2 and Q3 values (Å) of 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3) in 1 and 0.517 (5), 0.699 (5) in 2. In each structure, the phenyl rings attached to adjacent atoms of the thia­zepan ring have inter­planar angles ranging between 41 and 47°. Except for the nitro groups, the three mol­ecules have similar conformations when overlayed in pairs. Both crystal structures are consolidated by C—H⋯O hydrogen bonds.




world news

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




world news

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine N-oxide

Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO), 3-methyl­pyridine N-oxide (3MePNO), and 4-methyl­pyridine N-oxide (4MePNO). The compounds are bis­(μ-pyridine N-oxide)bis­[aqua­dibromido­(pyridine N-oxide)manganese(II)], [Mn2Br4(C5H5NO)4(H2O)2] (I), bis­(μ-2-methyl­pyridine N-oxide)bis­[di­aqua­dibromido­manganese(II)]–2-methyl­pyridine N-oxide (1/2), [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO (II), bis­(μ-3-methyl­pyridine N-oxide)bis­[aqua­dibromido­(3-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(H2O)2] (III), and bis­(μ-4-methyl­pyridine N-oxide)bis­[di­bromido­methanol(4-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(CH3OH)2] (IV). All the compounds have one unique MnII atom and form a dimeric complex that contains two MnII atoms related by a crystallographic inversion center. Pseudo-octa­hedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol mol­ecule of solvation. Compounds I, III and IV exhibit the same arrangement of mol­ecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent mol­ecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water mol­ecules with a second PNO mol­ecule inter­acting with the complex via hydrogen bonding through the bound water mol­ecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π-stacking between PNO ligands of neighboring dimers.




world news

Crystal structure and chemistry of tricadmium digermanium tetra­arsenide, Cd3Ge2As4

A cadmium germanium arsenide compound, Cd3Ge2As4, was synthesized using a double-containment fused quartz ampoule method within a rocking furnace and a melt-quench technique. The crystal structure was determined from single-crystal X-ray diffraction (SC-XRD), scanning and transmission electron microscopies (i.e. SEM, STEM, and TEM), and selected area diffraction (SAD) and confirmed with electron backscatter diffraction (EBSD). The chemistry was verified with electron energy loss spectroscopy (EELS).




world news

Synthesis and structure of 2,4,6-tri­cyclo­butyl-1,3,5-trioxane

The synthesis and structure of 2,4,6,-tri­cyclo­butyl-1,3,5-trioxane, C15H24O3 1, is described. It was formed in 39% yield during the work-up of the Swern oxidation of cyclo­butyl­methanol and may serve as a stable precursor of the cyclo­butane carbaldehyde. The mol­ecule of 1 occupies a special position (3.m) located at the center of its 1,3,5-trioxane ring. The latter is in a chair conformation, with the symmetry-independent O and C atoms deviating by 0.651 (4) Å from the least-squares plane of the other atoms of the trioxane ring. All three cyclo­butane substituents, which have a butterfly conformation with an angle between the two planes of 25.7 (3)°, are in the cis conformation relative to the 1,3,5-trioxane ring. Inter­molecular C—H⋯O inter­actions between the 1,3,5-trioxane rings consolidate the crystal structure, forming stacks along the c-axis direction. The crystal studied was refined a as a racemic twin.




world news

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




world news

Crystal structure and Hirshfeld surface analysis of bis­(benzoato-κ2O,O')[bis­(pyridin-2-yl-κN)amine]nickel(II)

A new mononuclear NiII complex with bis­(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octa­hedral geometry with an [NiN2O4] chromophore. In the crystal, the complex mol­ecules are linked together into a one-dimensional chain by symmetry-related π–π stacking inter­actions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions, which were investigated by Hirshfeld surface analysis.




world news

Synthesis and structure of push–pull merocyanines based on barbituric and thio­barbituric acid

Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, mol­ecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the mol­ecules are connected by weak C—H⋯O and/or C—H⋯S bonds.




