academic and careers

SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles]

Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.




academic and careers

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




academic and careers

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles]

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.­




academic and careers

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




academic and careers

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




academic and careers

Slc43a3 is a regulator of free fatty acid flux [Research Articles]

Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake.




academic and careers

The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles]

Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.




academic and careers

Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles]

Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.




academic and careers

Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles]

The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.




academic and careers

Lipid rafts as a therapeutic target [Thematic Reviews]

Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.




academic and careers

The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews]

Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.




academic and careers

Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews]

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.




academic and careers

Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews]

Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.




academic and careers

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




academic and careers

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




academic and careers

Lipid rafts and pathogens: the art of deception and exploitation [Thematic Reviews]

Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.




academic and careers

Biology of Lipid Rafts: Introduction to the Thematic Review Series [Thematic Reviews]

Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.




academic and careers

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries]




academic and careers

Membrane domains beyond the reach of microscopy [Commentaries]




academic and careers

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]




academic and careers

Images in Lipid Research [Editorials]




academic and careers

The Journal of Lipid Research




academic and careers

Book Review




academic and careers

A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance

A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems.




academic and careers

Very large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland

We describe two large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland, and point out their resemblance to a number of landforms emerging from presently deglaciating areas of Greenland and Antarctica. We suggest that they all result from locally sourced sediment being deposited by local ice-flow, which was laterally confined by the margins of much larger adjacent glaciers or ice-streams. The NW Highlands features thus seem likely to be the result of processes active during the latter part of the Devensian Glaciation. One of these deposits, on the peninsula between Loch Broom and Little Loch Broom, is evidently sourced from the west-facing Coire Dearg of Beinn Ghobhlach, but was emplaced in a WNW direction rather than along the WSW fall-line. This suggests that the ice that emplaced it was confined by the margins of large glaciers then occupying the adjacent valleys of Loch Broom and Little Loch Broom. The second much larger and more prominent deposit, in Applecross, is composed of bouldery Torridonian sandstone till emplaced on to glacially scoured bedrock; the only feasible source location for this material is about 12 km distant, which requires that the deposit was carried by ice across the trough of Strath Maol Chalum and emplaced while active ice-streams confined it laterally to its present-day location. This, in turn, requires that ice lay in the Inner Sound between Applecross and Skye to an elevation 400–500 m above present-day sea-level. The Wester Ross Re-advance of 15–14 ka left a fragment of lateral moraine against the most easterly flute and buried the distal end of the flutes with hummocky moraine. We hypothesize that the fluted deposits reflect the locations of the ice-stream margins that constrained deposition of locally derived ice-transported sediment, rather than the flow-lines of the ice-stream itself.




academic and careers

The South Kintyre Basin: its role in the stratigraphical and structural evolution of the Firth of Clyde region during the Devonian-Carboniferous transition

Late Devonian–Early Carboniferous rocks at the southern end of the Kintyre Peninsula closely resemble those of the Kinnesswood and Clyde Sandstone formations in more easterly portions of the Firth of Clyde. For example, a previously unrecognized thick marlstone with pedogenic calcretes is present in the Kinnesswood Formation at the south tip of the peninsula and, on the west coast, south of Machrihanish, a striking cliffed exposure includes massive phreatic calcretes developed from cross-bedded sandstones and red mudstones closely resembling those of the Clyde Sandstone on Great Cumbrae. A similar phreatic calcrete unit is present in the lower part of the Ballagan Formation in south Bute. The presence of vadose and phreatic calcrete provides valuable information concerning palaeoclimatic conditions in southwestern Scotland during the Devonian–Carboniferous transition. Overlying thick volcanic rocks are correlative with the Clyde Plateau Volcanic Formation. The sediments accumulated in the South Kintyre Basin on the west side of the Highland Boundary Fault (HBF). Formation of this basin, and the North East Arran and Cumbraes basins in the northeastern part of the Firth of Clyde, is interpreted as a response to development of a ‘locked zone’ in the HBF during an episode of sinistral faulting.




academic and careers

A large Taenidium burrow from the Upper Carboniferous of Corrie, Isle of Arran, and remarks on the association of Taenidium burrows and Diplichnites trails

Large un-walled backfilled burrows of the Taenidium type are known from Paleozoic deltaic marine environments worldwide where they are often associated with Diplichnites trackways. The latter are generally attributed to arthropleurid myriapods and it may be that the burrows were also made by these animals. Here we describe a Taenidium burrow from the Limestone Coal Formation of the Isle of Arran, a formation that also hosts a well-known example of Diplichnites, supporting the association of the two types of trace fossil and extending their known co-occurrence upward into the Upper Carboniferous.




academic and careers

Coupled hydraulic and mechanical model of surface uplift due to mine water rebound: implications for mine water heating and cooling schemes

In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered.

