academic and careers The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye–Scherrer rings By scripts.iucr.org Published On :: 2020-02-01 The residual strain distribution has been measured as a function of depth in both top coat and bond coat in as-received and heat-treated air plasma sprayed thermal barrier coating samples. High-energy synchrotron X-ray beams were used in transmission to produce full Debye–Scherrer rings whose non-circular aspect ratio gave the in-plane and out-of-plane strains far more efficiently than the sin2ψ method. The residual strain in the bond coat is found to be tensile and the strain in the β phase of the as-received sample was measured. The residual strains observed in the top coat were generally compressive (increasing towards the interface), with two kinds of nonlinear trend. These was a `jump' feature near the interface, and in some cases there was another `jump' feature near the surface. It is shown how these trend differences can be correlated to cracks in the coating. Full Article text
academic and careers Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization By scripts.iucr.org Published On :: 2020-02-01 Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with computed tomography (CT) has enabled the visualization of the spatial distribution of nanostructures in thin films. 2D GISAXS images are obtained by scanning along the direction perpendicular to the X-ray beam at each rotation angle. Because the intensities at the q positions contain nanostructural information, the reconstructed CT images individually represent the spatial distributions of this information (e.g. size, shape, surface, characteristic length). These images are reconstructed from the intensities acquired at angular intervals over 180°, but the total measurement time is prolonged. This increase in the radiation dosage can cause damage to the sample. One way to reduce the overall measurement time is to perform a scanning GISAXS measurement along the direction perpendicular to the X-ray beam with a limited interval angle. Using filtered back-projection (FBP), CT images are reconstructed from sinograms with limited interval angles from 3 to 48° (FBP-CT images). However, these images are blurred and have a low image quality. In this study, to optimize the CT image quality, total variation (TV) regularization is introduced to minimize sinogram image noise and artifacts. It is proposed that the TV method can be applied to downsampling of sinograms in order to improve the CT images in comparison with the FBP-CT images. Full Article text
academic and careers PyMDA: microcrystal data assembly using Python By scripts.iucr.org Published On :: 2020-02-01 The recent developments at microdiffraction X-ray beamlines are making microcrystals of macromolecules appealing subjects for routine structural analysis. Microcrystal diffraction data collected at synchrotron microdiffraction beamlines may be radiation damaged with incomplete data per microcrystal and with unit-cell variations. A multi-stage data assembly method has previously been designed for microcrystal synchrotron crystallography. Here the strategy has been implemented as a Python program for microcrystal data assembly (PyMDA). PyMDA optimizes microcrystal data quality including weak anomalous signals through iterative crystal and frame rejections. Beyond microcrystals, PyMDA may be applicable for assembling data sets from larger crystals for improved data quality. Full Article text
academic and careers BornAgain: software for simulating and fitting grazing-incidence small-angle scattering By scripts.iucr.org Published On :: 2020-02-01 BornAgain is a free and open-source multi-platform software framework for simulating and fitting X-ray and neutron reflectometry, off-specular scattering, and grazing-incidence small-angle scattering (GISAS). This paper concentrates on GISAS. Support for reflectometry and off-specular scattering has been added more recently, is still under intense development and will be described in a later publication. BornAgain supports neutron polarization and magnetic scattering. Users can define sample and instrument models through Python scripting. A large subset of the functionality is also available through a graphical user interface. This paper describes the software in terms of the realized non-functional and functional requirements. The web site https://www.bornagainproject.org/ provides further documentation. Full Article text
academic and careers Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling By scripts.iucr.org Published On :: 2020-02-01 Molybdenum oxides and sulfides on various low-cost high-surface-area supports are excellent catalysts for several industrially relevant reactions. The surface layer structure of these materials is, however, difficult to characterize due to small and disordered MoOx domains. Here, it is shown how X-ray total scattering can be applied to gain insights into the structure through differential pair distribution function (d-PDF) analysis, where the scattering signal from the support material is subtracted to obtain structural information on the supported structure. MoOx catalysts supported on alumina nanoparticles and on zeolites are investigated, and it is shown that the structure of the hydrated molybdenum oxide layer is closely related to that of disordered and polydisperse polyoxometalates. By analysing the PDFs with a large number of automatically generated cluster structures, which are constructed in an iterative manner from known polyoxometalate clusters, information is derived on the structural motifs in supported MoOx. Full Article text