world news

Synthesis and crystal structure of 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride

Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hy­droxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a di­aza­butadiene precursor followed by ring closure using tri­methylchloro­silane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hy­droxy­phenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hy­droxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − {1over 2}, −y + {1over 2}, z − {1over 2}), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with inter­planar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy inter­molecular inter­action is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hy­droxy O atoms on translationally adjacent mol­ecules (x + 1, y, x + 1).




world news

The first crystal structure of the pyrrolo­[1,2-c]oxazole ring system

The title compound, C7H4F3NO2, 3-tri­fluoro­methyl-1H-pyrrolo­[1,2-c]oxazol-1-one, is the first crystal structure of the pyrrolo­[1,2-c]oxazole ring system: the fused ring system is almost planar (r.m.s. deviation = 0.006 Å). In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into [001] chains and π–π stacking inter­actions consolidate the structure.




world news

Crystal structure and magnetic properties of bis­[butyl­tris­(1H-pyrazol-1-yl)borato]iron(II)

The asymmetric unit of the title compound, [Fe(C13H18BN6)2], contains two half independent complex mol­ecules. In each complex, the FeII atom is located on an inversion center and is surrounded by two scorpionate ligand butyl­tris­(1H-pyrazol-1-yl)borate mol­ecules that coordinate to the iron(II) ion through the N atoms of the pyrazole groups. The two independent complex mol­ecules differ essentially in the conformation of the butyl substituents. In the crystal, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, which generate a supra­molecular three-dimensional structure. At 120 K, the average Fe—N bond distance is 1.969 Å, indicating the low-spin state of the iron(II) atom, which does not change upon heating, as demonstrated by high-temperature magnetic susceptibility measurements.




world news

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine

The title compound, C18H16N4O, consists of a 3,6-bis­(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yl­oxy)meth­yl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxy⋯π (Prp­oxy = prop-2-en-1-yl­oxy) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals inter­actions being the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




world news

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane and 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane, C33H30Si (I), was prepared via the reaction of two equivalents of di­phenyl­methyl­lithium (benzhydryllithium) and di­chloro­methyl­phenyl­silane. This bis­benzhydryl-substituted silicon compound was then reacted with tri­fluoro­methane­sulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetra­hedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal of I, mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, mol­ecules are linked by C—H⋯π and O—H⋯π inter­actions that result in the formation of ribbons that run along the a-axis direction.




world news

The fumarate salts of the N-isopropyl-N-methyl derivatives of DMT and psilocin

The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyl­tryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate}, C14H21N2+·C4H3O4−, and 4-hy­droxy-N-isopropyl-N-methyl­tryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate monohydrate}, C14H21N2O+·C4H3O4−·H2O, are reported. Both salts possess a proton­ated tryptammonium cation and a 3-carb­oxy­acrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water mol­ecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks.




world news

Crystal structure of (E)-3-(2-hy­droxy-4-methyl­phen­yl)-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

The title chalcone derivative, C19H20O5, adopts a trans configuration with respect to the olefinic C=C double bond. The 2-hy­droxy-4-methyl­phenyl ring is coplanar with the attached enone bridge [torsion angle = −179.96 (14)°], where this plane is nearly perpendicular to the 2,4,6-tri­meth­oxy­phenyl ring [dihedral angle = 75.81 (8)°]. In the crystal, mol­ecules are linked into chains propagating along [010] by an O—H⋯O hydrogen bond. These chains are further connected into centrosymmetric dimer chains via weak C—H⋯O inter­actions. The conformations of related chalcone derivatives are surveyed and all of these structures adopt a skeleton with two almost orthogonal aromatic rings.




world news

Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis

Lapachol acetate [systematic name: 3-(3-methyl­but-2-en­yl)-1,4-dioxonaph­thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol­ecule is reported. The mol­ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter­molecular π–π and C—H⋯O inter­actions, as described by Hirshfeld surface analysis. The former inter­actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.