As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m–1 is of the same order of magnitude (1 mm m–1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings.

Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research




academic and careers

Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research

Studies of the former NE England coalfield in Tyneside demonstrated that heat flow perturbations in boreholes were due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historical mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m–2 and, after correction for palaeoclimate, is estimated as c. 80 mW m–2. An example of reduced heat flow above mine workings is observed at Hallside (c. 10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is c. 14 mW m–2. Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is c. 44 mW m–2. The differences between these values and the expected regional heat flow suggest a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historical mining on heat flow when temperature datasets such as these are used in the design of geothermal developments.

Supplementary material: Background information on the chronology of historical mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow are available at https://doi.org/10.6084/m9.figshare.c.4681100

Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research




academic and careers

Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK

Scotland is committed to be a carbon-neutral society by 2040 and has achieved the important initial step of decarbonizing power production. However, more ambitious measures are required to fully decarbonize all of the electricity, transport and heating sectors.

We explore the potential to use low-carbon GeoEnergy resources and bioenergy combined with Carbon Capture and Storage (BECCS) in the Midland Valley area to decarbonize the Scottish economy and society. The Midland Valley has a long history of geological resource extraction and, as a result, the geology of the region is well characterized.

Geothermal energy and subsurface energy storage have the potential to be implemented. Some of them, such as gravity and heat storage, could re-use the redundant mining infrastructure to decrease investment costs. Hydrogen storage could be of particular interest as the Midland Valley offers the required caprock–reservoir assemblages. BECCS is also a promising option to reduce overall CO2 emissions by between 1.10 and 4.40 MtCO2 a–1. The Midland Valley has enough space to grow the necessary crops, but CO2 storage will most likely be implemented in North Sea saline aquifers. The studied aspects suggest that the Midland Valley represents a viable option in Scotland for the exploitation of the majority of low-carbon GeoEnergy resources.

Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research




academic and careers

Rupture geometries in anisotropic amphibolite recorded by pseudotachylytes in the Gairloch Shear Zone, NW Scotland

Recent earthquakes involving complex multi-fault rupture have increased our appreciation of the variety of rupture geometries and fault interactions that occur within the short duration of coseismic slip. Geometrical complexities are intrinsically linked with spatially heterogeneous slip and stress drop distributions, and hence need incorporating into seismic hazard analysis. Studies of exhumed ancient fault zones facilitate investigation of rupture processes in the context of lithology and structure at seismogenic depths. In the Gairloch Shear Zone, NW Scotland, foliated amphibolites host pseudotachylytes that record rupture geometries of ancient low-magnitude (≤MW 3) seismicity. Pseudotachylyte faults are commonly foliation parallel, indicating exploitation of foliation planes as weak interfaces for seismic rupture. Discordance and complexity are introduced by fault segmentation, stepovers, branching and brecciated dilational volumes. Pseudotachylyte geometries indicate that slip nucleation initiated simultaneously across several parallel foliation planes with millimetre and centimetre separations, leading to progressive interaction and ultimately linkage of adjacent segments and branches within a single earthquake. Interacting with this structural control, a lithological influence of abundant low disequilibrium melting-point amphibole facilitated coseismic melting, with relatively high coseismic melt pressure encouraging transient dilational sites. These faults elucidate controls and processes that may upscale to large active fault zones hosting major earthquake activity.

Supplementary material: Supplementary Figures 1 and 2, unannotated versions of field photographs displayed in Figures 4a and 5 respectively, are available at https://doi.org/10.6084/m9.figshare.c.4573256

Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research





academic and careers

Phosphoflow Protocol for Signaling Studies in Human and Murine B Cell Subpopulations [NOVEL IMMUNOLOGICAL METHODS]

Key Points

  • Method for highly sensitive detection of phosphorylation in B cell subpopulations.