academic and careers Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations By scripts.iucr.org Published On :: 2020-02-01 Crystallographic textures, as they develop for example during cold forming, can have a significant influence on the mechanical properties of metals, such as plastic anisotropy. Textures are typically characterized by a non-uniform distribution of crystallographic orientations that can be measured by diffraction experiments like electron backscatter diffraction (EBSD). Such experimental data usually contain a large number of data points, which must be significantly reduced to be used for numerical modeling. However, the challenge in such data reduction is to preserve the important characteristics of the experimental data, while reducing the volume and preserving the computational efficiency of the numerical model. For example, in micromechanical modeling, representative volume elements (RVEs) of the real microstructure are generated and the mechanical properties of these RVEs are studied by the crystal plasticity finite element method. In this work, a new method is developed for extracting a reduced set of orientations from EBSD data containing a large number of orientations. This approach is based on the established integer approximation method and it minimizes its shortcomings. Furthermore, the L1 norm is applied as an error function; this is commonly used in texture analysis for quantitative assessment of the degree of approximation and can be used to control the convergence behavior. The method is tested on four experimental data sets to demonstrate its capabilities. This new method for the purposeful reduction of a set of orientations into equally weighted orientations is not only suitable for numerical simulation but also shows improvement in results in comparison with other available methods. Full Article text
academic and careers Li-ion half-cells studied operando during cycling by small-angle neutron scattering By scripts.iucr.org Published On :: 2020-01-31 Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core–shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account. Full Article text
academic and careers Quantifying nanoparticles in clays and soils with a small-angle X-ray scattering method By scripts.iucr.org Published On :: 2020-02-01 Clays and soils produce strong small-angle X-ray scattering (SAXS) because they contain large numbers of nanoparticles, namely allophane and ferrihydrite. These nanoparticles are amorphous and have approximately spherical shape with a size of around 3–10 nm. The weight ratios of these nanoparticles will affect the properties of the clays and soils. However, the nanoparticles in clays and soils are not generally quantified and are sometimes ignored because there is no standard method to quantify them. This paper describes a method to quantify nanoparticles in clays and soils with SAXS. This is achieved by deriving normalized SAXS intensities from unit weight of the sample, which are not affected by absorption. By integrating the normalized SAXS intensities over the reciprocal space, one obtains a value that is proportional to the weight ratio of the nanoparticles, proportional to the square of the difference of density between the nanoparticles and the liquid surrounding the nanoparticles, and inversely proportional to the density of the nanoparticles. If the density of the nanoparticles is known, the weight ratio of the nanoparticles can be calculated from the SAXS intensities. The density of nanoparticles was estimated from the chemical composition of the sample. Nanoparticles in colloidal silica, silica gels, mixtures of silica gel and α-aluminium oxide, and synthetic clays have been quantified with the integral SAXS method. The results show that the errors of the weight ratios of nanoparticles are around 25% of the weight ratio. It is also shown that some natural clays contain large fractions of nanoparticles; montmorillonite clay from the Mikawa deposit, pyrophillite clay from the Shokozan deposit and kaolinite clay from the Kanpaku deposit contain 25 (7), 10 (2) and 19 (5) wt% nanoparticles, respectively, where errors are shown in parentheses. Full Article text
academic and careers Detailed surface analysis of V-defects in GaN films on patterned silicon(111) substrates by metal–organic chemical vapour deposition. Corrigendum By scripts.iucr.org Published On :: 2020-02-01 An error in the article by Gao, Zhang, Zhu, Wu, Mo, Pan, Liu & Jiang [J. Appl. Cryst. (2019), 52, 637–642] is corrected. Full Article text
academic and careers Simulation of small-angle X-ray scattering data of biological macromolecules in solution By scripts.iucr.org Published On :: 2020-02-18 This article presents IMSIM, an application to simulate two-dimensional small-angle X-ray scattering patterns and, further, one-dimensional profiles from biological macromolecules in solution. IMSIM implements a statistical approach yielding two-dimensional images in TIFF, CBF or EDF format, which may be readily processed by existing data-analysis pipelines. Intensities and error estimates of one-dimensional patterns obtained from the radial average of the two-dimensional images exhibit the same statistical properties as observed with actual experimental data. With initial input on an absolute scale, [cm−1]/c[mg ml−1], the simulated data frames may also be scaled to absolute scale such that the forward scattering after subtraction of the background is proportional to the molecular weight of the solute. The effects of changes of concentration, exposure time, flux, wavelength, sample–detector distance, detector dimensions, pixel size, and the mask as well as incident beam position can be considered for the simulation. The simulated data may be used in method development, for educational purposes, and also to determine the most suitable beamline setup for a project prior to the application and use of the actual beamtime. IMSIM is available as part of the ATSAS software package (3.0.0) and is freely available for academic use (http://www.embl-hamburg.de/biosaxs/download.html). Full Article text