world news

Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hy­droxy-4,4,7a,9a,12a-penta­methyl-10-[(2'R)-6-methyl­heptan-2-yl]-2,8,9-trioxo­octa­deca­hydro­benzo[d]indeno­[4,5-b]azepin-5-yl acetate from 62-year-old

The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The mol­ecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals inter­actions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methyl­heptane chain at one end of the main mol­ecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined.




world news

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




world news

Crystal structure of tetra­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide

The title compound, C4H12N+·C11H5N4−, contains one tetra­methyl­ammonium cation and one 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 di­nitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C—C bond distances along the hepta­dienyl chain vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10overline{1}] direction by C—H⋯N(nitrile) short contacts. The anti­parallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts and stacking inter­actions combine to link the anions into layers parallel to the (overline{1}01) plane and separated by columns of tetra­methyl­ammonium cations.




world news

Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole

The title compound, C11H9F3N4S, was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the tri­fluoro­methyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic π–π stacking inter­actions link the mol­ecules into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis, as well as inter­action energy calculations, were performed.




world news

Synthesis and crystal structure of tert-butyl 1-(2-iodo­benzo­yl)cyclo­pent-3-ene-1-carboxyl­ate

1-(2-Iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ates are novel substrates to construct bi­cyclo­[3.2.1]octa­nes with anti­bacterial and anti­thrombotic activities. In this context, tert-butyl 1-(2-iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ate, C17H19IO3, was synthesized and structurally characterized. The 2-iodo­benzoyl group is attached to the tertiary C atom of the cyclo­pent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclo­pent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the mol­ecules to form inversion dimers.




world news

Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand

Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis­(tetra­hydro­furan)­ytterbium(III)}-tris­[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene tris­olvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene tris­olvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Inter­estingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five.




world news

Crystal structure and Hirshfeld surface analysis of 4-(4-methyl­benz­yl)-6-phenyl­pyridazin-3(2H)-one

In this paper, we describe the synthesis of a new di­hydro-2H-pyridazin-3-one derivative. The mol­ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(8) ring motif. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter­actions.




world news

Crystal structure, Hirshfeld surface analysis and DFT studies of 5-bromo-1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl}indoline-2,3-dione

The title compound, C14H15BrClNO4, consists of a 5-bromo­indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety. In the crystal, a series of C—H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R22(8), R22(12), R22(18) and R22(22) ring motifs. π–π contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloro­eth­oxy­ethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).




world news

New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K

The crystal structure of [ZnCl2(NH3)2], diamminedi­chlorido­zinc, was re-investigated at low temperature, revealing the positions of the hydrogen atoms and thus a deeper insight into the hydrogen-bonding scheme in the crystal packing. In comparison with previous crystal structure determinations [MacGillavry & Bijvoet (1936). Z. Kristallogr. 94, 249–255; Yamaguchi & Lindqvist (1981). Acta Chem. Scand. 35, 727–728], an improved precision of the structural parameters was achieved. In the crystal, tetra­hedral [Zn(NH3)2Cl2] units (point-group symmetry mm2) are linked through N—H⋯Cl hydrogen bonds into a three-dimensional network.




world news

The synthesis and crystal structure of bis­[3,3-diethyl-1-(phenyl­imino-κN)thio­urea-κS]silver hexa­fluorido­phosphate

The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexa­fluorido­phosphate with a concentrated tetra­hydro­furan solution of N,N-di­ethyl­phenyl­azo­thio­formamide [ATF; systematic name: 3,3-diethyl-1-(phenyl­imino)­thio­urea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane.




world news

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




world news

The crystal structures and Hirshfeld surface analyses of four 3,5-diacetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl derivatives