  • B cell subpopulations show different phosphorylation levels upon BCR stimulation.




    academic and careers

    Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression [TRANSPLANTATION]

    Key Points

  • Islets are engineered with SA-PDL1 protein without impacting viability/function.

  • SA-PDL1–engineered islets show indefinite survival in allogeneic hosts.

  • Survival is associated with elevated intragraft Th2, Treg, and M2 transcripts.




    academic and careers

    Surfactant Protein-A Protects against IL-13-Induced Inflammation in Asthma [MUCOSAL IMMUNOLOGY]

    Key Points

  • SP-A is a collectin and plays a key role in innate immunity in the lung.

  • SP-A modulates inflammation in airway epithelial cells from patients with asthma.

  • SP-A modulates IL-13–induced inflammation through downstream IL-6/STAT3 signaling.




    academic and careers

    Role of V-ATPase a3-Subunit in Mouse CTL Function [MOLECULAR AND STRUCTURAL IMMUNOLOGY]

    Key Points

  • The a3-subunit of V-ATPase acidifies cytotoxic granules in mouse CD8+ T lymphocytes.

  • Neutralization of luminal pH leads to altered morphology of cytotoxic granules.

  • Knockdown of a3-subunit disturbs trafficking of cytotoxic granules.




    academic and careers

    Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • 5-HT2B agonists stimulate AhR transcriptional activation in human macrophages.

  • Serotonin-induced expression of AhR target genes is 5-HT2B dependent in macrophages.




    academic and careers

    Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • The augmented ISG profile of RdRP mice develops largely postnatally.

  • Elevated ISG expression is then maintained through adulthood.

  • The ISG signature in adults requires persistent type I IFN signaling.




    academic and careers

    Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • ApoE was found in complex with C4d in RA patient SF.

  • Deposited ApoE activates complement whereas ApoE in solution is inhibitory.

  • Posttranslational modifications alter ApoE's capacity to bind FH and C4BP.




    academic and careers

    Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    academic and careers

    T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Lack of Tfh cells renders the mice susceptible to C. rodentium infection.

  • Tfh cell–dependent protective Abs are essential to control C. rodentium.

  • Tfh cells regulate IgG1 response to C. rodentium infection.




    academic and careers

    Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Virulent and avirulent parasites significantly differ in their proteome profiles.

  • Avirulent parasites fail to inhibit CD40 signaling.

  • Avirulent parasite strain is a potential antileishmanial vaccine candidate.




    academic and careers

    Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH.

  • CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem.

  • IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells.




    academic and careers

    Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Kupffer cells phagocytose both bacteria and CRP–VLDL complexes.

  • High levels of CRP–VLDL complexes delay bacterial clearance.

  • Pch disrupts CRP–VLDL complexes to improve bacterial clearance.




    academic and careers

    Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis [IMMUNOGENETICS]

    Key Points

  • Lymphotoxin axis is not essential for formation of O-MALT in ectotherms and birds.

  • Vertebrate O-MALT structures are enriched in neuroactive ligand/receptor genes.

  • Mammalian PPs and LNs are enriched in genes involved in olfactory transduction.




    academic and careers

    GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • Golgi morphology and Grasp55 expression are regulated during hematopoiesis.

  • Hematopoiesis is not affected in Grasp55-deficient mice.

  • Grasp55 regulates Myc-transformed leukemic cell survival.




    academic and careers

    Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • E4 is an enhancer element that regulates transcriptions of TCR genes.

  • E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs.

  • Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs.




    academic and careers

    IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge [IMMUNE REGULATION]

    Key Points

  • TLR signaling pathway regulates expression of monocyte chemoattractant CCR2.

  • IRAK-M is an important regulator of monocyte trafficking to the lung in fibrosis.




    academic and careers

    IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth [CLINICAL AND HUMAN IMMUNOLOGY]

    Key Points

  • IRAK1 is hyperactivated in human preterm birth and in mouse and rhesus IUI models.

  • IRAK1 deletion and inhibition reduces preterm birth.

  • IRAK1 induces preterm birth by upregulating COX-2.




    academic and careers

    Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development [AUTOIMMUNITY]

    Key Points

  • STAT1-pS727 is required for SLE-associated AFC, GC, and autoantibody responses.

  • STAT1-pS727 in B cells promotes autoimmune AFC, GC, and autoantibody responses.

  • STAT1-pS727 is not required for foreign Ag– or gut microbiota–driven responses.