academic and careers Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns By scripts.iucr.org Published On :: 2020-03-25 A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3°. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw]i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions. Full Article text
academic and careers Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data By scripts.iucr.org Published On :: 2020-02-21 Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data. Full Article text
academic and careers PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data By scripts.iucr.org Published On :: 2020-03-13 Over the past decade, ptychography has been proven to be a robust tool for non-destructive high-resolution quantitative electron, X-ray and optical microscopy. It allows for quantitative reconstruction of the specimen's transmissivity, as well as recovery of the illuminating wavefront. Additionally, various algorithms have been developed to account for systematic errors and improved convergence. With fast ptychographic microscopes and more advanced algorithms, both the complexity of the reconstruction task and the data volume increase significantly. PtychoShelves is a software package which combines high-level modularity for easy and fast changes to the data-processing pipeline, and high-performance computing on CPUs and GPUs. Full Article text
academic and careers Monte Carlo simulation of neutron scattering by a textured polycrystal By scripts.iucr.org Published On :: 2020-03-30 A method of simulating the neutron scattering by a textured polycrystal is presented. It is based on an expansion of the scattering cross sections in terms of the spherical harmonics of the incident and scattering directions, which is derived from the generalized Fourier expansion of the polycrystal orientation distribution function. The method has been implemented in a Monte Carlo code as a component of the McStas software package, and it has been validated by computing some pole figures of a Zircaloy-4 plate and a Zr–2.5Nb pressure tube, and by simulating an ideal transmission experiment. The code can be used to estimate the background generated by components of neutron instruments such as pressure cells, whose walls are made of alloys with significant crystallographic texture. As a first application, the effect of texture on the signal-to-noise ratio was studied in a simple model of a diffraction experiment, in which a sample is placed inside a pressure cell made of a zirconium alloy. With this setting, the results of two simulations were compared: one in which the pressure-cell wall has a uniform distribution of grain orientations, and another in which the pressure cell has the texture of a Zr–2.5Nb pressure tube. The results showed that the effect of the texture of the pressure cell on the noise of a diffractogram is very important. Thus, the signal-to-noise ratio can be controlled by appropriate choice of the texture of the pressure-cell walls. Full Article text
academic and careers In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin By scripts.iucr.org Published On :: 2020-03-25 Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis. Full Article text
academic and careers Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography By scripts.iucr.org Published On :: 2020-03-25 Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution. Full Article text
academic and careers In-house texture measurement using a compact neutron source By scripts.iucr.org Published On :: 2020-03-25 In order to improve the instrumental accessibility of neutron diffraction techniques, many emerging compact neutron sources and in-house neutron diffractometers are being developed, even though the precision level of neutron diffraction experiments performed on such instruments was thought to be incomparable with that of large-scale neutron facilities. As a challenging project, the RIKEN accelerator-driven compact neutron source (RANS) was employed here to establish the technical environment for texture measurements, and the recalculated pole figures and orientation distribution functions of an interstitial-free steel sheet obtained from RANS were compared with the results from another two neutron diffractometers well established for texture measurement. These quantitative comparisons revealed that the precise neutron diffraction texture measurement at RANS has been realized successfully, and the fine region division of the neutron detector panel is invaluable for improving the stereographic resolution of texture measurements. Moreover, through selectively using the parts of the obtained neutron diffraction patterns that exhibit good statistics, the Rietveld texture analysis improves the reliability of the texture measurement to a certain extent. These technical research results may accelerate the development of other easily accessible techniques for evaluation of engineering materials using compact neutron sources, and also help to improve the data-collection efficiency for various time-resolved scattering experiments at large-scale neutron facilities. Full Article text
academic and careers Enhancing the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals by using an Fe-added Y2O3 crucible via top-seeded solution growth By journals.iucr.org Published On :: This paper reports an Fe-added Y2O3 crucible which is capable of balancing the solution spontaneously and is employed to effectively enhance the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals. Full Article text