The title compounds, 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl benzoate, C20H19N3O4S (I), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl isobutyrate 0.25-hydrate, C17H21N3O4S·0.25H2O (II), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl propionate, C16H19N3O4S (III) and 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl cinnamate chloro­form hemisolvate, C22H21N3O4S·0.5CHCl3 (IV), all crystallize with two independent mol­ecules (A and B) in the asymmetric unit in the triclinic Poverline{1} space group. Compound II crystallizes as a quaterhydrate, while compound IV crystallizes as a chloro­form hemisolvate. In compounds I, II, III (mol­ecules A and B) and IV (mol­ecule A) the five-membered thia­diazole ring adopts an envelope conformation, with the tetra­substituted C atom as the flap. In mol­ecule B of IV this ring is flat (r.m.s. deviation 0.044 Å). The central benzene ring is in general almost normal to the mean plane of the thia­diazole ring in each mol­ecule, with dihedral angles ranging from 75.8 (1) to 85.5 (2)°. In the crystals of all four compounds, the A and B mol­ecules are linked via strong N—H⋯O hydrogen bonds and generate centrosymmetric four-membered R44(28) ring motifs. There are C—H⋯O hydrogen bonds present in the crystals of all four compounds, and in I and II there are also C—H⋯π inter­actions present. The inter­molecular contacts in the crystals of all four compounds were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




world news

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.




world news

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).




world news

Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol

The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral di­hydro­iso­quinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H inter­actions (ca 75%). The crystal studied was refined as a two-component inversion twin.




world news

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.




world news

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-chloro­ethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

The title compound, C15H12ClNO3, consists of a 1,2-di­hydro­quinoline-4-carb­oxyl­ate unit with 2-chloro­ethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the mol­ecules form zigzag stacks along the a-axis direction through slightly offset π-stacking inter­actions between inversion-related quinoline moieties which are tied together by inter­molecular C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




world news

2-{(1E)-[(E)-2-(2,6-Di­chloro­benzyl­idene)hydrazin-1-yl­idene]meth­yl}phenol: crystal structure, Hirshfeld surface analysis and computational study

The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol­ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy­droxy­benzene and chloro­benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intra­molecular hy­droxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking inter­actions between hy­droxy- and chloro­benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra­molecular chain propagating along the b-axis direction; the chains pack without directional inter­actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking inter­actions contribute 12.0% to the overall surface contacts. The calculation of the inter­action energies in the crystal indicates significant contributions from the dispersion term.




world news

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).




world news

Crystal structure of catena-poly[[[bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II)]-μ2-tris­[4-(pyridin-3-yl)phen­yl]amine-κ2N:N'] tetra­hydro­furan monosolvate]

The reaction of bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II), [Zn(dbm)2], with tris­[4-(pyridin-3-yl)phen­yl]amine (T3PyA) in tetra­hydro­furan (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O}n. The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octa­hedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H⋯π inter­actions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H⋯π inter­actions into a three-dimensional network. The solvate THF mol­ecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).




world news

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5''-(2-chloro­benzyl­idene)-4'-(2-chloro­phen­yl)-1'-methyl­dispiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C34H28Cl2N2O2, (I), and its analogue 1'-methyl-5''-(2-methyl­benzyl­idene)-4'-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.




world news

Crystal structure of bis­[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis­(nitrato-κO)cadmium(II)

In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octa­hedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.




world news

Crystal structure of (15,20-bis­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(4-methyl­pyridine-3,5-di­yl)bis­[(sulfanediyl­methyl­ene)[1,1'-biphen­yl]-4',2-di­yl]}porphyrinato)nickel(II) di­chloro

The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitro­gen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitro­gen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered di­chloro­methane solvate mol­ecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18].




world news

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%




world news

(N,N-Diiso­propyl­dithio­carbamato)tri­phenyl­tin(IV): crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title triorganotin di­thio­carbamate, [Sn(C6H5)3(C7H14NS2)], are described. The mol­ecular geometry about the metal atom is highly distorted being based on a C3S tetra­hedron as the di­thio­carbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The mol­ecular packing is almost devoid of directional inter­actions with only weak phenyl-C—H⋯C(phen­yl) inter­actions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance.