academic and careers Bragg Edge Analysis for Transmission Imaging Experiments software tool: BEATRIX By journals.iucr.org Published On :: BEATRIX, is a new tool for performing data analysis of energy-resolved neutron-imaging experiments involving intense fitting procedures of multi-channel spectra. The use of BEATRIX is illustrated for a test specimen, providing spatially resolved 2D maps for residual strains and Bragg edge heights. Full Article text
academic and careers ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures By journals.iucr.org Published On :: An online knowledge base on the alternate conformations adopted by main-chain and side-chain atoms in protein structures solved by X-ray crystallography is described. Full Article text
academic and careers Protein crystal structure determination with the crystallophore, a nucleating and phasing agent By journals.iucr.org Published On :: The unique nucleating and phasing capabilities of the crystallophore, Tb-Xo4, are illustrated through challenging cases. Full Article text
academic and careers A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By journals.iucr.org Published On :: A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature. Full Article text
academic and careers Bias in Science and Communication. A Field Guide. By Matthew Welsh. IOP Publishing, 2018. Pp. 177. ISBN 978-0-7503-1312-4. By journals.iucr.org Published On :: Book review Full Article text
academic and careers Shape-fitting analyses of two-dimensional X-ray diffraction spots for strain-distribution evaluation in a β-FeSi2 nanofilm By journals.iucr.org Published On :: New fitting analyses of two-dimensional diffraction-spot shapes are demonstrated to evaluate strain, strain distribution and domain size in a crystalline ultra-thin film. The evaluations are displayed as residual and population maps as a function of strain or domain size. Full Article text
academic and careers Significant texture improvement in single-crystalline-like materials on low-cost flexible metal foils through growth of silver thin films By journals.iucr.org Published On :: Single-crystalline-like thin films composed of crystallographically aligned grains are a new prototype of 2D materials developed recently for low-cost and high-performance flexible electronics as well as second-generation high-temperature superconductors. In this work, significant texture improvement in single-crystalline-like materials is achieved through growth of a 330 nm-thick silver layer. Full Article text
academic and careers py_convrot: rotation conventions, to understand and to apply By journals.iucr.org Published On :: The Python-based program py_convrot is a universal converter of rigid-body rotation parameters. The program interactively illustrates the action of various rotation parameters and can be used both for teaching goals and for practical applications. Full Article text
academic and careers Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt By journals.iucr.org Published On :: An X-ray cross-correlation study of the impact of ligand composition and salt content on the self-assembly of soft-shell nanoparticles is presented, indicating symmetry-selective formation of order. Full Article text
academic and careers Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals By journals.iucr.org Published On :: Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment. Full Article text
academic and careers High-resolution phonon energy shift measurements with the inelastic neutron spin echo technique By journals.iucr.org Published On :: An energy resolution of <10 µeV for the measurement of phonon energy change is achieved with the inelastic neutron spin echo technique on a conventional neutron triple-axis spectrometer. Full Article text
academic and careers Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling By journals.iucr.org Published On :: Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual. Full Article text
academic and careers The competition between cocrystallization and separated crystallization based on crystallization from solution By journals.iucr.org Published On :: Because researchers do not understand the formation mechanism of cocrystals, the preparation of cocrystals is mostly done by trial and error. This study focuses on the cocrystal formation mechanism to improve the efficiency of cocrystal preparation. Full Article text
academic and careers Microstructure and water distribution in catalysts for polymer electrolyte fuel cells, elucidated by contrast variation small-angle neutron scattering By journals.iucr.org Published On :: By using small-angle neutron scattering (SANS) reinforced by scanning electron microscopy, the fine structure of catalysts for polymer electrolyte fuel cells has been investigated. The experimental data resulting from contrast variation with mixed light and heavy water (H2O/D2O) are well described by a core–shell model with fluctuations in concentration between water and Nafion. Full Article text
academic and careers Nanometre-sized droplets from a gas dynamic virtual nozzle By journals.iucr.org Published On :: This work describes a method to characterize the size distribution of individual aqueous droplets in a high-density and polydisperse aerosol. It is shown that droplets smaller than 120 nm can be generated by purely mechanical means using a gas dynamic virtual nozzle, and theoretical models are provided for the different flow regimes investigated. Full Article text
academic and careers A study of the strain distribution by scanning X-ray diffraction on GaP/Si for III–V monolithic integration on silicon By journals.iucr.org Published On :: The distribution of plastic relaxation defects is studied using a nondestructive sub-micrometre X-ray diffraction scanning technique. Full Article text
academic and careers Diffracting-grain identification from electron backscatter diffraction maps during residual stress measurements: a comparison between the sin2ψ and cosα methods By journals.iucr.org Published On :: The sin2ψ and cosα methods are compared via diffracting-grain identification from electron backscatter diffraction maps. Artificial textures created by the X-ray diffraction measurements are plotted and X-ray elastic constants of the diffracting-grain sets are computed. Full Article text
academic and careers The Philosophy of Science – A Companion. Edited by Anouk Baberousse, Denis Bonnay and Mikael Cozic. Oxford University Press, 2018. Pp. 768. Price GBP 64.00. ISBN-13 9780190690649. By journals.iucr.org Published On :: Book review Full Article text
academic and careers Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei By journals.iucr.org Published On :: This paper reports on the two-scale fractal structure of chromatin organization in the nucleus of the HeLa cell. Full Article text
academic and careers New attempt to combine scanning electron microscopy and small-angle scattering in reciprocal space By journals.iucr.org Published On :: An attempt has been made to combine small-angle scattering of X-rays or neutrons with scanning electron microscopy in reciprocal space, in order to establish a structural analysis method covering a wide range of sizes from micro- to macro-scales. Full Article text
academic and careers Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation By journals.iucr.org Published On :: The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction. Full Article text
academic and careers Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By journals.iucr.org Published On :: Book review Full Article text
academic and careers 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography By journals.iucr.org Published On :: The design and assembly of two 3D-printed holders for high-throughput in meso in situ fixed-target crystallographic data collection are described. Full Article text
academic and careers Calculation of total scattering from a crystalline structural model based on experimental optics parameters By journals.iucr.org Published On :: A calculation procedure for X-ray total scattering and the pair distribution function from a crystalline structural model is presented. It allows one to easily and precisely deal with diffraction-angle-dependent parameters such as the atomic form factor and the resolution of the optics. Full Article text
academic and careers Impact and behavior of Sn during the Ni/GeSn solid-state reaction By journals.iucr.org Published On :: A comprehensive analysis focused on Sn segregation during the Ni/GeSn solid-state reaction was carried out. It was demonstrated that Sn is soluble in the various Ni/GeSn intermetallic phases and that, when the temperature increases, the Sn segregation occurs first at grain boundaries, which can hamper Ni diffusion and delay the intermetallic formation. Full Article text
academic and careers X-ray diffraction using focused-ion-beam-prepared single crystals By journals.iucr.org Published On :: This study demonstrates a new preparation method for single-crystal X-ray diffraction samples using a focused ion beam. The results of the structure determination and electron density maps with differently prepared samples are discussed, to evaluate this new method. Full Article text
academic and careers Optimization of crystallization of biological macromolecules using dialysis combined with temperature control By journals.iucr.org Published On :: This article describes rational strategies for the optimization of crystal growth using precise in situ control of the temperature and chemical composition of the crystallization solution through dialysis, to generate crystals of the specific sizes required for different downstream structure determination approaches. Full Article text
academic and careers X-ray pulse stretching after diffraction By journals.iucr.org Published On :: In this article, the effect of stretching of short X-ray pulses after symmetric or asymmetric diffraction on crystal systems is studied. This is used to determine the optimal experimental arrangement to minimize the pulse stretching during diffraction. Full Article text
academic and careers CrystalCMP: automatic comparison of molecular structures By journals.iucr.org Published On :: New developments in the program CrystalCMP are presented, and the program is tested on a large number of crystal structures extracted from the Cambridge Structural Database. Full Article text
academic and careers Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By journals.iucr.org Published On :: Detailed analysis of the high-flux deficiencies of pixel-array detectors leads to a protocol for the measurement of structure factors of unprecedented accuracy even for inorganic materials, and this significantly advances the prospects for experimental electron-density investigations. Full Article text
academic and careers A thermal-gradient approach to variable-temperature measurements resolved in space By journals.iucr.org Published On :: A new approach to variable-temperature measurements is presented, where the sample temperature changes continuously as a function of position. Full Article text
academic and careers Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace By journals.iucr.org Published On :: This article presents the capability of the QMAX furnace, devoted to reciprocal space mapping through X-ray scattering at high temperature up to 2000 K. Full Article text