world news

α-SrZn5-Type solid solution, BaZn2.6Cu2.4

Single crystals of the title compound barium zinc copper, BaCu2.6Zn2.4, were obtained from a sample prepared by heating metal chips of Ba, Cu, and Zn in an Ar atmosphere up to 973 K, followed by slow cooling. Single-crystal X-ray structure analysis revealed that BaCu2.6Zn2.4 crystallizes in an ortho­rhom­bic cell [a = 12.9858 (3), b = 5.2162 (1), and c = 6.6804 (2) Å] with an α-SrZn5-type structure (space group Pnma). The three-dimensional framework consists of Cu and Zn atoms, with Ba atoms in the tunnels extending in the b-axis direction. Although the Ba atom is larger than the Sr atom, the cell volume of BaCu2.6Zn2.4 [452.507 (19) Å3] is smaller than that of α-SrZn5 [466.08 Å3]. This decrease in volume can be attributed to the partial substitution of Cu atoms by Zn atoms in the framework because the Cu—Zn and Cu—Cu bonds are shorter than the Zn—Zn bond. The increase in Ba—Zn inter­atomic distances from the Sr—Zn distances is cancelled out by the partial replacement of Zn with Cu atoms, which leads to shorter average Ba—Zn/Cu distances.




world news

3,3-Bis(2-hy­droxy­eth­yl)-1-(4-methyl­benzoyl)thio­urea: crystal structure, Hirshfeld surface analysis and computational study

In the title tri-substituted thio­urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol­ecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy­droxy­ethyl groups lying to either side of this plane. One hy­droxy­ethyl group is orientated towards the thio­amide functionality enabling the formation of an intra­molecular N—H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol­ecule is twisted. The experimental mol­ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol­ecular packing, hydroxyl-O—H⋯O(hydrox­yl) and hydroxyl-O—H⋯S(thione) hydrogen bonds lead to the formation of a supra­molecular layer in the ab plane; no directional inter­actions are found between layers. The influence of the specified supra­molecular inter­actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter­action plots; the inter­action energies point to the important stabilization provided by directional O—H⋯O hydrogen bonds.




world news

The crystal structure of the zwitterionic co-crystal of 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and 2,4-di­chloro­phenol

The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-amino­propan-1-ol, formaldehyde and 2,4-di­chloro­phenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and the unreacted 2,4-di­chloro­phenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a mol­ecule each of the 2,4-di­chloro­phenol and 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most inter­esting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic di­chloro­phenol fragments and polar hydrogen-bonded channels. The 2,4-di­chloro­phenol rings stack on top of one another, and these are held together by π–π inter­actions. The crystal studied was refined as an inversion twin.




world news

The crystal structure of ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II): a supra­molecular two-dimens

The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio­semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π inter­actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo­hexyl­hydrazine-1-carbo­thio­amide ligands are compared to that of the title compound.




world news

Crystal structure and Hirshfeld surface analysis of bis­[hydrazinium(1+)] hexa­fluorido­silicate: (N2H5)2SiF6

In the title inorganic mol­ecular salt, (N2H5)2SiF6, the silicon atom at the centre of the slightly distorted SiF6 octa­hedron [range of Si—F distances = 1.6777 (4)–1.7101 (4) Å] lies on a crystallographic inversion centre. In the crystal, the ions are connected by N—H⋯N and N—H⋯F hydrogen bonds; the former link the cations into [010] chains and the latter (some of which are bifurcated or trifurcated) link the ions into a three-dimensional network. The two-dimensional fingerprint plots show that F⋯H/H⋯F inter­actions dominate the Hirshfeld surface (75.5%) followed by H⋯H (13.6%) and N⋯H/H⋯N (8.4%) whereas F⋯F (1.9%) and F⋯N/N⋯F (0.6%) have negligible percentages. The title compound is isostructural with its germanium-containing analogue.




world news

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




world news

Crystal structure and Hirshfeld surface analysis of 2,2''',6,6'''-tetra­meth­oxy-3,2':5',3'':6'',3'''-quaterpyridine

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.




world news

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin