english

Learning Objects, Learning Object Repositories, and Learning Theory: Preliminary Best Practices for Online Courses




english

Developing Learning Objects for Secondary School Students: A Multi-Component Model




english

Modeling the Organizational Aspects of Learning Objects in Semantic Web Approaches to Information Systems




english

IJIKM Volume 19, 2024 – Table of Contents

Table of Contents for Volume 19, 2024, of the Interdisciplinary Journal of Information, Knowledge, and Management




english

Impact of User Satisfaction With E-Government Services on Continuance Use Intention and Citizen Trust Using TAM-ISSM Framework

Aim/Purpose: This study investigates the drivers of user satisfaction in e-government services and its influence on continued use intention and citizen trust in government. It employs the integration of the Technology Acceptance Model (TAM) and the Information System Success Model (ISSM). Background: Electronic government, transforming citizen-state interactions, has gained momentum worldwide, including in India, where the aim is to leverage technology to improve citizen services, streamline administration, and engage the public. While prior research has explored factors influencing citizen satisfaction with e-government services globally, this area of study has been relatively unexplored in India, particularly in the post-COVID era. Challenges to widespread e-government adoption in India include a large and diverse population, limited digital infrastructure in rural areas, low digital literacy, and weak data protection regulations. Additionally, global declines in citizen trust, attributed to economic concerns, corruption, and information disclosures, further complicate the scenario. This study seeks to investigate the influence of various factors on user satisfaction and continuance usage of e-government services in India. It also aims to understand how these services contribute to building citizens’ trust in government. Methodology: The data were collected by utilizing survey items on drivers of e-government services, user satisfaction, citizen trust, and continuance use intention derived from existing literature on information systems and e-government. Responses from 501 Indian participants, collected using an online questionnaire, were analyzed using PLS-SEM. Contribution: This study makes a dual contribution to the e-government domain. First, it introduces a comprehensive research model that examines factors influencing users’ satisfaction and continuance intention with e-government services. The proposed model integrates the TAM and ISSM. Combining these models allows for a comprehensive examination of e-government satisfaction and continued intention. By analyzing the impact of user satisfaction on continuance intention and citizen trust through an integrated model, researchers and practitioners gain insights into the complex dynamics involved. Second, the study uncovers the effects of residential status on user satisfaction, trust, and continuance intention regarding e-government services. Findings reveal disparities in the influence of system and service quality on user satisfaction across different user segments. Researchers and policymakers should consider these insights when designing e-government services to ensure user satisfaction, continuance intention, and the building of citizen trust. Findings: The findings indicate that the quality of information, service, system, and perceived usefulness play important roles in user satisfaction with e-government services. All hypothesized paths were significant, except for perceived ease of use. Furthermore, the study highlights that user satisfaction significantly impacts citizen trust and continuance use intention. Recommendations for Practitioners: The findings suggest that government authorities should focus on delivering accurate, comprehensive, and timely information in a secure, glitch-free, and user-friendly digital environment. Implementing an interactive and accessible interface, ensuring compatibility across devices, and implementing swift query resolution mechanisms collectively contribute to improving users’ satisfaction. Conducting awareness and training initiatives, providing 24×7 access to online tutorials, helpdesks, technical support, clear FAQs, and integrating AI-driven customer service support can further ensure a seamless user experience. Government institutions should leverage social influence, community engagement, and social media campaigns to enhance user trust. Promotional campaigns, incentive programs, endorsements, and user testimonials should be used to improve users’ satisfaction and continuance intention. Recommendation for Researchers: An integrated model combining TAM and ISSM offers a robust approach for thoroughly analyzing the diverse factors influencing user satisfaction and continuance intention in the evolving digitalization landscape of e-government services. This expansion, aligning with ISSM’s perspective, enhances the literature by demonstrating how user satisfaction impacts continuance usage intention and citizen trust in e-government services in India and other emerging economies. Impact on Society: Examining the factors influencing user satisfaction and continuance intention in e-government services and their subsequent impact on citizen trust carries significant societal implications. The findings can contribute to the establishment of transparent and accountable governance practices, fostering a stronger connection between governments and their citizens. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope by incorporating a larger sample size could enable a more thorough analysis. Alternatively, delving into the performance of specific e-government services would offer greater precision, considering that this study treats e-government services generically. Additionally, incorporating in-depth interviews and longitudinal studies would yield a more comprehensive understanding of the dynamic evolution of digitalization.




english

Using Social Media Applications for Accessing Health-related Information: Evidence from Jordan

Aim/Purpose: This study examined the use of Social Media Applications (SMAs) for accessing health-related information within a heterogeneous population in Jordan. The objective of this study was therefore threefold: (i) to investigate the usage of SMAs, including WhatsApp, Twitter, YouTube, Snapchat, Instagram, and Facebook, for accessing health-related information; (ii) to examine potential variations in the use of SMAs based on demographic and behavioral characteristics; and (iii) to identify the factors that can predict the use of SMAs. Background: There has been limited focus on investigating the behavior of laypeople in Jordan when it comes to seeking health information from SMAs. Methodology: A cross-sectional study was conducted among the general population in Jordan using an online questionnaire administered to 207 users. A purposive sampling technique was employed, wherein all the participants actively sought online health information. Descriptive statistics, t-tests, and regression analyses were utilized to analyze the collected data. Contribution: This study adds to the existing body of research on health information seeking from SMAs in developing countries, with a specific focus on Jordan. Moreover, laypeople, often disregarded by researchers and health information providers, are the most vulnerable individuals who warrant greater attention. Findings: The findings indicated that individuals often utilized YouTube as a platform to acquire health-related information, whereas their usage of Facebook for this purpose was less frequent. Participants rarely utilized Instagram and WhatsApp to obtain health information, while Twitter and Snapchat were very seldom used for this purpose. The variable of sex demonstrated a notable positive correlation with the utilization of YouTube and Twitter for the purpose of finding health-related information. Conversely, the variable of nationality exhibited a substantial positive correlation with the utilization of Facebook, Instagram, and Twitter. Consulting medical professionals regarding information obtained from the Internet was a strong indicator of using Instagram to search for health-related information. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of SMAs. Recommendation for Researchers: Researchers should conduct separate investigations for each application specifically pertaining to the acquisition of health-related information. Additionally, it is advisable to investigate additional variables that may serve as predictors for the utilization of SMAs. Impact on Society: The objective of this study is to enhance the inclination of the general public in Jordan to utilize SMAs for health-related information while also maximizing the societal benefits of these applications. Future Research: Additional research is required to examine social media’s usability (regarding ease of use) and utility (comparing advantages to risks) in facilitating effective positive change and impact in healthcare.




english

Continued Usage Intention of Mobile Learning (M-Learning) in Iraqi Universities Under an Unstable Environment: Integrating the ECM and UTAUT2 Models

Aim/Purpose: This study examines the adoption and continued use of m-learning in Iraqi universities amidst an unstable environment by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) and Expectation-Confirmation Model (ECM) models. The primary goal is to address the specific challenges and opportunities in Iraq’s higher education institutions (HEIs) due to geopolitical instability and understand their impact on student acceptance, satisfaction, and continued m-learning usage. Background: The research builds on the growing importance of m-learning, especially in HEIs, and recognizes the unique challenges faced by institutions in Iraq, given the region’s instability. It identifies gaps in existing models and proposes extensions, introducing the variable “civil conflicts” to account for the volatile context. The study aims to contribute to a deeper understanding of m-learning acceptance in conflict-affected regions and provide insights for improving m-learning initiatives in Iraqi HEIs. Methodology: To achieve its objectives, this research employed a quantitative survey to collect data from 399 students in five Iraqi universities. PLS-SEM is used for the analysis of quantitative data, testing the extended UTAUT2 and ECM models. Contribution: The study’s findings are expected to contribute to the development of a nuanced understanding of m-learning adoption and continued usage in conflict-affected regions, particularly in the Iraqi HEI context. Findings: The study’s findings may inform strategies to enhance the effectiveness of m-learning initiatives in Iraqi HEIs and offer insights into how education can be supported in regions characterized by instability. Recommendations for Practitioners: Educators and policymakers can benefit from the research by making informed decisions to support education continuity and quality, particularly in conflict-affected areas. Recommendation for Researchers: Researchers can build upon this study by further exploring the adoption and usage of m-learning in unstable environments and evaluating the effectiveness of the proposed model extensions. Impact on Society: The research has the potential to positively impact society by improving access to quality education in regions affected by conflict and instability. Future Research: Future research can expand upon this study by examining the extended model’s applicability in different conflict-affected regions and assessing the long-term impact of m-learning initiatives on students’ educational outcomes.




english

Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk

Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications.




english

Emphasizing Data Quality for the Identification of Chili Varieties in the Context of Smart Agriculture

Aim/Purpose: This research aims to evaluate models from meta-learning techniques, such as Riemannian Model Agnostic Meta-Learning (RMAML), Model-Agnostic Meta-Learning (MAML), and Reptile meta-learning, to obtain high-quality metadata. The goal is to utilize this metadata to increase accuracy and efficiency in identifying chili varieties in smart agriculture. Background: The identification of chili varieties in smart agriculture is a complex process that requires a multi-faceted approach. One challenge in chili variety identification is the lack of a large and diverse dataset. This can be addressed using meta-learning techniques, which allow the model to leverage knowledge learned from other related tasks or artificially expand the dataset by applying transformations to existing data. Another challenge is the variation in growing conditions, which can affect the appearance of chili varieties. Meta-learning techniques can help address this challenge by allowing the model to adapt to variations in growing conditions with task-specific embeddings and optimizations. With the help of meta-learning techniques, such as data augmentation, data characterization, selection of datasets, and performance estimation, quality metadata for accurate identification of chili varieties can be achieved even in the presence of limited data and variations in growing conditions. Furthermore, the use of meta-learning techniques in chili variety identification can also assist in addressing challenges related to the computational complexity of the task. Methodology: The research approach employed is quantitative, specifically comparing three models from meta-learning techniques to determine which model is most suitable for our dataset. Data was collected from the variety assembly garden in the form of images of chili leaves using a mobile device. The research successfully gathered 1,974 images of chili leaves, with 697 images of large red chilies, 649 images of curly red chilies, and 628 images of cayenne peppers. These chili leaf images were then processed using augmentation techniques. The results of image data augmentation were categorized based on leaf characteristics (such as oval, lancet, elliptical, serrated leaf edges, and flat leaf edges). Subsequently, training and validation utilized three models from meta-learning techniques. The final stage involved model evaluation using 2-way and 3-way classification, as well as 5-shot and 10-shot learning scenarios to select the dataset with the best performance. Contribution: Improving classification accuracy, with a focus on ensuring high-quality data, allows for more precise identification and classification of chili varieties. Enhancing model training through an emphasis on data quality ensures that the models receive reliable and representative input, leading to improved generalization and performance in identifying chili varieties. Findings: With small collections of datasets, the authors have used data augmentation and meta-learning techniques to overcome the challenges of limited data and variations in growing conditions. Recommendations for Practitioners: By leveraging the knowledge and adaptability gained from meta-learning, accurate identification of chili varieties can be achieved even with limited data and variations in growing conditions. The use of meta-learning techniques in chili variety identification can greatly improve the accuracy and reliability of the identification process. Recommendation for Researchers: Using meta-learning techniques, such as transfer learning and parameter optimization, researchers can overcome challenges related to limited data and variations in growing conditions in chili variety identification. Impact on Society: The findings from this research can help identify superior chili seeds, thereby motivating farmers to cultivate high-quality chilies and achieve bountiful harvests. Future Research: We intend to verify our approach on a more extensive array of datasets and explore the implementation of more resilient regularization techniques, going beyond image augmentation, within the meta-learning techniques. Furthermore, our goal is to expand our research to encompass the automatic learning of parameters during training and tackle issues associated with noisy labels. Building on the insights gained from our observed outcomes, a future objective is to enhance the refinement of model-agnostic meta-learning techniques that can effectively adapt to intricate task distributions with substantial domain gaps between tasks. To realize this aim, our proposal involves devising model-agnostic meta-learning techniques specifically designed for multi-modal scenarios.




english

Barriers of Agile Requirements Engineering in the Public Sector: A Systematic Literature Review

Aim/Purpose: The objective of this study is to summarize the challenges of Agile Requirements Engineering (Agile RE) in the public sector in republican and constitutional monarchy nations. Additionally, it offers recommendations to address these challenges. Background: Failure of IT projects in the public sector results in financial losses for the state and loss of public trust, often attributed to issues in requirements engineering such as prioritization of user needs and excessive scope of requirements. IT projects can have a higher success rate with Agile RE, but there are also drawbacks. Therefore, this study holds significance by presenting a thorough framework designed to pinpoint and overcome the challenges associated with Agile RE to increase the success rate of IT projects. Methodology: This study employs a Systematic Literature Review (SLR) protocol in the field of software engineering or related domains, which consists of three main phases: planning the review, conducting the review with a snowballing approach, and reporting the review. Furthermore, the authors perform open coding to categorize challenges based on the Agile methodologies adoption factor model and axial coding to map potential solutions. Contribution: The authors assert that this research enriches the existing literature on Agile RE, specifically within the public sector context, by mapping out challenges and possible solutions that contribute to creating a foundation for future studies to conduct a more in-depth analysis of Agile adoption in the public sector. Furthermore, it compares the barriers of Agile RE in the public sector with the general context, leading to the discovery of new theories specifically for this field. Findings: Most challenges related to Agile RE in the public sector are found in the people and process aspects. Project and organizational-related are subsequent aspects. Therefore, handling people and processes proficiently is imperative within Agile RE to prevent project failure. Recommendations for Practitioners: Our findings offer a comprehensive view of Agile RE in the public sector in republican and constitutional monarchy nations. This study maps the challenges encountered by the public sector and provides potential solutions. The authors encourage practitioners to consider our findings as a foundation for adopting Agile methodology in the public sector. Furthermore, this study can assist practitioners in identifying existing barriers related to Agile RE, pinpointing elements that contribute to overcoming those challenges, and developing strategies based on the specific needs of the organizations. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research in other countries, especially African countries, as this study has not yet encompassed this geographic region. Additionally, they can strengthen the evidence linking Agile RE challenges to the risk of Agile project failure by performing empirical validation in a specific country. Impact on Society: This research conducts a comprehensive exploration of Agile RE within the public sector, serving as a foundation for the successful adoption of Agile methodology by overcoming obstacles related to Agile RE. This study highlights the importance of managing people, processes, projects, and organizational elements to increase the success of Agile adoption in the public sector. Future Research: In the future, researchers should work towards resolving the limitations identified in this study. This study has not provided a clear prioritization of challenges and solutions according to their significance. Therefore, future researchers can perform a Fuzzy Analytical Hierarchical Process (F-AHP) to prioritize the proposed solutions.




english

The Influence of Augmented Reality Face Filter Addiction on Online Social Anxiety: A Stimulus-Organism-Response Perspective

Aim/Purpose: This study aims to analyze the factors that influence user addiction to AR face filters in social network applications and their impact on the online social anxiety of users in Indonesia. Background: To date, social media users have started to use augmented reality (AR) face filters. However, AR face filters have the potential to create positive and negative effects for social media users. The study combines the Big Five Model (BFM), Sense of Virtual Community (SVOC), and Stimuli, Organism, and Response (SOR) frameworks. We adopted the SOR theory by involving the personality factors and SOVC factors as stimuli, addiction as an organism, and social anxiety as a response. BFM is the most significant theory related to personality. Methodology: We used a quantitative approach for this study by using an online survey. We conducted research on 903 Indonesian respondents who have used an AR face filter feature at least once. The respondents were grouped into three categories: overall, new users, and old users. In this study, group classification was carried out based on the development timeline of the AR face filter in the social network application. This grouping was carried out to facilitate data analysis as well as to determine and compare the different effects of the factors in each group. The data were analyzed using the covariance-based structural equation model through the AMOS 26 program. Contribution: This research fills the gap in previous research which did not discuss much about the impact of addiction in using AR face filters on online social anxiety of users of social network applications. Findings: The results of this study indicated neuroticism, membership, and immersion influence AR face filter addiction in all test groups. In addition, ARA has a significant effect on online social anxiety. Recommendations for Practitioners: The findings are expected to be valuable to social network service providers and AR creators in improving their services and to ensure policies related to the list of AR face filters that are appropriate for use by their users as a form of preventing addictive behavior of that feature. Recommendation for Researchers: This study suggested other researchers consider other negative impacts of AR face filters on aspects such as depression, life satisfaction, and academic performance. Impact on Society: AR face filter users may experience changes in their self-awareness in using face filters and avoid the latter’s negative impacts. Future Research: Future research might explore other impacts from AR face filter addiction behavior, such as depression, life satisfaction, and so on. Apart from that, future research might investigate the positive impact of AR face filters to gain a better understanding of the impact of AR face filters.




english

Decoding YouTube Video Reviews: Uncovering The Factors That Determine Video Review Helpfulness

Aim/Purpose: This study aims to identify the characteristics of YouTube video reviews that consumers utilize to evaluate review helpfulness and explores how they process such information. This study aims to investigate the effect of argument quality, review popularity, number of likes, and source credibility on consumers’ perception of YouTube’s video review helpfulness. Background: Video reviews posted on YouTube are an emerging form of online reviews, which have the potential to be more helpful than textual reviews due to their visual and audible cues that deliver more vivid information about product features and specifications. With the availability of an enormous number of video reviews with unpredictable quality, it becomes challenging for consumers to find helpful reviews without consuming significant time and effort. In addition, YouTube does not provide a specific feature that indicates a review helpfulness similar to the one found on e-commerce websites. Consequently, consumers have to examine the characteristics of video reviews that are readily available on YouTube, evaluate them, and form a perception of whether a review is helpful or not. Despite the increasing popularity of YouTube’s video reviews, video reviews’ helpfulness received inadequate attention in the literature. The antecedents of the helpfulness of online video reviews are still underinvestigated, and more research is needed to identify the characteristics that consumers depend upon to assess video review helpfulness. Furthermore, it is important to understand how consumers process the information they gain from these characteristics to form a perception of their helpfulness. Methodology: Following an extended investigation of the relevant literature, we identified four key video characteristics that consumers presumably utilize to evaluate review helpfulness on YouTube (i.e., review popularity, number of likes, source credibility, and argument quality). By employing the Elaboration Likelihood Model (ELM), we classified these characteristics along the central and peripheral routes. The central route characteristics require a high cognitive effort by consumers to process the review’s message and reach a logical decision. In contrast, the peripheral route assumes that consumers judge the review’s message based on superficial qualities without substantial cognitive effort. A research model is introduced to investigate the effect of central and peripheral cues and their corresponding video review characteristics on review helpfulness. Accordingly, argument quality is proposed in the central route of the model, while review popularity, number of likes, and source credibility are proposed in the peripheral route. Furthermore, the study investigates how consumers process the information they obtain from these routes jointly or independently. To empirically test the proposed model, a convenient sample of 361 YouTube users was obtained through an online survey. The partial least squares method was used to investigate the effect of the proposed characteristics on video review helpfulness. Contribution: This study contributes to the literature in several ways. First, it is one of the few studies that investigate online video reviews’ helpfulness. Second, this study identifies several unique characteristics of YouTube’s video reviews that span peripheral and central routes, which potentially contribute to review helpfulness. Third, this study proposes a conceptual model based on the ELM to explore the effect of central and peripheral cues and their corresponding review characteristics on review helpfulness. Fourth, the research findings provide implications for research and practice that advance the theoretical understanding of video reviews’ helpfulness and serve as guidelines to create more helpful video reviews by better understanding the consumer’s cognitive processes. Findings: The results show that among the four characteristics proposed in the research model, argument quality in the central route is the strongest determinant factor affecting video review helpfulness. Results also show that review popularity, source credibility, and the number of likes in the peripheral route have significant effects on video review helpfulness. Altogether, our results show that the effect of the peripheral route adds up to 0.463 compared to 0.430, which is the impact magnitude of the argument quality construct in the central route. Based on the comparable effect magnitude of the central and peripheral routes of the model on video review helpfulness, our results indicate that both peripheral and central cues significantly affect consumers’ perception of video review helpfulness. The two routes are not mutually exclusive, and their cues can be processed in parallel or consecutive ways. Recommendations for Practitioners: The study recommends creating a dedicated category for reviews on YouTube with a specific feature for consumers to indicate the helpfulness of a video review, similar to the helpful vote button in textual reviews. The study also recommends that reviewers deliver more appealing and convincing argument quality, work toward improving their credibility, and understand the factors that contribute to video popularity. Impact on Society: Identifying the characteristics that affect video review helpfulness on YouTube helps consumers access helpful reviews more efficiently and improves their purchase decisions. Future Research: Future research could look into different types of data that could be extracted from YouTube to investigate the helpfulness of online video reviews. Future studies could employ machine learning and sentiment analysis techniques to reach more insights. Future research could also investigate the effect of product types in the context of online video reviews.




english

Navigating the Future: Exploring AI Adoption in Chinese Higher Education Through the Lens of Diffusion Theory

Aim/Purpose: This paper aims to investigate and understand the intentions of management undergraduate students in Hangzhou, China, regarding the adoption of Artificial Intelligence (AI) technologies in their education. It addresses the need to explore the factors influencing AI adoption in the educational context and contribute to the ongoing discourse on technology integration in higher education. Background: The paper addresses the problem by conducting a comprehensive investigation into the perceptions of management undergraduate students in Hangzhou, China, regarding the adoption of AI in education. The study explores various factors, including Perceived Relative Advantage and Trialability, to shed light on the nuanced dynamics influencing AI technology adoption in the context of higher education. Methodology: The study employs a quantitative research approach, utilizing the Confirmatory Tetrad Analysis (CTA) and Partial Least Squares Structural Equation Modeling (PLS-SEM) methodologies. The research sample consists of management undergraduate students in Hangzhou, China, and the methods include data screening, principal component analysis, confirmatory tetrad analysis, and evaluation of the measurement and structural models. We used a random sampling method to distribute 420 online, self-administered questionnaires among management students aged 18 to 21 at universities in Hangzhou. Contribution: This paper explores how management students in Hangzhou, China, perceive the adoption of AI in education. It identifies factors that influence AI adoption intention. Furthermore, the study emphasizes the complex nature of technology adoption in the changing educational technology landscape. It offers a thorough comprehension of this process while challenging and expanding the existing literature by revealing the insignificant impacts of certain factors. This highlights the need for an approach to AI integration in education that is context-specific and culturally sensitive. Findings: The study highlights students’ positive attitudes toward integrating AI in educational settings. Perceived relative advantage and trialability were found to impact AI adoption intention significantly. AI adoption is influenced by social and cultural contexts rather than factors like compatibility, complexity, and observability. Peer influence, instructor guidance, and the university environment were identified as pivotal in shaping students’ attitudes toward AI technologies. Recommendations for Practitioners: To promote the use of AI among management students in Hangzhou, practitioners should highlight the benefits and the ease of testing these technologies. It is essential to create communication strategies tailored to the student’s needs, consider cultural differences, and utilize the influence of peers and instructors. Establishing a supportive environment within the university that encourages innovation through policies and regulations is vital. Additionally, it is recommended that students’ attitudes towards AI be monitored constantly, and strategies adjusted accordingly to keep up with the changing technological landscape. Recommendation for Researchers: Researchers should conduct cross-disciplinary and cross-cultural studies with qualitative and longitudinal research designs to understand factors affecting AI adoption in education. It is essential to investigate compatibility, complexity, observability, individual attitudes, prior experience, and the evolving role of peers and instructors. Impact on Society: The study’s insights into the positive attitudes of management students in Hangzhou, China, toward AI adoption in education have broader societal implications. It reflects a readiness for transformative educational experiences in a region known for technological advancements. However, the study also underscores the importance of cautious integration, considering associated risks like data privacy and biases to ensure equitable benefits and uphold educational values. Future Research: Future research should delve into AI adoption in various academic disciplines and regions, employing longitudinal designs and qualitative methods to understand cultural influences and the roles of peers and instructors. Investigating moderating factors influencing specific factors’ relationship with AI adoption intention is essential for a comprehensive understanding.




english

Learning-Based Models for Building User Profiles for Personalized Information Access

Aim/Purpose: This study aims to evaluate the success of deep learning in building user profiles for personalized information access. Background: To better express document content and information during the matching phase of the information retrieval (IR) process, deep learning architectures could potentially offer a feasible and optimal alternative to user profile building for personalized information access. Methodology: This study uses deep learning-based models to deduce the domain of the document deemed implicitly relevant by a user that corresponds to their center of interest, and then used predicted domain by the best given architecture with user’s characteristics to predict other centers of interest. Contribution: This study contributes to the literature by considering the difference in vocabulary used to express document content and information needs. Users are integrated into all research phases in order to provide them with relevant information adapted to their context and their preferences meeting their precise needs. To better express document content and information during this phase, deep learning models are employed to learn complex representations of documents and queries. These models can capture hierarchical, sequential, or attention-based patterns in textual data. Findings: The results show that deep learning models were highly effective for building user profiles for personalized information access since they leveraged the power of neural networks in analyzing and understanding complex patterns in user behavior, preferences, and user interactions. Recommendations for Practitioners: Building effective user profiles for personalized information access is an ongoing process that requires a combination of technology, user engagement, and a commitment to privacy and security. Recommendation for Researchers: Researchers involved in building user profiles for personalized information access play a crucial role in advancing the field and developing more innovative deep-based networks solutions by exploring novel data sources, such as biometric data, sentiment analysis, or physiological signals, to enhance user profiles. They can investigate the integration of multimodal data for a more comprehensive understanding of user preferences. Impact on Society: The proposed models can provide companies with an alternative and sophisticated recommendation system to foster progress in building user profiles by analyzing complex user behavior, preferences, and interactions, leading to more effective and dynamic content suggestions. Future Research: The development of user profile evolution models and their integration into a personalized information search system may be confronted with other problems such as the interpretability and transparency of the learning-based models. Developing interpretable machine learning techniques and visualization tools to explain how user profiles are constructed and used for personalized information access seems necessary to us as a future extension of our work.




english

Unraveling Knowledge-Based Chatbot Adoption Intention in Enhancing Species Literacy

Aim/Purpose: This research investigated the determinant factors influencing the adoption intentions of Chatsicum, a Knowledge-Based Chatbot (KBC) aimed at enhancing the species literacy of biodiversity students. Background: This research was conducted to bridge the gap between technology, education, and biodiversity conservation. Innovative solutions are needed to empower individuals with knowledge, particularly species knowledge, in preserving the natural world. Methodology: The study employed a quantitative approach using the Partial Least Square Structural Equation Modeling (PLS-SEM) and sampled 145 university students as respondents. The research model combined the Task-Technology Fit (TTF) framework with elements from the Diffusion of Innovation (DOI), including relative advantage, compatibility, complexity, and observability. Also, the model introduced perceived trust as an independent variable. The primary dependent variable under examination was the intention to use the KBC. Contribution: The findings of this research contribute to a deeper understanding of the critical factors affecting the adoption of the KBC in biodiversity education and outreach, as studies in this context are limited. This study provides valuable insights for developers, educators, and policymakers interested in promoting species literacy and leveraging innovative technologies by analyzing the interplay of TTF and DOI constructs alongside perceived trust. Ultimately, this research aims to foster more effective and accessible biodiversity education strategies. Findings: TTF influenced all DOI variables, such as relative advantage, compatibility, observability, and trust positively and complexity negatively. In conclusion, TTF strongly affected usage intention indirectly. However, relative advantage, complexity, and observability insignificantly influenced the intention to use. Meanwhile, compatibility and trust strongly affected the use intention. Recommendations for Practitioners: Developers should prioritize building and maintaining chatbots that are aligned with the tasks, needs, and goals of the target users, as well as establishing trust through the assurance of information accuracy. Educators could develop tailored educational interventions that resonate with the values and preferences of diverse learners and are aligned closely with students’ learning needs, preferences, and curriculum while ensuring seamless integration with the existing educational context. Conservation organizations and policymakers could also utilize the findings of this study to enhance their outreach strategies, as the KBC is intended for students and biodiversity laypeople. Recommendation for Researchers: Researchers should explore the nuances of relationships between TTF and DOI, as well as trust, and consider the potential influence of mediating and moderating variables to advance the field of technology adoption in educational contexts. Researchers could also explore why relative advantage, complexity, and observability did not significantly impact the usage intention and whether specific user segments or contextual factors influence these relationships. Impact on Society: This research has significant societal impacts by improving species literacy, advancing technology in education, and promoting conservation efforts. Species knowledge could raise awareness regarding biodiversity and the importance of conservation, thereby leading to more informed and responsible citizens. Future Research: Future works should address the challenges and opportunities presented by KBCs in the context of species literacy enhancement, for example, interventions or experiments to influence the non-significant factors. Furthermore, longitudinal studies should investigate whether user behavior evolves. Ultimately, examining the correlation between species literacy, specifically when augmented by chatbots, and tangible conservation practices is an imperative domain in the future. It may entail evaluating the extent to which enhanced knowledge leads to concrete measures promoting biodiversity preservation.




english

Factors Influencing Adoption of Blockchain Technology in Jordan: The Perspective of Health Care Professionals

Aim/Purpose: This paper investigates the user acceptability of blockchain technology in the healthcare sector, with a specific focus on healthcare professionals in Jordan. Background: The study seeks to identify the factors that affect healthcare professionals’ use and acceptance of blockchain technology in Jordan. Methodology: The study’s research framework integrates factors from the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT). A questionnaire was distributed to collect data from 372 healthcare professionals in Jordan, and the results were analyzed using structural equation modeling based on the Partial Least Square (PLS) technique. Contribution: While only a few previous studies have explored blockchain technology acceptance in the healthcare sector using either the TAM or the UTAUT, this study uniquely integrates elements from both models, offering a novel approach that provides a comprehensive understanding of the factors that influence the acceptance of blockchain technology among healthcare professionals in Jordan. The findings can assist decision-makers in developing strategies to enhance the adoption rate of blockchain technology in the Jordanian healthcare sector. Findings: The study revealed that usability, convenience, privacy and security, cost, and trust significantly impact the perceived usefulness of blockchain technology. The findings also suggest that healthcare professionals are more likely to have a positive attitude towards blockchain-based healthcare systems if they perceive them as useful and easy to use. Attitude, social influence, and facilitating conditions were found to significantly impact behavioral intention to use. Recommendations for Practitioners: Stakeholders should focus on developing blockchain-based healthcare systems that are easy to use, convenient, efficient, and effort-free. Recommendation for Researchers: Researchers may compare the acceptance of blockchain technology in the healthcare sector with other industries to identify industry-specific factors that may influence adoption. This comparative analysis can contribute to a broader understanding of technology acceptance. Impact on Society: Successful adoption of blockchain technology in the healthcare sector can lead to improved efficiency, enhanced protection of healthcare data, and reduced administrative burdens. This, in turn, can positively impact patient care and lead to cost savings, which contributes to more sustainable and accessible healthcare services. Future Research: Future research may explore integrating blockchain technology with other emerging technologies, such as artificial intelligence and sidechain, to create more comprehensive and innovative healthcare solutions.




english

The Influence of Ads’ Perceived Intrusiveness in Geo-Fencing and Geo-Conquesting on Purchase Intention: The Mediating Role of Customers’ Attitudes

Aim/Purpose: This study focuses on two targeting strategies of out-store Location-Based Mobile Advertising (LBMA): the geo-fencing strategy (i.e., targeting customers who are near the focal store) and the geo-conquesting strategy (i.e., targeting those who are near competitors’ stores to visit the focal store). To the authors’ knowledge, no previous studies have compared the perceived intrusiveness of advertisements (ads) in geo-fencing and geo-conquesting settings, despite the accumulating literature on out-store LBMA. Hence, the aim of this study is to determine which targeting strategy is more effective in terms of reducing the perception of ads’ intrusiveness and increasing positive customers’ attitudes and purchase intention. Background: The intrusive nature of LBMA is perceived negatively by some customers, impacting their attitudes toward the ad, purchase intention, and even their perception of the brand. Therefore, identifying the targeting strategy under which ads are perceived as less intrusive is essential. Additionally, brick-and-mortar clothing stores in Jordan are facing challenges due to the rise of online shopping and increased competition from nearby stores. Thus, examining geo-fencing and geo-conquesting might tackle these challenges and encourage local clothing retailers to adopt these strategies. Methodology: A quantitative method was used in this study. A between-subjects experimental design was used to collect the data using a scenario-based survey distributed to Jordanians aged 18 to 45. A total of 531 responses were collected. After excluding those who do not belong to the targeted age group and those who did not pass the manipulation check, 406 responses were analyzed using the Statistical Package for the Social Sciences (SPSS) software version 28 and the Analysis of Moment Structures (AMOS) software version 26 to conduct Structural Equation Modeling (SEM). Contribution: This work offers valuable contributions by investigating the impact of the perceived intrusiveness of ads on purchase intention in the contexts of geo-fencing and geo-conquesting, which has not been studied before. Additionally, it fills a gap by examining this phenomenon in Jordan, a developing country in which attitudes toward LBMA have not been previously explored. Findings: The results revealed that location-based mobile ads sent under a geo-fencing strategy are perceived as less intrusive than those sent under a geo-conquesting strategy. In addition, customers’ attitudes fully mediate the relationship between intrusiveness and purchase intention only under the geo-fencing strategy. Ultimately, neither of the strategies is more effective in terms of increasing positive customer attitudes and purchase intentions in the context of clothing retail stores in Jordan. Recommendations for Practitioners: Clothing retailers in Jordan should consider adopting geo-fencing and geo-conquesting strategies to boost purchase intentions and tackle industry challenges. Additionally, to increase purchase intentions with geo-fencing, practitioners should focus on fostering positive customer attitudes toward ads, as simply perceiving them as less intrusive is not sufficient to drive purchase intention without the mediating effect of positive attitudes. Recommendation for Researchers: This research is crucial for academics and researchers as geolocation technology and LBMA are expected to advance significantly in the future. Researchers can investigate this topic through a randomized field experiment, followed by a research questionnaire to collect data from a real-world setting. Impact on Society: Utilizing LBMA is essential for local clothing retail stores that are trying to effectively reach and connect with their customers because searching the Internet for local goods and services is done primarily on mobile devices. Indeed, this study revealed that customers in both settings (i.e., geo-fencing and geo-conquesting) reported a high intention to visit the promoting store and to purchase from the advertised product category. Future Research: Future research can apply this topic to different industries and cultural contexts, as the results may vary across industries and regions. Moreover, future research could build on this study by investigating additional constructs, such as product category involvement, customization, and content type of the message (e.g., informative, entertaining).




english

Workers’ Knowledge Sharing and Its Relationship with Their Colleague’s Political Publicity in Social Media

Aim/Purpose: This paper intends to answer the question regarding the extent to which political postings with value differences/similarities will influence the level of implicit knowledge sharing (KS) among work colleagues in organizations. More specifically, the study assesses contributors’ responses to a workmate’s publicity about politics on social media platforms (SMP) and their eagerness to implement implicit KS to the co-worker. Background: Previously published articles have confirmed an association between publicity about politics and the reactions from workfellows in the organization. Moreover, prior work confirmed that workers’ social media postings about politics may create unfavorable responses, such as being disliked and distrusted by workfellows. This may obstruct the KS because interpersonal relations are among the KS’s essential components. Therefore, it is imperative to assess whether the workfellows’ relationship affected by political publicity would impede the KS in the office. Methodology: Data was gathered using the vignette technique and online survey. A total of 510 online and offline questionnaires were distributed to respondents in Indonesian Halal firms who have implemented knowledge-sharing practices and have been at work for no less than twelve months in the present role. Next, the 317 completed questionnaires were examined with partial least squares structural equation modeling (PLS-SEM). Contribution: Postings about politics on SMP can either facilitate or impede the level of KS in organizations, and this research topic is relatively scarce in the knowledge management discipline. While previously published articles have concentrated on public organizations, this research centers on private firms. Moreover, this work empirically examines private companies in Indonesia, which is also understudied in the existing literature. Findings: The outcomes confirm that perceived political value similarity (PPV) in a co-worker’s social-media publicity has a significant and indirect influence on contributors’ eagerness to perform implicit/tacit KS. Further, colleague likability and trustworthiness significantly influence the level of KS among respondents. As PPV significantly forms colleague likability, likability strongly and positively shapes trustworthiness. Recommendations for Practitioners: The study shows that political publicity significantly affects implicit knowledge sharing (KS). As a result, managers and leaders, particularly those in private firms, are strengthened to instruct their staff about the ramifications of publicity embedded in employees’ SMP postings, particularly about political topics, as it may result in either negative or positive perceptions amongst the staff towards the workmate who posts. Recommendation for Researchers: As this study focuses on examining KS behavior in a large context, i.e., Indonesia Halal firms that dominate the Indonesian economy, and the fact that much polarization research focuses on society at large and less on specific sectors of life, it is important and interesting for researchers to conduct similar studies in a specific workplace as political agreements and disagreements become so important and consequential in everyday lives. Impact on Society: This article makes the implication that a person’s personality can influence how they react to political posts on SMP. It is difficult for the exposers to know the personality of each viewer of publicity in daily life. Workers’ newfound knowledge can motivate them to use SMP responsibly and lessen the probability that they will disclose information that might make their co-workers feel or perceive anything unfavorably. Future Research: There is a need for further studies to examine if the results can be applied to different locations and organizations, as individuals’ behaviors may vary according to the cultures of society and firms. Furthermore, future research can take into account the individual characteristics of workers, such as hospitability, self-confidence, and psychological strength, which may be well-matched with future work models. Future research may potentially employ a qualitative technique to offer deeper insights into the same topic.




english

Fostering Trust Through Bytes: Unravelling the Impact of E-Government on Public Trust in Indonesian Local Government

Aim/Purpose: This study aims to investigate the influence of e-government public services on public trust at the local government level, addressing the pressing need to understand the factors shaping citizen perceptions and trust in government institutions. Background: With the proliferation of e-government initiatives worldwide, governments are increasingly turning to digital solutions to enhance public service delivery and promote transparency. However, despite the potential benefits, there remains a gap in understanding how these initiatives impact public trust in government institutions, particularly at the local level. This study seeks to address this gap by examining the relationship between e-government service quality, individual perceptions, and public trust, providing valuable insights into the complexities of citizen-government interactions in the digital age. Methodology: Employing a quantitative approach, this study utilises surveys distributed to users of e-government services in one of the regencies in Indonesia. The sample consists of 278 individuals. Data analysis is conducted using Partial Least Squares Structural Equation Modelling, allowing for the exploration of relationships among variables and their influence on public trust. Contribution: This study provides insights into the factors influencing public trust in e-government services at the local government level, offering a nuanced understanding of the relationship between service quality, individual perceptions, and public trust. Findings: This study emphasises information quality and service quality in e-government-based public services as crucial determinants of individual perception in rural areas. Interestingly, system quality in e-government services has no influence on individual perception. In the individual perception, perceived security and privacy emerge as the strongest antecedent of public trust, highlighting the need to guarantee secure and private services for citizens in rural areas. These findings emphasise the importance of prioritising high-quality information, excellent service delivery, and robust security measures to foster and sustain public trust in e-government services. Recommendations for Practitioners: Practitioners must prioritise enhancing the quality of e-government services due to their significant impact on individual perception, leading to higher public trust. Government agencies must ensure reliability, responsiveness, and the effective fulfilment of user needs. Additionally, upholding high standards of information quality in e-government services by delivering accurate, relevant, and timely information remains crucial. Strengthening security measures through robust protocols such as data encryption and secure authentication becomes essential for protecting user data. With that in mind, the authors believe that public trust in government would escalate. Recommendation for Researchers: Researchers could investigate the relation between system quality in e-government services and individual perception in different rural settings. Longitudinal studies could also elucidate how evolving service quality, information quality, and security measures impact user satisfaction and trust over time. Comparative studies across regions or countries can reveal cultural and contextual differences in individual perceptions, identifying both universal principles and region-specific strategies for e-government platforms. Analysing user behaviour and preferences across various demographic groups can inform targeted interventions. Furthermore, examining the potential of emerging technologies such as blockchain or artificial intelligence in enhancing e-government service delivery, security, and user engagement remains an interesting topic. Impact on Society: This study’s findings have significant implications for fostering public trust in government institutions, ultimately strengthening democracy and citizen-government relations. By understanding how e-government initiatives influence public trust, policymakers can make informed decisions to improve service delivery, enhance citizen engagement, and promote transparency, thus contributing to more resilient and accountable governance structures. Future Research: Future research could opt for longitudinal studies to evaluate the long-term effects of enhancements in service quality, information quality, and security. Cross-cultural investigations can uncover universal principles and contextual differences in user experiences, supporting global e-government strategies in rural areas. Future research could also improve the research model by adding more variables, such as risk aversion or fear of job loss, to gauge individual perceptions.




english

A Smart Agricultural Knowledge Management Framework to Support Emergent Farmers in Developmental Settings

Aim/Purpose: This research aims to develop a smart agricultural knowledge management framework to empower emergent farmers and extension officers (advisors to farmers) in developing countries as part of a smart farming lab (SFL). The framework utilizes knowledge objects (KOs) to capture information and knowledge of different forms, including indigenous knowledge. It builds upon a foundation of established agricultural knowledge management (AKM) models and serves as the cornerstone for an envisioned SFL. This framework facilitates optimal decision support by fostering linkages between these KOs and relevant organizations, knowledge holders, and knowledge seekers within the SFL environment. Background: Emergent farmers and extension officers encounter numerous obstacles in their knowledge operations and decision-making. This includes limited access to agricultural information and difficulties in applying it effectively. Many lack reliable sources of support, and even when information is available, understanding and applying it to specific situations can be challenging. Additionally, extension offices struggle with operational decisions and knowledge management due to agricultural organizations operating isolated in silos, hindering their access to necessary knowledge. This research introduces an SFL with a proposed AKM process model aimed at transforming emergent farmers into smart, innovative entities by addressing these challenges. Methodology: This study is presented as a theory-concept paper and utilizes a literature review to evaluate and synthesize three distinct AKM models using several approaches. The results of the analysis are used to design a new AKM process model. Contribution: This research culminates in a new AKM process framework that incorporates the strengths of various existing AKM models and supports emergent farmers and extension officers to become smart, innovative entities. One main difference between the three models analyzed, and the one proposed in this research, is the deployment and use of knowledge assets in the form of KOs. The proposed framework also incorporates metadata and annotations to enhance knowledge discoverability and enable AI-powered applications to leverage captured knowledge effectively. In practical terms, it contributes by further motivating the use of KOs to enable the transfer and the capturing of organizational knowledge. Findings: A model for an SFL that incorporates the proposed agricultural knowledge management framework is presented. This model is part of a larger knowledge factory (KF). It includes feedback loops, KOs, and mechanisms to facilitate intelligent decision-making. The significance of fostering interconnected communities is emphasized through the creation of linkages. These communities consist of knowledge seekers and bearers, with information disseminated through social media and other communication integration platforms. Recommendations for Practitioners: Practitioners and other scholars should consider implementing the proposed AKM process model as part of a larger SFL to support emergent farmers and extension officers in making operational decisions and applying knowledge management strategies. Recommendation for Researchers: The AKM process model is only presented in conceptual form. Therefore, researchers can practically test and assess the new framework in an agricultural setting. They can also further explore the potential of social media integration platforms to connect knowledge seekers with knowledge holders. Impact on Society: The proposed AKM process model has the potential to support emergent farmers and extension officers in becoming smart, innovative entities, leading to improved agricultural practices and potentially contributing to food security. Future Research: This paper discusses the AKM process model in an agrarian setting, but it can also be applied in other domains, such as education and the healthcare sector. Future research can evaluate the model’s effectiveness and explore and further investigate the semantic web and social media integration.




english

Personalized Tourism Recommendations: Leveraging User Preferences and Trust Network

Aim/Purpose: This study aims to develop a solution for personalized tourism recommendations that addresses information overload, data sparsity, and the cold-start problem. It focuses on enabling tourists to choose the most suitable tourism-related facilities, such as restaurants and hotels, that match their individual needs and preferences. Background: The tourism industry is experiencing a significant shift towards digitalization due to the increasing use of online platforms and the abundance of user data. Travelers now heavily rely on online resources to explore destinations and associated options like hotels, restaurants, attractions, transportation, and events. In this dynamic landscape, personalized recommendation systems play a crucial role in enhancing user experience and ensuring customer satisfaction. However, existing recommendation systems encounter major challenges in precisely understanding the complexities of user preferences within the tourism domain. Traditional approaches often rely solely on user ratings, neglecting the complex nature of travel choices. Data sparsity further complicates the issue, as users might have limited interactions with the system or incomplete preference profiles. This sparsity can hinder the effectiveness of these systems, leading to inaccurate or irrelevant recommendations. The cold-start problem presents another challenge, particularly with new users who lack a substantial interaction history within the system, thereby complicating the task of recommending relevant options. These limitations can greatly hinder the performance of recommendation systems and ultimately reduce user satisfaction with the overall experience. Methodology: The proposed User-based Multi-Criteria Trust-aware Collaborative Filtering (UMCTCF) approach exploits two key aspects to enhance both the accuracy and coverage of recommendations within tourism recommender systems: multi-criteria user preferences and implicit trust networks. Multi-criteria ratings capture the various factors that influence user preferences for specific tourism items, such as restaurants or hotels. These factors surpass a simple one-star rating and take into account the complex nature of travel choices. Implicit trust relationships refer to connections between users that are established through shared interests and past interactions without the need for explicit trust declarations. By integrating these elements, UMCTCF aims to provide more accurate and reliable recommendations, especially when data sparsity limits the ability to accurately predict user preferences, particularly for new users. Furthermore, the approach employs a switch hybridization scheme, which combines predictions from different components within UMCTCF. This scheme leads to a more robust recommendation strategy by leveraging diverse sources of information. Extensive experiments were conducted using real-world tourism datasets encompassing restaurants and hotels to evaluate the effectiveness of UMCTCF. The performance of UMCTCF was then compared against baseline methods to assess its prediction accuracy and coverage. Contribution: This study introduces a novel and effective recommendation approach, UMCTCF, which addresses the limitations of existing methods in personalized tourism recommendations by offering several key contributions. First, it transcends simple item preferences by incorporating multi-criteria user preferences. This allows UMCTCF to consider the various factors that users prioritize when making tourism decisions, leading to a more comprehensive understanding of user choices and, ultimately, more accurate recommendations. Second, UMCTCF leverages the collective wisdom of users by incorporating an implicit trust network into the recommendation process. By incorporating these trust relationships into the recommendation process, UMCTCF enhances its effectiveness, particularly in scenarios with data sparsity or new users with limited interaction history. Finally, UMCTCF demonstrates robustness towards data sparsity and the cold-start problem. This resilience in situations with limited data or incomplete user profiles makes UMCTCF particularly suitable for real-world applications in the tourism domain. Findings: The results consistently demonstrated UMCTCF’s superiority in key metrics, effectively addressing the challenges of data sparsity and new users while enhancing both prediction accuracy and coverage. In terms of prediction accuracy, UMCTCF yielded significantly more accurate predictions of user preferences for tourism items compared to baseline methods. Furthermore, UMCTCF achieved superior coverage compared to baseline methods, signifying its ability to recommend a wider range of tourism items, particularly for new users who might have limited interaction history within the system. This increased coverage has the potential to enhance user satisfaction by offering a more diverse and enriching set of recommendations. These findings collectively highlight the effectiveness of UMCTCF in addressing the challenges of personalized tourism recommendations, paving the way for improved user satisfaction and decision-making within the tourism domain. Recommendations for Practitioners: The proposed UMCTCF approach offers a potential opportunity for tourism recommendation systems, enabling practitioners to create solutions that prioritize the needs and preferences of users. By incorporating UMCTCF into online tourism platforms, tourists can utilize its capabilities to make well-informed decisions when selecting tourism-related facilities. Furthermore, UMCTCF’s robust design allows it to function effectively even in scenarios with data sparsity or new users with limited interaction history. This characteristic makes UMCTCF particularly valuable for real-world applications, especially in scenarios where these limitations are common obstacles. Recommendation for Researchers: The success of UMCTCF can open up new avenues in personalized recommendation research. One promising direction lies in exploring the integration of additional contextual information, such as temporal (time-based) or location-based information. By incorporating these elements, the model could be further improved, allowing for even more personalized recommendations. Furthermore, exploring the potential of UMCTCF in domains other than tourism has considerable significance. By exploring its effectiveness in other e-commerce domains, researchers can broaden the impact of UMCTCF and contribute to the advancement of personalized recommendation systems across various industries. Impact on Society: UMCTCF has the potential to make a positive impact on society in various ways. By delivering accurate and diverse recommendations that are tailored to individual user preferences, UMCTCF fosters a more positive and rewarding user experience with tourism recommendation systems. This can lead to increased user engagement with tourism platforms, ultimately enhancing overall satisfaction with travel planning. Furthermore, UMCTCF enables users to make more informed decisions through broader and more accurate recommendations, potentially reducing planning stress and leading to more fulfilling travel experiences. Future Research: Expanding upon the success of UMCTCF, future research activities can explore several promising paths. Enriching UMCTCF with various contextual data, such as spatial or location-based data, to enhance recommendation accuracy and relevance. Leveraging user-generated content, like reviews and social media posts, could provide deeper insights into user preferences and sentiments, improving personalization. Additionally, applying UMCTCF in various e-commerce domains beyond tourism, such as online shopping, entertainment, and healthcare, could yield valuable insights and enhance recommendation systems. Finally, exploring the integration of optimization algorithms could improve both recommendation accuracy and efficiency.




english

Data Lost, Decisions Made: Teachers in Routine and Emergency Remote Teaching

Aim/Purpose: This study explored teachers’ data-driven decision-making processes during routine and emergency remote teaching, as experienced during the COVID-19 pandemic. Background: Decision-making is essential in teaching, with informed decisions promoting student learning and teachers’ professional development most effectively. However, obstacles to the use of data have been identified in many studies. Methodology: Using a qualitative methodology (N=20), we studied how teachers make decisions, what data is available, and what data they would like to have to improve their decision-making. We used an inductive approach (bottom-up), utilizing teachers’ statements related to decision-making as the unit of analysis. Contribution: Our findings shed an important light on teachers’ Data-Driven Decision-Making (DDDM), highlighting the differences between routine and Emergency Remote Teaching (ERT). Findings: Overall, we found that teachers make teaching decisions in three main areas: pedagogy, discipline-related issues, and appearance and behavior. They shift between making decisions based on data and making decisions based on intuition. Academic-related decisions are the most prominent in routine teaching, and during ERT, they were almost the only area in which teachers’ decisions were made. Teachers reported collecting data about students’ academic achievements and emotional state and considered the organizational culture, consultation with colleagues, and parents’ involvement before decision-making. Recommendations for Practitioners: Promote a culture of data-driven decision-making across the education system; Make diverse and rich data of different types accessible to teachers; Increase professional and emotional support for teachers. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research using other methodologies and in different countries. Impact on Society: This study highlights the importance of teachers’ data-driven decision-making in improving teaching practices and promoting students’ achievement. Future Research: Additional research is required to examine data-driven decision-making in diverse circumstances.




english

Revolutionizing Autonomous Parking: GNN-Powered Slot Detection for Enhanced Efficiency

Aim/Purpose: Accurate detection of vacant parking spaces is crucial for autonomous parking. Deep learning, particularly Graph Neural Networks (GNNs), holds promise for addressing the challenges of diverse parking lot appearances and complex visual environments. Our GNN-based approach leverages the spatial layout of detected marking points in around-view images to learn robust feature representations that are resilient to occlusions and lighting variations. We demonstrate significant accuracy improvements on benchmark datasets compared to existing methods, showcasing the effectiveness of our GNN-based solution. Further research is needed to explore the scalability and generalizability of this approach in real-world scenarios and to consider the potential ethical implications of autonomous parking technologies. Background: GNNs offer a number of advantages over traditional parking spot detection methods. Unlike methods that treat objects as discrete entities, GNNs may leverage the inherent connections among parking markers (lines, dots) inside an image. This ability to exploit spatial connections leads to more accurate parking space detection, even in challenging scenarios with shifting illumination. Real-time applications are another area where GNNs exhibit promise, which is critical for autonomous vehicles. Their ability to intuitively understand linkages across marking sites may further simplify the process compared to traditional deep-learning approaches that need complex feature development. Furthermore, the proposed GNN model streamlines parking space recognition by potentially combining slot inference and marking point recognition in a single step. All things considered, GNNs present a viable method for obtaining stronger and more precise parking slot recognition, opening the door for autonomous car self-parking technology developments. Methodology: The proposed research introduces a novel, end-to-end trainable method for parking slot detection using bird’s-eye images and GNNs. The approach involves a two-stage process. First, a marking-point detector network is employed to identify potential parking markers, extracting features such as confidence scores and positions. After refining these detections, a marking-point encoder network extracts and embeds location and appearance information. The enhanced data is then loaded into a fully linked network, with each node representing a marker. An attentional GNN is then utilized to leverage the spatial relationships between neighbors, allowing for selective information aggregation and capturing intricate interactions. Finally, a dedicated entrance line discriminator network, trained on GNN outputs, classifies pairs of markers as potential entry lines based on learned node attributes. This multi-stage approach, evaluated on benchmark datasets, aims to achieve robust and accurate parking slot detection even in diverse and challenging environments. Contribution: The present study makes a significant contribution to the parking slot detection domain by introducing an attentional GNN-based approach that capitalizes on the spatial relationships between marking points for enhanced robustness. Additionally, the paper offers a fully trainable end-to-end model that eliminates the need for manual post-processing, thereby streamlining the process. Furthermore, the study reduces training costs by dispensing with the need for detailed annotations of marking point properties, thereby making it more accessible and cost-effective. Findings: The goal of this research is to present a unique approach to parking space recognition using GNNs and bird’s-eye photos. The study’s findings demonstrated significant improvements over earlier algorithms, with accuracy on par with the state-of-the-art DMPR-PS method. Moreover, the suggested method provides a fully trainable solution with less reliance on manually specified rules and more economical training needs. One crucial component of this approach is the GNN’s performance. By making use of the spatial correlations between marking locations, the GNN delivers greater accuracy and recall than a completely linked baseline. The GNN successfully learns discriminative features by separating paired marking points (creating parking spots) from unpaired ones, according to further analysis using cosine similarity. There are restrictions, though, especially where there are unclear markings. Successful parking slot identification in various circumstances proves the recommended method’s usefulness, with occasional failures in poor visibility conditions. Future work addresses these limitations and explores adapting the model to different image formats (e.g., side-view) and scenarios without relying on prior entry line information. An ablation study is conducted to investigate the impact of different backbone architectures on image feature extraction. The results reveal that VGG16 is optimal for balancing accuracy and real-time processing requirements. Recommendations for Practitioners: Developers of parking systems are encouraged to incorporate GNN-based techniques into their autonomous parking systems, as these methods exhibit enhanced accuracy and robustness when handling a wide range of parking scenarios. Furthermore, attention mechanisms within deep learning models can provide significant advantages for tasks that involve spatial relationships and contextual information in other vision-based applications. Recommendation for Researchers: Further research is necessary to assess the effectiveness of GNN-based methods in real-world situations. To obtain accurate results, it is important to employ large-scale datasets that include diverse lighting conditions, parking layouts, and vehicle types. Incorporating semantic information such as parking signs and lane markings into GNN models can enhance their ability to interpret and understand context. Moreover, it is crucial to address ethical concerns, including privacy, potential biases, and responsible deployment, in the development of autonomous parking technologies. Impact on Society: Optimized utilization of parking spaces can help cities manage parking resources efficiently, thereby reducing traffic congestion and fuel consumption. Automating parking processes can also enhance accessibility and provide safer and more convenient parking experiences, especially for individuals with disabilities. The development of dependable parking capabilities for autonomous vehicles can also contribute to smoother traffic flow, potentially reducing accidents and positively impacting society. Future Research: Developing and optimizing graph neural network-based models for real-time deployment in autonomous vehicles with limited resources is a critical objective. Investigating the integration of GNNs with other deep learning techniques for multi-modal parking slot detection, radar, and other sensors is essential for enhancing the understanding of the environment. Lastly, it is crucial to develop explainable AI methods to elucidate the decision-making processes of GNN models in parking slot detection, ensuring fairness, transparency, and responsible utilization of this technology.




english

The Relationship Between Electronic Word-of-Mouth Information, Information Adoption, and Investment Decisions of Vietnamese Stock Investors

Aim/Purpose: This study investigates the relationship between Electronic Word-of-Mouth (EWOM), Information Adoption, and the stock investment of Vietnamese investors. Background: Misinformation spreads online, and a lack of strong information analysis skills can lead Vietnamese investors to make poor stock choices. By understanding how online conversations and information processing influence investment decisions, this research can help investors avoid these pitfalls. Methodology: This study applies Structural Equation Modelling (SEM) to investigate how non-professional investors react to online information and which information factors influence their investment decisions. The final sample includes 512 investors from 18 to 65 years old from various professional backgrounds (including finance, technology, education, etc.). We conducted a combined online and offline survey using a convenience sampling method from August to November 2023. Contribution: This study contributes to the growing literature on Electronic Word-of-Mouth (EWOM) and its impact on investment decisions. While prior research has explored EWOM in various contexts, we focus on Vietnamese investors, which can offer valuable insights into its role within a developing nation’s stock market. Investors, particularly those who are new or less experienced, are often susceptible to the influence of EWOM. By examining EWOM’s influence in Vietnam, this study sheds light on a crucial factor impacting investment behavior in this emerging market. Findings: The results show that EWOM has a moderate impact on the Information Adoption and investment decisions of Vietnamese stock investors. Information Quality (QL) is the factor that has the strongest impact on Information Adoption (IA), followed by Information Credibility (IC) and Attitude Towards Information (AT). Needs for Information (NI) only have a small impact on Information Adoption (IA). Finally, Information Adoption (IA) has a limited influence on investor decisions in stock investment. We also find that investors need to verify information through official sites before making investment decisions based on posts in social media groups. Recommendations for Practitioners: The findings suggest that state management and media agencies need to coordinate to improve the quality of EWOM information to protect investors and promote the healthy development of the stock market. Social media platform managers need to moderate content, remove false information, prioritize displaying authentic information, cooperate with experts, provide complete information, and personalize the experience to enhance investor trust and positive attitude. Securities companies need to provide complete, accurate, and updated information about the market and investment products. They can enhance investor trust and positive attitude by developing news channels, interacting with investors, and providing auxiliary services. Listed companies need to take the initiative to improve the quality of information disclosure and ensure clarity, comprehensibility, and regular updates. Use diverse communication channels and improve corporate governance capacity to increase investor trust and positive attitude. Investors need to seek information from reliable sources, compare information from multiple sources, and carefully check the source and author of the information. They should improve their investment knowledge and skills, consult experts, define investment goals, and build a suitable investment portfolio. Recommendation for Researchers: This study synthesized previous research on EWOM, but there is still a gap in the field of securities because each nation has its laws, regulations, and policies. The relationships between the factors in the model are not yet clear, and there is a need to develop a model with more interactive factors. The research results need to be further verified, and more research can be conducted on the influence of investor psychology, investment experience, etc. Impact on Society: This study finds that online word-of-mouth (EWOM) can influence Vietnamese investors’ stock decisions, but information quality is more important. Policymakers should regulate EWOM accuracy, fund managers should use social media to reach investors, and investors should diversify their information sources. Future Research: This study focuses solely on the stock market, while individual investors in Vietnam may engage in various other investment forms such as gold, real estate, or cryptocurrencies. Therefore, future research could expand the scope to include other investment types to gain a more comprehensive understanding of how individual investors in Vietnam utilize electronic word-of-mouth (EWOM) and adopt information in their investment decision-making process. Furthermore, while these findings may apply to other emerging markets with similar levels of financial literacy as Vietnam, they may not fully extend to countries with higher financial literacy rates. Hence, further studies could be conducted in developed countries to examine the generalizability of these findings. Finally, future research could see how EWOM’s impact changes over a longer period. Additionally, a more nuanced understanding of the information adoption process could be achieved by developing a research model with additional factors.




english

Learning to (Co)Evolve: A Conceptual Review and Typology of Network Design in Global Health Virtual Communities of Practice

Aim/Purpose: This conceptual review analyzes the designs of global health virtual communities of practice (VCoPs) programming reported in the empirical literature and proposes a new typology of their functioning. The purpose of this review is to provide clarity on VCoP learning stages of (co)evolution and insight into VCoP (re)development efforts to best meet member, organization, and network needs against an ever-evolving landscape of complexity in global health. Background: Since the COVID-19 pandemic, the field of global health has seen an uptick in the use of VCoPs to support continuous learning and improve health outcomes. However, evidence of how different combinations of programmatic designs impact opportunities for learning and development is lacking, and how VCoPs evolve as learning networks has yet to be explored. Methodology: Following an extensive search for literature in six databases, thematic analysis was conducted on 13 articles meeting the inclusion criteria. This led to the development and discussion of a new typology of VCoP phases of learning (co)evolution. Contribution: Knowledge gained from this review and the new categorization of VCoPs can support the functioning and evaluation of global health training programs. It can also provide a foundation for future research on how VCoPs influence the culture of learning organizations and networks. Findings: Synthesis of findings resulted in the categorization of global health VCoPs into five stages (slightly evolving, somewhat revolving, moderately revolving, highly revolving, and coevolving) across four design domains (network development, general member engagement before/after sessions, general member engagement during sessions, and session leadership). All global health VCoPs reviewed showed signs of adaptation and recommended future evolution. Recommendations for Practitioners: VCoP practitioners should pay close attention to how the structured flexibility of partnerships, design, and relationship development/accountability may promote or hinder VcoP’s continued evolution. Practitioners should shift perspective from short to mid- and long-term VCoP planning. Recommendation for Researchers: The new typology can stimulate further research to strengthen the clarity of language and findings related to VCoP functioning. Impact on Society: VCoPs are utilized by academic institutions, the private sector, non-profit organizations, the government, and other entities to fill gaps in adult learning at scale. The contextual implementation of findings from this study may impact VCoP design and drive improvements in opportunities for learning, global health, and well-being. Future Research: Moving forward, future research could explore how VCoP evaluations relate to different stages of learning, consider evaluation stages across the totality of VCoP programming design, and explore how best to capture VCoP (long-term) impact attributed to health outcomes and the culture of learning organizations and networks.




english

Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success

Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field.




english

Is Knowledge Management (Finally) Extractive? – Fuller’s Argument Revisited in the Age of AI

Aim/Purpose: The rise of modern artificial intelligence (AI), in particular, machine learning (ML), has provided new opportunities and directions for knowledge management (KM). A central question for the future of KM is whether it will be dominated by an automation strategy that replaces knowledge work or whether it will support a knowledge-enablement strategy that enhances knowledge work and uplifts knowledge workers. This paper addresses this question by re-examining and updating a critical argument against KM by the sociologist of science Steve Fuller (2002), who held that KM was extractive and exploitative from its origins. Background: This paper re-examines Fuller’s argument in light of current developments in artificial intelligence and knowledge management technologies. It reviews Fuller’s arguments in its original context wherein expert systems and knowledge engineering were influential paradigms in KM, and it then considers how the arguments put forward are given new life in light of current developments in AI and efforts to incorporate AI in the KM technical stack. The paper shows that conceptions of tacit knowledge play a key role in answering the question of whether an automating or enabling strategy will dominate. It shows that a better understanding of tacit knowledge, as reflected in more recent literature, supports an enabling vision. Methodology: The paper uses a conceptual analysis methodology grounded in epistemology and knowledge studies. It reviews a set of historically important works in the field of knowledge management and identifies and analyzes their core concepts and conceptual structure. Contribution: The paper shows that KM has had a faulty conception of tacit knowledge from its origins and that this conception lends credibility to an extractive vision supportive of replacement automation strategies. The paper then shows that recent scholarship on tacit knowledge and related forms of reasoning, in particular, abduction, provide a more theoretically robust conception of tacit knowledge that supports the centrality of human knowledge and knowledge workers against replacement automation strategies. The paper provides new insights into tacit knowledge and human reasoning vis-à-vis knowledge work. It lays the foundation for KM as a field with an independent, ethically defensible approach to technology-based business strategies that can leverage AI without becoming a merely supporting field for AI. Findings: Fuller’s argument is forceful when updated with examples from current AI technologies such as deep learning (DL) (e.g., image recognition algorithms) and large language models (LLMs) such as ChatGPT. Fuller’s view that KM presupposed a specific epistemology in which knowledge can be extracted into embodied (computerized) but disembedded (decontextualized) information applies to current forms of AI, such as machine learning, as much as it does to expert systems. Fuller’s concept of expertise is narrower than necessary for the context of KM but can be expanded to other forms of knowledge work. His account of the social dynamics of expertise as professionalism can be expanded as well and fits more plausibly in corporate contexts. The concept of tacit knowledge that has dominated the KM literature from its origins is overly simplistic and outdated. As such, it supports an extractive view of KM. More recent scholarship on tacit knowledge shows it is a complex and variegated concept. In particular, current work on tacit knowledge is developing a more theoretically robust and detailed conception of human knowledge that shows its centrality in organizations as a driver of innovation and higher-order thinking. These new understandings of tacit knowledge support a non-extractive, human enabling view of KM in relation to AI. Recommendations for Practitioners: Practitioners can use the findings of the paper to consider ways to implement KM technologies in ways that do not neglect the importance of tacit knowledge in automation projects (which neglect often leads to failure). They should also consider how to enhance and fully leverage tacit knowledge through AI technologies and augment human knowledge. Recommendation for Researchers: Researchers can use these findings as a conceptual framework in research concerning the impact of AI on knowledge work. In particular, the distinction between replacement and enabling technologies, and the analysis of tacit knowledge as a structural concept, can be used to categorize and analyze AI technologies relative to KM research objectives. Impact on Society: The potential of AI on employment in the knowledge economy is a major issue in the ethics of AI literature and is widely recognized in the popular press as one of the pressing societal risks created by AI and specific types such as generative AI. This paper shows that KM, as a field of research and practice, does not need to and should not add to the risks created by automation-replacement strategies. Rather, KM has the conceptual resources to pursue a (human) knowledge enablement approach that can stand as a viable alternative to the automation-replacement vision. Future Research: The findings of the paper suggest a number of research trajectories. They include: Further study of tacit knowledge and its underlying cognitive mechanisms and structures in relation to knowledge work and KM objectives. Research into different types of knowledge work and knowledge processes and the role that tacit and explicit knowledge play. Research into the relation between KM and automation in terms of KM’s history and current technical developments. Research into how AI arguments knowledge works and how KM can provide an enabling framework.




english

Recommendation System for an Online Shopping Pay-Later System Using a Multistage Approach: A Case Study from Indonesia

Aim/Purpose: In this study, we developed a recommendation system model designed to support decision-makers in identifying consumers eligible for pay-later options via consensus-based decision-making. This approach was chosen due to the high and complex risks involved, such as delayed payments, challenges in reaching consumers, and issues of bad credit. Background: The “pay-later” option, which allows consumers to postpone payment for e-commerce purchases, offers convenience and flexibility but also introduces several challenges: (i) by enabling payment deferral, merchants face financial risks, including potential delays or defaults in payment, adversely affecting their cash flow and profitability; and (ii) this payment delay can also heighten the risk of fraud, including identity theft and unauthorized transactions. Methodology: This study initiated a risk analysis utilizing the ROAD process. Considering contemporary economic developments and advancements in neural networks, integrating these networks into risk assessment has become crucial. Consequently, model development involved the amalgamation of three deep learning methods – CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), and LSTM (Long Short-Term Memory) – to address various risk alternatives and facilitate multi-stage decision-making recommendations. Contribution: Our primary contribution is threefold. First, our study identified potential consumers by prioritizing those with the smallest associated problem consequence values. Second, we achieved an optimal recall value using a candidate generator. Last, we categorized consumers to assess their eligibility for pay-later rights. Findings: The findings from this study indicate that our multi-stage recommendation model is effective in minimizing the risk associated with consumer debt repayment. This method of consumer selection empowers policymakers to make informed decisions regarding which consumers should be granted pay-later privileges. Recommendations for Practitioners: This recommendation system is proposed to several key parties involved in the development, implementation, and use of pay-later systems. These parties include E-commerce Executive Management for financial analysis and risk evaluation, the Risk Management Team to assess and manage risks related to users utilizing Pay-Later services, and Sales Managers to integrate Pay-Later services into sales strategies. Recommendation for Researchers: Advanced fraud detection mechanisms were implemented to prevent unauthorized transactions effectively. The goal was to cultivate user confidence in the safety of their financial data by ensuring secure payment processing. Impact on Society: Ensuring consumers understand the terms and conditions of pay-later arrangements, including interest rates, repayment schedules, and potential fees, is crucial. Providing clear and transparent information, along with educating consumers about their financial responsibilities, helps prevent misunderstandings and disputes. Future Research: Our future development plans involve the ongoing assessment of the system’s performance to enhance prediction accuracy. This includes updating models and criteria based on feedback and changes in economic or market conditions. Upholding compliance with security and data privacy regulations necessitates the implementation of protective measures to safeguard consumer information. The implementation of such a system requires careful consideration to ensure fairness and adherence to legal standards. Additionally, it is important to acknowledge that algorithms and models may evolve over time through the incorporation of additional data and continuous evaluations.




english

Student Acceptance of LMS in Indonesian High Schools: The SOR and Extended GETAMEL Frameworks

Aim/Purpose: This study aims to develop a theoretical model based on the SOR (Stimulus – Organism – Response) framework and GETAMEL, which cover environmental, personal, and learning quality aspects to identify factors influencing students’ acceptance of the use of LMS in high schools, especially after COVID-19 pandemic. Background: After the COVID-19 pandemic, many high schools reopened for in-person classes, which led to a decreased reliance on e-learning. The shift from online to traditional face-to-face learning has influenced students’ perceptions of the importance of e-learning in their academic activities. Consequently, high schools are facing the challenge of ensuring that LMS can still be integrated into the teaching-learning process even after the pandemic ends. Therefore, this study proposes a model to investigate the factors that affect students’ actual use of LMS in the high school environment. Methodology: This study used 890 high school students to validate the theoretical model using Structural Equation Modeling (SEM) analysis to deliver direct, indirect, and moderating effect analysis. Contribution: This study combines SOR and acceptance theory to provide a model to explain high school students’ intention to use technology. The involvement of direct, indirect, and moderating effects analysis offers an alternative result and discussion and is considered another contribution of this study from a technical perspective. Findings: The findings show that perceived satisfaction is the most influential factor affecting the use of LMS, followed by perceived usefulness. Meanwhile, from indirect effect analysis, subjective norms and computer self-efficacy were found to indirectly affect actual use through perceived usefulness as a mediator. Content quality was also an indirect predictor of the actual use of LMS through perceived satisfaction. Further, the moderating effect of age influenced perceived satisfaction’s direct effect on actual use. Recommendations for Practitioners: This study provides practical recommendations that can be useful to high schools and other stakeholders in improving the use of LMS in educational environments. Specifically, exploring the implementation of LMS in high schools prior to and following the COVID-19 outbreak can offer valuable insights into the changing educational environment. Recommendation for Researchers: The results of this study present a significant theoretical contribution by employing a comprehensive approach to explain the adoption of LMS among high school students after the COVID-19 pandemic. This contribution extends the GETAMEL framework by incorporating environmental, personal, and learning quality aspects while also analyzing both direct and indirect effects, which have not been previously explored in this context. Impact on Society: This study provides knowledge to high schools for improving the use of LMS in educational environments post-COVID-19, leading to an enhanced teaching-learning process. Future Research: This study, however, is limited to collecting responses exclusively from Indonesian respondents. Therefore, the replication of the finding needs to consider the characteristics and culture similar to Indonesian students, which is regarded as the limitation of this study.




english

Enhancing Waste Management Decisions: A Group DSS Approach Using SSM and AHP in Indonesia

Aim/Purpose: This research aims to design a website-based group decision support system (DSS) user interface to support an integrated and sustainable waste management plan in Jagatera. The main focus of this research is to design a group DSS to help Jagatera prioritize several waste alternatives to be managed so that Jagatera can make the right decisions to serve the community. Background: The Indonesian government and various stakeholders are trying to solve the waste problem. Jagatera, as a waste recycling company, plays a role as a stakeholder in managing waste. In 2024, Jagatera plans to accept all waste types, which impacts the possibility of increasing waste management costs. If Jagatera does not have a waste management plan, this will impact reducing waste management services in the community. To solve this problem, the group DSS assists Jagatera in prioritizing waste based on aspects of waste management cost. Methodology: Jagatera, an Indonesian waste recycling company, is implementing a group DSS using the soft system methodology (SSM) method. The SSM process involves seven stages, including problem identification, problem explanation using rich pictures, system design, conceptual model design, real-life comparison, changes, and improvement steps. The final result is a prototype user interface design addressing the relationship between actors and the group DSS. The analytical hierarchy process (AHP) method prioritized waste based on management costs. This research obtained primary data from interviews with Jagatera management, a literature review regarding the group DSS, and questionnaires to determine the type of waste and evaluate user interface design. Contribution: This research focuses on determining waste handling priorities based on their management. It contributes the DSS, which uses a decision-making approach based on management groups developed using the SSM and AHP methods focused on waste management decisions. It also contributes to the availability of a user interface design from the DSS group that explains the interactions between actors. The implications of the availability of DSS groups in waste recycling companies can help management understand waste prioritization problems in a structured manner, increase decision-making efficiency, and impact better-quality waste management. Combining qualitative approaches from SSM to comprehend issues from different actor perspectives and AHP to assist quantitative methods in prioritizing decisions can yield theoretical implications when using the SSM and AHP methods together. Findings: This research produces a website-based group DSS user interface design that can facilitate decision-making using AHP techniques. The user interface design from the DSS group was developed using the SSM approach to identify complex problems at waste recycling companies in Indonesia. This study also evaluated the group DSS user interface design, which resulted in a score of 91.67%. This value means that the user interface design has met user expectations, which include functional, appearance, and comfort needs. These results also show that group DSS can enhance waste recycling companies’ decision-making process. The results of the AHP technique using all waste process information show that furniture waste, according to the CEO, is given more priority, and textile waste, according to the Managing Director. Group DSS developed using the AHP method allows user actors to provide decisions based on their perspectives and authority. Recommendations for Practitioners: This research shows that the availability of a group DSS is one of the digital transformation efforts that waste recycling companies can carry out to support the determination of a sustainable waste management plan. Managers benefit from DSS groups by providing a digital decision-making process to determine which types of waste should be prioritized based on management costs. Timely and complete information in the group DSS is helpful in the decision-making process and increases organizational knowledge based on the chosen strategy. Recommendation for Researchers: Developing a group DSS for waste recycling companies can encourage strategic decision-making processes. This research integrates SSM and AHP to support a comprehensive group DSS because SSM encourages a deeper and more detailed understanding of waste recycling companies with complex problems. At the same time, AHP provides a structured approach for recycling companies to make decisions. The group DSS that will be developed can be used to identify other more relevant criteria, such as environmental impact, waste management regulations, and technological capabilities. Apart from more varied criteria, the group DSS can be encouraged to provide various alternatives such as waste paper, metal, or glass. In addition to evaluating the group DSS’s user interface design, waste recycling companies need to consider training or support for users to increase system adoption. Impact on Society: The waste problem requires the role of various stakeholders, one of which is a waste recycling company. The availability of a group DSS design can guide waste recycling companies in providing efficient and effective services so that they can respond more quickly to the waste management needs of the community. The community also gets transparent information regarding their waste management. The impact of good group DSS is reducing the amount of waste in society. Future Research: Future research could identify various other types of waste used as alternatives in the decision-making process to illustrate the complexity of the prioritization process. Future research could also identify other criteria, such as environmental impact, social aspects of community involvement, or policy compliance. Future research could involve decision-makers from other parties, such as the government, who play an essential role in the waste industry.




english

Investigating Intention to Invest in Online Peer-to-Peer Lending Platforms Among the Bottom 40 Group in Malaysia

Aim/Purpose: This study investigates the intention to invest in online peer-to-peer (P2P) lending platforms among the bottom 40% (B40) Malaysian households by income. Background: The B40 group citizens earn less than USD 1,096.00 (i.e., RM 4,850.00) in monthly household income, thereby possessing relatively small capital investments suitable for online P2P lending. Methodology: Drawing on the technology acceptance model (TAM), this research developed and tested the relevant hypotheses with data collected from 216 respondents. The partial least square structural equation modelling (PLS-SEM) technique was employed to analyse the collected data. Contribution: This study contributes to the body of knowledge on financial inclusion by demonstrating the relevance of modified TAM in explaining the intention to invest in online P2P lending platforms among investors with lower disposable income (i.e., the B40 group in Malaysia). Findings: The findings revealed that information quality, perceived risk, and perceived ease of use are relevant to B40 investment intention in P2P online lending platforms. However, contrary to expectations, trust and financial literacy are insignificant predictors of B40 investment intention. Recommendations for Practitioners: The P2P lending platform operators could enhance financial inclusion among the B40 group by ensuring borrowers provide sufficient, relevant, and reliable information with adequate security measures to minimise risk exposure. The financial regulators should also conduct periodic audits to ensure that the operators commit to enhancing information quality, platform security, and usability. Recommendation for Researchers: The intention to invest in online P2P lending platforms among the B40 group could be enhanced by improving information quality and user experience, addressing perceived risks, reassessing trust-building strategies and financial literacy initiatives, and adopting holistic, interdisciplinary approaches. These findings suggest targeted strategies to enhance financial inclusion and investment participation among B40 investors. Impact on Society: The study’s findings hold significant implications for financial regulators and institutions, such as the Securities Commission Malaysia, Bank Negara Malaysia, commercial and investment banks, and insurance companies. By focusing on these key determinants, policymakers can design targeted interventions to improve the accessibility and attractiveness of P2P lending platforms for B40 investors. Enhanced information quality and ease of use can be mandated through regulatory frameworks, while effective risk communication and mitigation strategies can be developed to build investor confidence. These measures can collectively promote financial growth and inclusion, supporting broader economic development goals. Future Research: Future research could expand the sample size to consider older B40 individuals across different countries and use a longitudinal survey to assess the actual investment decision of the B40 investors.




english

Modeling the Predictors of M-Payments Adoption for Indian Rural Transformation

Aim/Purpose: The last decade has witnessed a tremendous progression in mobile penetration across the world and, most importantly, in developing countries like India. This research aims to investigate and analyze the factors influencing the adoption of mobile payments (M-payments) in the Indian rural population. This, in turn, would bring about positive changes in the lives of people in these countries. Background: A conceptual framework was worked upon using UTAUT as a foundation, which included constructs, namely, facilitating conditions, social influences, performance expectancy, and effort expectancy. The model was further extended by incorporating the awareness construct of m-payments to make it more comprehensive and to understand behavioral intentions and usage behavior for m-payments in rural India. Methodology: A questionnaire-based study was conducted to collect primary data from 410 respondents residing in rural areas in the state of Punjab. Convenience sampling was conducted to collect the data. Structural equation modeling was used to conduct statistical analysis, including exploratory and confirmatory factor analyses. Contribution: A new conceptual model for M-payments adoption in rural India was developed based on the study’s findings. Using the findings of the study, marketers, policymakers, and academicians can gain insight into the factors that motivate the rural population to use M-payments. Findings: The study has found that M-payment Awareness (AW) is the strongest factor within the proposed model for deeper diffusion of M-payments in rural areas in the state of Punjab. Performance expectancy (PE), effort expectancy (EE), social influences (SI), and facilitating conditions (FC) are also positively and significantly related to behavioral intentions for using M-payments among the Indian rural population in the state of Punjab. Recommendations for Practitioners: M-payments are emerging as a new mode of transactions among the Indian masses. The government needs to play a pivotal role in advocating the benefits linked with the usage of M-payments by planning financial literacy and awareness campaigns, promoting transparency and accountability of the intermediaries, and reducing transaction costs of using M-payments. Mobile manufacturing companies should come up with devices that are easy to use and incorporate multilanguage mobile applications, especially for rural areas, as India is a multi-lingual country. A robust regulatory framework will not only shape consumer trust but also prevent privacy breaches. Recommendation for Researchers: It is recommended that a comparative study among different M-payment platforms be conducted by exploring constructs such as usefulness and ease of use. However, the vulnerability of data leakage may result in insecurity and skepticism about its adoption. Impact on Society: India’s rural areas have immense potential for adoption of M-payments. Appropriate policies, awareness drives, and necessary infrastructure will boost faster and smoother adoption of M-payments in rural India to thrive in the digital economy. Future Research: The adapted model can be further tested with moderating factors like age, gender, occupation, and education to understand better the complexities of M-payments, especially in rural areas of India. Additionally, cross-sectional studies could be conducted to evaluate the behavioral intentions of different sections of society.




english

Adopting Green Innovation in Tourism SMEs: Integrating Pro-Environmental Planned Behavior and TOE Model

Aim/Purpose: This study investigated factors influencing the intention to engage in green innovation among small and medium enterprises (SMEs) in the tourism sector, using an integrated approach from the pro-environmental planned behavior (PEPB) and technology organization environment (TOE) models. Background: Green innovation is a long-term strategy aimed at addressing environmental challenges in the Indonesian tourism sector, especially those related to SMEs in culinary, accommodation, transportation, and creative industries. While prior research primarily focused on innovation characteristics and various behavioral intentions towards new technologies, this study pioneered an approach to understanding green innovation practices among SMEs by examining behavioral intention and the influence of internal organizational and external environmental factors. This was achieved through the PEPB model, which extends the theory of planned behavior (TPB) by incorporating perceived authority support and perceived environmental concern and integrating it with the TOE model. This comprehensive approach was crucial for understanding SME motivations, needs, and challenges in adopting green innovation, thereby supporting environmental sustainability. Methodology: Data were collected through offline and online questionnaires and interviews with 405 SMEs that had implemented green innovation as respondents. The theoretical model was tested using partial least squares structural equation modeling (PLS-SEM) with top-level constructs. Contribution: This research contributed to the development and validation of an integrated model for green innovation in SMEs, offering insights and recommendations for all stakeholders in the tourism sector to formulate effective green innovation strategies. Findings: This research revealed that the integrated model of pro-environmental planned behavior and technology organization environment successfully explained 71% of the factors influencing the intention to engage in green innovation for SMEs in the tourism sector. Perceived authority support emerged as the strongest factor, while perceived behavioral control was identified as a weaker factor. Recommendations for Practitioners: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Recommendation for Researchers: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Impact on Society: Examining the factors influencing the intention to engage in green innovation among SMEs in the tourism sector carried significant social implications. The findings contributed to recommending strategies for businesses and stakeholders such as the government, investors, and tourists to collectively strive to minimize environmental damage in tourist areas through the implementation of green innovation. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope to include diverse regions and industries and using additional approaches, such as leadership theory and management commitment theories, can increase the R-squared value. Additionally, broadening the profile of interviewees to obtain a more comprehensive understanding of the intention to engage in green innovation should be considered.




english

A Learn-to-Rank Approach to Medicine Selection for Patient Treatments

Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level.




english

Improving the Accuracy of Facial Micro-Expression Recognition: Spatio-Temporal Deep Learning with Enhanced Data Augmentation and Class Balancing

Aim/Purpose: This study presents a novel deep learning-based framework designed to enhance spontaneous micro-expression recognition by effectively increasing the amount and variety of data and balancing the class distribution to improve recognition accuracy. Background: Micro-expression recognition using deep learning requires large amounts of data. Micro-expression datasets are relatively small, and their class distribution is not balanced. Methodology: This study developed a framework using a deep learning-based model to recognize spontaneous micro-expressions on a person’s face. The framework also includes several technical stages, including image and data preprocessing. In data preprocessing, data augmentation is carried out to increase the amount and variety of data and class balancing to balance the distribution of sample classes in the dataset. Contribution: This study’s essential contribution lies in enhancing the accuracy of micro-expression recognition and overcoming the limited amount of data and imbalanced class distribution that typically leads to overfitting. Findings: The results indicate that the proposed framework, with its data preprocessing stages and deep learning model, significantly increases the accuracy of micro-expression recognition by overcoming dataset limitations and producing a balanced class distribution. This leads to improved micro-expression recognition accuracy using deep learning techniques. Recommendations for Practitioners: Practitioners can utilize the model produced by the proposed framework, which was developed to recognize spontaneous micro-expressions on a person’s face, by implementing it as an emotional analysis application based on facial micro-expressions. Recommendation for Researchers: Researchers involved in the development of a spontaneous micro-expression recognition framework for analyzing hidden emotions from a person’s face are playing an essential role in advancing this field and continue to search for more innovative deep learning-based solutions that continue to explore techniques to increase the amount and variety of data and find solutions to balancing the number of sample classes in various micro-expression datasets. They can further improvise to develop deep learning model architectures that are more suitable and relevant according to the needs of recognition tasks and the various characteristics of different datasets. Impact on Society: The proposed framework could significantly impact society by providing a reliable model for recognizing spontaneous micro-expressions in real-world applications, ranging from security systems and criminal investigations to healthcare and emotional analysis. Future Research: Developing a spontaneous micro-expression recognition framework based on spatial and temporal flow requires the learning model to classify optimal features. Our future work will focus more on exploring micro-expression features by developing various alternative learning models and increasing the weights of spatial and temporal features.




english

Use of Mobile Health Applications by Lay Users in Kuwait

Aim/Purpose: This study aims to explore the use of mobile health applications (mHealth apps) by lay users in Kuwait. Specifically, it seeks to: (i) identify and highlight the impact of factors that contribute to their use of mHealth apps and (ii) validate a model of these users’ usage of mHealth apps. Background: The advancement of information technologies has paved the way for efficiency and effectiveness in healthcare sectors in developed countries. Kuwait has attempted to revolutionise healthcare systems through mobile applications of information technology solutions to educate users on better methods of receiving customised health services. However, end-user usage of mHealth apps remains in the infancy in developing countries, including Kuwait. Lay users are often vulnerable and frequently overlooked by researchers and health technology providers. Methodology: A cross-sectional study was conducted among 225 lay users of mHealth apps in Kuwait using an online questionnaire to achieve the study objectives. A purposive sampling method utilising convenience and snowballing sampling techniques was used in which all the respondents were lay users. Descriptive statistics, Pearson correlation, and regression analyses were employed to analyse the collected data. Contribution: The study contributes to the extant literature on health informatics and mHealth by providing a comprehensive understanding of how technological, social, and functional factors are related to mHealth apps in the context of developing countries. It identifies key drivers of mHealth app use, suggests expanding the TAM model, and facilitates comparisons with developed countries, addressing gaps in mHealth research. Findings: Four factors (i.e., perceived trust (PT), perceived ease of use (PEU) and behaviour control (PBC), perceived usefulness (PU), and subjective norms (SN)) were identified that influence the use of mHealth apps. These four identified factors also contributed to lay users’ use of these mHealth apps. Among these four factors, perceived trust (PT) was the main contributor to lay users’ use of these mHealth apps. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of mHealth apps. The findings urge developers to enhance app functionality by prioritising privacy and security to build user trust while outlining guidelines for future development focused on user-centric design and compliance with data privacy regulations. Additionally, the government should establish supportive policies and funding, ensure regulatory oversight, and promote public awareness to foster trust. Healthcare providers should integrate mHealth apps into their services, train staff for practical use, gather users’ feedback, and collaborate with developers to create tailored healthcare solutions. Future Research: Additional research is required to apply probability sampling techniques and increase the sample size to generate more reliable and generalisable findings. Additionally, the young age segment must be considered here, and research must be extended to consider the moderating role of demographic factors like age, gender, and educational levels to better understand the adoption of mHealth apps.




english

Investigating the Determinants of Online Shopping Repurchase Intention in Generation Z Customers in India: An Exploratory Study

Aim/Purpose: This study investigates the factors that affect the repurchase intentions of Generation Z consumers in India’s online shopping industry, focusing on combining the Expectation-Confirmation Model (ECM) and Extended Technology Acceptance Model (E-TAM). The aim is to understand the intricate behaviors that shape technology adoption and sustained usage, which are essential for retaining customers in e-commerce. Background: Social media and other online platforms have significantly influenced daily life and become essential communication tools owing to technological advancements. Online shopping is no exception, offering a range of product choices, information, and convenience compared with traditional commerce. Indian retailers recognize this trend as an opportunity to promote their brands through e-shopping platforms, leading to increased competition. Generation Z comprises 32% of the world’s population and is a significant emerging customer base in India. Numerous studies have been conducted to study customers’ repurchase intention in the online shopping domain, but few studies have explicitly focused on Generation Z as a customer base. This study aims to comprehensively understand the topic and investigate the variables that impact consumers’ online repurchase intention by examining their post-adoption behavioral processes. Methodology: The study employed a quantitative research design with structural equation modeling using AMOS to analyze responses from 410 participants. This method thoroughly examined hypotheses regarding factors affecting repurchase intention (security, ease of use, privacy, and internet self-efficacy) and the mediating role of e-satisfaction. Contribution: This study makes a unique contribution to the field of e-commerce by focusing on Generation Z in India, a rapidly growing demographic in the e-commerce industry. The results on the mediating role of e-satisfaction have significant implications for e-retailers seeking to enhance customer retention strategies and gain a competitive edge in the market. Findings: The research findings underscore the significant influence of security, ease of use, and internet self-efficacy on repurchase intentions, with e-satisfaction playing a pivotal role as a mediating factor. Notably, while privacy concerns did not directly impact repurchase intentions, they displayed considerable influence when mediated by e-satisfaction, highlighting the intricate interplay between these variables in the context of online shopping, which is the unique finding of this study. Recommendations for Practitioners: This study has several significant implications for practitioners. Effectively addressing computer-related individual differences, such as computer self-efficacy, is crucial for boosting online customers’ repurchase intention. For instance, if an e-retailer intends to target Generation Z customers, they should collaborate with IT professionals and develop various computer literacy programs on online streaming platforms, such as YouTube. These programs will enhance target customers’ confidence in online shopping portals and increase their online repeat purchases. Additionally, practitioners should strive to improve the online shopping experience by making the portal user-friendly. Generation Z is accustomed to a fast Internet experience, so they prefer that the process of completing online transactions is swift with fewer clicks. The search for products, payments, and redress should not be tedious. Furthermore, the primary objective of the e-retailer should be to satisfy customers, as satisfied customers repeat their purchases and increase overall profitability. Recommendation for Researchers: The current study was conducted in the Delhi-NCR region of India, and its findings could serve as a basis for future research. For instance, the scale devised in this study could be utilized to examine the impact of cash-on-delivery as a payment method on purchase intention across the country. Alternatively, a comparative analysis could be conducted to compare cash-on-delivery effects in various countries. Impact on Society: The study’s findings enable stakeholders in the online shopping industry to comprehend the post-adoption behavior of Generation Z users and augment existing literature by establishing a correlation between determinants that impact repurchase intention and e-satisfaction, which serves as a mediator. Future Research: This study examines the factors that impact the propensity of Generation Z shoppers to engage in repeat online purchases. This study focuses on India, where the Generation Y (millennial) customer base is also substantial within the online shopping market. Future research could compare the shopping habits of Generation Z and Generation Y customers, as the latter may place greater importance on privacy and security. Additional studies could broaden the scope of this research and explore the comparative viewpoints of both generations. Also, it would be advantageous to conduct in-depth interviews and longitudinal studies to acquire a more in-depth comprehension of the evolving digitalization of shopping.




english

IJIKM Volume 18, 2023 – Table of Contents

Table of Contents for Volume 18, 2023, of the Interdisciplinary Journal of Information, Knowledge, and Management




english

Factors Affecting Individuals’ Behavioral Intention to Use Online Capital Market Investment Platforms in Indonesia

Aim/Purpose: This study aims to examine the ten factors from the Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB), and Unified Theory of Acceptance and Use of Technology (UTAUT) theories in order to analyze behavioral intentions to use the Indonesian online capital market investment platforms and the effect of behavioral intentions on actual usage. Background: The potential growth of capital market investors in Indonesia is large, and the low use of the Internet for investment purposes makes it necessary for stakeholders to understand the factors that affect people’s intentions to invest, especially through online platforms. Several previous studies have explained the intention to use online investment platforms using the TAM and TPB theories. This study tries to combine TAM, TPB, and UTAUT theories in analyzing behavioral intentions to use an online capital market investment platform in Indonesia. Methodology: The research approach employed is a mixed method, particularly explanatory research, which employs quantitative methods first, followed by qualitative methods. Data were collected by conducting interviews and sending online surveys. This study was successful in collecting information on the users of online capital market investment platforms in Indonesia from 1074 respondents, which was then processed and analyzed using Covariance-Based Structural Equation Modeling (CB-SEM) with the IBM AMOS 26.0 application. Contribution: This study complements earlier theories like TAM, TPB, and UTAUT by looking at the intention to use online capital market investment platforms from technological, human, and environmental viewpoints. This study looks at the intention to use the online capital market investing platform as a whole rather than separately depending on investment instruments. This study also assists practitioners including regulators, the government, developers, and investors by offering knowledge of the phenomena and factors that can increase the capital market’s investment intention in Indonesia. Findings: Attitudes, perceived ease of use, perceived behavioral control, subjective norm, and national pride were found to be significant predictors of the intention to use online investment platforms in Indonesia, whereas perceived usefulness, perceived risk, perceived trust, perceived privacy, and price value were not. Recommendations for Practitioners: All practitioners must be able to take steps and strategies that focus on factors that have a significant impact on increasing usage intentions. The government can enact legislation that emphasizes the simplicity and convenience of investment, as well as launch campaigns that encourage people to participate in economic recovery by investing in the capital market. Meanwhile, the developers are concentrating on facilitating the flow of investment transactions through the platform, increasing education and awareness of the benefits of investing in the capital market, and providing content that raises awareness that investing in the capital market can help to restore the national economy. Recommendation for Researchers: Further research is intended to include other variables such as perceived benefits and perceived security, as well as other frameworks such as TRA, to better explain individuals’ behavioral intentions to use online capital investment platforms. Impact on Society: This study can help all stakeholders understand what factors can increase Indonesians’ interest in investing in the capital market, particularly through online investment platforms. This understanding is expected to increase the number of capital market participants and, as a result, have an impact on economic recovery following the COVID-19 pandemic. Future Research: Future research is expected to investigate additional factors that can influence individuals’ behavioral intention to use an online capital market investment platform, such as perceived benefits and perceived security, as well as the addition of control variables such as age, gender, education, and income. International research across nations is also required to build a larger sample size in order to examine the behavior of investors in developing and developed countries and acquire a more thorough understanding of the online capital market investment platform.




english

Investigating the Adoption of Social Commerce: A Case Study of SMEs in Jordan

Aim/Purpose: Social commerce is an emergent topic widely used for product and service sourcing. It helps companies to have frequent interaction with their customers and strive to achieve a competitive advantage. Yet there is only little empirical evidence focusing on social commerce and its adoption in SMEs to date. This study investigates the key factors affecting social commerce adoption in SMEs. This research designed a theoretical model using the Technology, Organization, and Environment (TOE) Model Background: Despite its rapid growth and usage, social commerce is still in its evolution phase and its current conception is vague and restricted. Therefore, considering the benefits of social commerce for consumers and businesses, it is important to explore the concept of social commerce. Methodology: The research floated a self-administered questionnaire and surveyed 218 Jordanian SME businesses. The data was analyzed using smart PLS and the results were drawn that covers the detail of the characteristics of respondents, study descriptive, results of regressions assumptions, e.g., data normality, reliability, validity, common method biases, and description of the measurement model, followed by the findings of hypothesis analysis. Contribution: This study has many significant contributions to the existing studies on firms’ adoption of social commerce. It indicates that organizational readiness from the organizational perspective and consumer pressure from the environmental dimension of the TOE model are significant influential elements in the adoption of social commerce in business, followed by high-level management support and trading partner pressure, respectively. This shows that organizational readiness to adopt social commerce and consumer pressure has a vital role in Jordanian SMEs’ adopting social commerce. Findings: The results were drawn from a survey of 218 Jordanian SMEs, indicating that organizational readiness from an organizational dimension and consumer pressure environmental perspective, followed by top management’s support and trading partner pressure, significantly predicts the adoption intentions of social commerce. However, perceived usefulness and security concerns from a technological context do not significantly impact behavioral intentions to utilize social commerce. Recommendations for Practitioners: Lack of awareness about new technology and its potential benefits are not well diffused in the Jordanian context. In short, both organizational and environmental dimensions of the TOE framework significantly influence the behavioral intentions for social commerce adoption in the Jordanian context whereas the third-dimension technological factors do not affect the behavioral intentions of SMEs to adopt social commerce. In the technological context, SMEs need to invest in technology and must spread awareness among Jordanian consumers about the potential benefits of technology and must encourage them to use social commerce platforms to interact because of the high significance of social commerce for businesses as it facilitates the quick completion of tasks, enhances the productivity, and improves the chances of high profitability. Recommendation for Researchers: First, the study is limited in scope as it discusses the direct links between the TOE framework, behavioral intentions to use social commerce, and the actual usage of social commerce in the Jordanian context rather than testing the mediation, and moderation. Future research may examine the mediators and moderators in the conceptual model. Second, the research examined the behavioral intentions of SMEs rather than consumers to adopt social commerce. Further research might consider the consumer perspective on social commerce. Impact on Society: This research aims to identify the key factor that impact the behavioral intentions of SME businesses to practice social commerce. The theoretical underpinning of the study lies in the TOE model, as using its basic assumptions the conceptual grounds and hypothesis of the study are developed. Future Research: The study findings are not generalizable in different contexts as it was specifically conducted by gathering data from the Jordanian population. However future studies may consider different contexts, sectors, cultures, or countries to examine the model. Lastly, the research collected data using convenience sampling from 218 SMEs in Jordan, which may create difficulty in the generalizability of the research, so needs to examine a larger sample in future studies.




english

The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality

Aim/Purpose: The use of digital technology, such as an electronic records management system (ERMS), has prompted widespread changes across organizations. The organization needs to support its operations with an automation system to improve production performance. This study investigates ERMS’s potentiality to enhance organizational performance in the oil and gas industry. Background: Oil and gas organizations generate enormous electronic records that lead to difficulties in managing them without any system or digitalization procedure. The need to use a system to manage big data and records affects information security and creates several problems. This study supports decision-makers in oil and gas organizations to use ERMS to enhance organizational performance. Methodology: We used a quantitative method by integrating the typical partial least squares (SEM-PLS) approach, including measurement items, respondents’ demographics, sampling and collection of data, and data analysis. The SEM-PLS approach uses a measurement and structural model assessment to analyze data. Contribution: This study contributes significantly to theory and practice by providing advancements in identity theory in the context of big data management and electronic records management. This study is a foundation for further research on the role of ERMS in operations performance and Big Data Management (BDM). This research makes a theoretical contribution by studying a theory-driven framework that may serve as an essential lens to evaluate the role of ERMS in performance and increase its potentiality in the future. This research also evaluated the combined impacts of general technology acceptance theory elements and identity theory in the context of ERMS to support data management. Findings: This study provides an empirically tested model that helps organizations to adopt ERMS based on the influence of big data management. The current study’s findings looked at the concerns of oil and gas organizations about integrating new technologies to support organizational performance. The results demonstrated that individual characteristics of users in oil and gas organizations, in conjunction with administrative features, are robust predictors of ERMS. The results show that ERMS potentiality significantly influences the organizational performance of oil and gas organizations. The research results fit the big ideas about how big data management and ERMS affect respondents to adopt new technologies. Recommendations for Practitioners: This study contributes significantly to the theory and practice of ERMS potentiality and BDM by developing and validating a new framework for adopting ERMS to support the performance and production of oil and gas organizations. The current study adds a new framework to identity theory in the context of ERMS and BDM. It increases the perceived benefits of using ERMS in protecting the credibility and authenticity of electronic records in oil and gas organizations. Recommendation for Researchers: This study serves as a foundation for future research into the function and influence of big data management on ERMS that support the organizational performance. Researchers can examine the framework of this study in other nations in the future, and they will be able to analyze this research framework to compare various results in other countries and expand ERMS generalizability and efficacy. Impact on Society: ERMS and its impact on BDM is still a developing field, and readers of this article can assist in gaining a better understanding of the literature’s dissemination of ERMS adoption in the oil and gas industry. This study presents an experimentally validated model of ERMS adoption with the effect of BDM in the oil and gas industry. Future Research: In the future, researchers may be able to examine the impact of BDM and user technology fit as critical factors in adopting ERMS by using different theories or locations. Furthermore, researchers may include the moderating impact of demographical parameters such as age, gender, wealth, and experience into this study model to make it even more robust and comprehensive. In addition, future research may examine the significant direct correlations between human traits, organizational features, and individual perceptions of BDM that are directly related to ERMS potentiality and operational performance in the future.




english

Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models

Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.




english

Agile Practices and Their Impact on Agile Maturity Level of Software Companies in Nepal

Aim/Purpose: Using the Agile Adoption Framework (AAF), this study aims to examine the agile potential of software development companies in Nepal based on their agile maturity level. In addition, this study also examines the impact of various basic agile practices in determining the maturity level of the agile processes being implemented in the software industry of Nepal. Background: Even if most organizations in the software sector utilize agile development strategies, it is essential to evaluate their performance. Nepal’s software industry did not adopt agile techniques till 2014. The Nepalese industry must always adapt to new developments and discover ways to make software development more efficient and beneficial. The population of the study consists of 1,500 and 2,000 employees of software companies in Nepal implementing agile techniques. Methodology: The sample size considered was 150 employees working in software companies in Nepal. However, only 106 respondents responded after three follow-ups. The sample was collected with purposive sampling. A questionnaire was developed to gain information on Customer Adaptive, Customer Collaboration, Continuous Delivery, Human Centric, and Technical Excellence related to agile practices along with the Agile Maturity Level. Contribution: This research contributes to the understanding of agile practices adopted in software companies in developing countries like Nepal. It also reveals the determinants of the agility of software companies in developing countries. Findings: The results suggest that some of the basic principles of agile have a very significant role in Agile Maturity Level in the Nepali context. In the context of Nepal, human-centered practices have a very high level of correlation, which plays a vital role as a major predictor of the agile maturity level. In addition, Technical Excellence is the variable that has the highest level of association with the Agile Maturity Level, making it the most significant predictor of this quality. Recommendations for Practitioners: As Nepali software companies are mostly offshore or serve outsourcing companies, there is a very thin probability of Nepali developers being able to interact with actual clients and this might be one of the reasons for the Nepali industry not relying on Customer Adaptation and Collaboration as major factors of the Agile methodologies. Continuous Delivery, on the other hand, has a significant degree of correlation with Agile Maturity Level. Human-centric practices have a very high level of correlation as well as being a major predictor in determining the Agile Maturity Level in the context of Nepal. Technical Excellence is the most significant predictor and the variable which has the highest level of correlation with Agile Maturity Level. Practitioners should mainly focus on technical excellence as well as human-centric practices to achieve a higher level of Agile Maturity. Recommendation for Researchers: There has not been any such research in the Nepali context that anyone could rely on, to deep dive into their organizational concerns regarding agile strategies and plans. Researchers will need to focus on a more statistical approach with data-driven solutions to the issues related to people and processes. Researchers will need to cover freelancers as well as academics to get a different perspective on what can be the better practices to achieve a higher level of agile maturity. Impact on Society: This study on Agile work is accessible not only to the software industry but also to the general public. The Agile technique has had a huge impact on society’s project management. It has revolutionized how teams approach project planning, development, and execution. The paper’s findings will further information regarding the Agile methodology, which emphasizes collaboration and communication, fosters teamwork and higher quality work, and promotes the exchange of knowledge, ideas, and the pursuit of common goals. Future Research: Owing to the limitations of this study, it is necessary to analyze agile practices in the Nepalese software sector using additional factors that influence agile maturity. The conclusion that years of agile experience do not serve as a balancing factor for both agile practices and the Agile Maturity Level requires additional research. Whether a software outsourcing firm or not, the organization type had no bearing on the degree of maturity of agile methods; this leaves space for further research.




english

How Students’ Information Sensitivity, Privacy Trade-Offs, and Stages of Customer Journey Affect Consent to Utilize Personal Data

Aim/Purpose: This study aimed to increase our understanding of how the stages of the customer purchase journey, privacy trade-offs, and information sensitivity of different business service sectors affect consumers’ privacy concerns. Background: The study investigated young consumers’ willingness to provide consent to use their personal data at different phases of the customer journey. This study also examined their readiness to provide consent if they receive personal benefits, and how information sensitivity varied between different individuals and business sectors. Methodology: Data was collected by a quantitative survey (n=309) and analyzed with R using the Bayesian linear mixed effect modeling approach. The sample consisted of university students in Finland, who represented a group of young and digitally native consumers. The questionnaire was designed for this study and included constructs with primarily Likert-scale items. Contribution: The study contributed to data privacy and consent management research in information sensitivity, privacy trade-off, and the customer journey. The study underlined the need for a stronger user experience focus and contextuality. Findings: The results showed that readiness to disclose personal data varied at different phases of the customer journey as privacy concerns did not decrease in a linear fashion throughout the purchase process. Perceived benefits affected the willingness to provide consent for data usage, but concerned consumers would be less trade-off oriented. Self-benefit was the most relevant reason for sharing, while customization was the least. There is a connection between the information sensitivity of different business sector information and privacy concerns. No support for gender differences was found, but age affected benefits and business sector variables. Recommendations for Practitioners: The study recommends approaching consumers’ data privacy concerns from a customer journey perspective while trying to motivate consumers to share their personal data with relevant perceived benefits. The self-benefit was the most relevant benefit for willingness to provide consent, while customization was the least. Recommendation for Researchers: The study shows that individual preference for privacy was a major factor directly and via interaction for all three models. This study also showed that consumers’ subjective decision-making in privacy issues is both a situational and a contextual factor. Impact on Society: This study could encourage policymakers and societies to develop guidelines on how to develop privacy practices and consent management to be more user centric as individuals are increasingly concerned about their online privacy. Future Research: This study encourages examining consumers’ motivational factors to provide digital consent for companies with experimental research settings. This study also calls to explore perceived benefits in all age groups from the perspective of different information in various business sectors. This study shows that privacy concern is a contextual and situational factor.




english

A Model Predicting Student Engagement and Intention with Mobile Learning Management Systems

Aim/Purpose: The aim of this study is to develop and evaluate a comprehensive model that predicts students’ engagement with and intent to continue using mobile-Learning Management Systems (m-LMS). Background: m-LMS are increasingly popular tools for delivering course content in higher education. Understanding the factors that affect student engagement and continuance intention can help educational institutions to develop more effective and user-friendly m-LMS platforms. Methodology: Participants with prior experience with m-LMS were employed to develop and evaluate the proposed model that draws on the Technology Acceptance Model (TAM), Task-Technology Fit (TTF), and other related models. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was used to evaluate the model. Contribution: The study provides a comprehensive model that takes into account a variety of factors affecting engagement and continuance intention and has a strong predictive capability. Findings: The results of the study provide evidence for the strong predictive capability of the proposed model and supports previous research. The model identifies perceived usefulness, perceived ease of use, interactivity, compatibility, enjoyment, and social influence as factors that significantly influence student engagement and continuance intention. Recommendations for Practitioners: The findings of this study can help educational institutions to effectively meet the needs of students for interactive, effective, and user-friendly m-LMS platforms. Recommendation for Researchers: This study highlights the importance of understanding the antecedents of students’ engagement with m-LMS. Future research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability. Impact on Society: The engagement model can help educational institutions to understand how to improve student engagement and continuance intention with m-LMS, ultimately leading to more effective and efficient mobile learning. Future Research: Additional research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability.




english

Ecommerce Fraud Incident Response: A Grounded Theory Study

Aim/Purpose: This research study aimed to explore ecommerce fraud practitioners’ experiences and develop a grounded theory framework to help define an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and types of incidents. Background: With a surge in global ecommerce, online transactions have become increasingly fraudulent, complex, and borderless. There are undefined ecommerce fraud roles, responsibilities, processes, and systems that limit and hinder cyber incident response to fraudulent activities. Methodology: A constructivist grounded theory approach was used to investigate and develop a theoretical foundation of ecommerce fraud incident response based on fraud practitioners’ experiences and job descriptions. The study sample consisted of 8 interviews with ecommerce fraud experts. Contribution: This research contributes to the body of knowledge by helping define a novel framework that outlines an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and incident types. Findings: An ecommerce fraud incident response framework was developed from fraud experts’ perspectives. The framework helps define processes, roles, responsibilities, systems, incidents, and stakeholders. The first finding defined the ecommerce fraud incident response process. The process includes planning, identification, analysis, response, and improvement. The second finding was that the fraud incident response model did not include the containment phase. The next finding was that common roles and responsibilities included fraud prevention analysis, tool development, reporting, leadership, and collaboration. The fourth finding described practitioners utilizing hybrid tools and systems for fraud prevention and detection. The fifth finding was the identification of internal and external stakeholders for communication, collaboration, and information sharing. The sixth finding is that research participants experienced different organizational alignments. The seventh key finding was stakeholders do not have a holistic view of the data and information to make some connections about fraudulent behavior. The last finding was participants experienced complex fraud incidents. Recommendations for Practitioners: It is recommended to adopt the ecommerce fraud response framework to help ecommerce fraud and security professionals develop an awareness of cyber fraud activities and/or help mitigate cyber fraud activities. Future Research: Future research could entail conducting a quantitative analysis by surveying the industry on the different components such as processes, systems, and responsibilities of the ecommerce fraud incident response framework. Other areas to explore and evaluate are maturity models and organizational alignment, collaboration, information sharing, and stakeholders. Lastly, further research can be pursued on the nuances of ecommerce fraud incidents using frameworks such as attack graph generation, crime scripts, and attack trees to develop ecommerce fraud response playbooks, plans, and metrics.




english

Determinants of Radical and Incremental Innovation: The Roles of Human Resource Management Practices, Knowledge Sharing, and Market Turbulence

Aim/Purpose: Given the increasingly important role of knowledge and human resources for firms in developing and emerging countries to pursue innovation, this paper aims to study and explore the potential intermediating roles of knowledge donation and collection in linking high-involvement human resource management (HRM) practice and innovation capability. The paper also explores possible moderators of market turbulence in fostering the influences of knowledge-sharing (KS) behaviors on innovation competence in terms of incremental and radical innovation. Background: The fitness of HRM practice is critical for organizations to foster knowledge capital and internal resources for improving innovation and sustaining competitive advantage. Methodology: The study sample is 309 respondents and Structural Equation Model (SEM) was used for the analysis of the data obtained through a questionnaire survey with the aid of AMOS version 22. Contribution: This paper increases the understanding of the precursor role of high-involvement HRM practices, intermediating mechanism of KS activities, and the regulating influence of market turbulence in predicting and fostering innovation capability, thereby pushing forward the theory of HRM and innovation management. Findings: The empirical findings support the proposed hypotheses relating to the intermediating role of KS in the HRM practices-innovation relationship. It spotlights the crucial character of market turbulence in driving the domination of knowledge-sharing behaviors on incremental innovation. Recommendations for Practitioners: The proposed research model can be applied by leaders and directors to foster their organizational innovation competence. Recommendation for Researchers: Researchers are recommended to explore the influence of different models of HRM practices on innovation to identify the most effective pathway leading to innovation for firms in developing and emerging nations. Impact on Society: This paper provides valuable initiatives for firms in developing and emerging markets on how to leverage the strategic and internal resources of an organization for enhancing innovation. Future Research: Future studies should investigate the influence of HRM practices and knowledge resources to promote frugal innovation models for dealing with resource scarcity.




english

A New Model for Collecting, Storing, and Analyzing Big Data on Customer Feedback in the Tourism Industry

Aim/Purpose: In this study, the research proposes and experiments with a new model of collecting, storing, and analyzing big data on customer feedback in the tourism industry. The research focused on the Vietnam market. Background: Big Data describes large databases that have been “silently” built by businesses, which include product information, customer information, customer feedback, etc. This information is valuable, and the volume increases rapidly over time, but businesses often pay little attention or store it discretely, not centrally, thereby wasting an extremely large resource and partly causing limitations for business analysis as well as data. Methodology: The study conducted an experiment by collecting customer feedback data in the field of tourism, especially tourism in Vietnam, from 2007 to 2022. After that, the research proceeded to store and mine latent topics based on the data collected using the Topic Model. The study applied cloud computing technology to build a collection and storage model to solve difficulties, including scalability, system stability, and system cost optimization, as well as ease of access to technology. Contribution: The research has four main contributions: (1) Building a model for Big Data collection, storage, and analysis; (2) Experimenting with the solution by collecting customer feedback data from huge platforms such as Booking.com, Agoda.com, and Phuot.vn based on cloud computing, focusing mainly on tourism Vietnam; (3) A Data Lake that stores customer feedback and discussion in the field of tourism was built, supporting researchers in the field of natural language processing; (4) Experimental research on the latent topic mining model from the collected Big Data based on the topic model. Findings: Experimental results show that the Data Lake has helped users easily extract information, thereby supporting administrators in making quick and timely decisions. Next, PySpark big data processing technology and cloud computing help speed up processing, save costs, and make model building easier when moving to SaaS. Finally, the topic model helps identify customer discussion trends and identify latent topics that customers are interested in so business owners have a better picture of their potential customers and business. Recommendations for Practitioners: Empirical results show that facilities are the factor that customers in the Vietnamese market complain about the most in the tourism/hospitality sector. This information also recommends that practitioners reduce their expectations about facilities because the overall level of physical facilities in the Vietnamese market is still weak and cannot be compared with other countries in the world. However, this is also information to support administrators in planning to upgrade facilities in the long term. Recommendation for Researchers: The value of Data Lake has been proven by research. The study also formed a model for big data collection, storage, and analysis. Researchers can use the same model for other fields or use the model and algorithm proposed by this study to collect and store big data in other platforms and areas. Impact on Society: Collecting, storing, and analyzing big data in the tourism sector helps government strategists to identify tourism trends and communication crises. Based on that information, government managers will be able to make decisions and strategies to develop regional tourism, propose price levels, and support innovative programs. That is the great social value that this research brings. Future Research: With each different platform or website, the study had to build a query scenario and choose a different technology approach, which limits the ability of the solution’s scalability to multiple platforms. Research will continue to build and standardize query scenarios and processing technologies to make scalability to other platforms easier.




english

Employing Artificial Neural Networks and Multiple Discriminant Analysis to Evaluate the Impact of the COVID-19 Pandemic on the Financial Status of Jordanian Companies

Aim/Purpose: This paper aims to empirically quantify the financial distress caused by the COVID-19 pandemic on companies listed on Amman Stock Exchange (ASE). The paper also aims to identify the most important predictors of financial distress pre- and mid-pandemic. Background: The COVID-19 pandemic has had a huge toll, not only on human lives but also on many businesses. This provided the impetus to assess the impact of the pandemic on the financial status of Jordanian companies. Methodology: The initial sample comprised 165 companies, which was cleansed and reduced to 84 companies as per data availability. Financial data pertaining to the 84 companies were collected over a two-year period, 2019 and 2020, to empirically quantify the impact of the pandemic on companies in the dataset. Two approaches were employed. The first approach involved using Multiple Discriminant Analysis (MDA) based on Altman’s (1968) model to obtain the Z-score of each company over the investigation period. The second approach involved developing models using Artificial Neural Networks (ANNs) with 15 standard financial ratios to find out the most important variables in predicting financial distress and create an accurate Financial Distress Prediction (FDP) model. Contribution: This research contributes by providing a better understanding of how financial distress predictors perform during dynamic and risky times. The research confirmed that in spite of the negative impact of COVID-19 on the financial health of companies, the main predictors of financial distress remained relatively steadfast. This indicates that standard financial distress predictors can be regarded as being impervious to extraneous financial and/or health calamities. Findings: Results using MDA indicated that more than 63% of companies in the dataset have a lower Z-score in 2020 when compared to 2019. There was also an 8% increase in distressed companies in 2020, and around 6% of companies came to be no longer healthy. As for the models built using ANNs, results show that the most important variable in predicting financial distress is the Return on Capital. The predictive accuracy for the 2019 and 2020 models measured using the area under the Receiver Operating Characteristic (ROC) graph was 87.5% and 97.6%, respectively. Recommendations for Practitioners: Decision makers and top management are encouraged to focus on the identified highly liquid ratios to make thoughtful decisions and initiate preemptive actions to avoid organizational failure. Recommendation for Researchers: This research can be considered a stepping stone to investigating the impact of COVID-19 on the financial status of companies. Researchers are recommended to replicate the methods used in this research across various business sectors to understand the financial dynamics of companies during uncertain times. Impact on Society: Stakeholders in Jordanian-listed companies should concentrate on the list of most important predictors of financial distress as presented in this study. Future Research: Future research may focus on expanding the scope of this study by including other geographical locations to check for the generalisability of the results. Future research may also include post-COVID-19 data to check for changes in results.




english

Factors Impacting the Behavioral Intention to Use Social Media for Knowledge Sharing: Insights from Disaster Relief Practitioners

Aim/Purpose: The primary purpose of this study is to investigate the factors that impact the behavioral intention to use social media (SM) for knowledge sharing (KS) in the disaster relief (DR) context. Background: With the continuing growth of SM for KS in the DR environment, disaster relief organizations across the globe have started to realize its importance in streamlining their processes in the post-implementation phase. However, SM-based KS depends on the willingness of members to share their knowledge with others, which is affected by several technological, social, and organizational factors. Methodology: A survey was conducted in Somalia to gather primary data from DR practitioners, using purposive sampling as the technique. The survey collected 214 valid responses, which were then analyzed with the PLS-SEM approach. Contribution: The study contributes to an understanding of the real-life hurdles faced by disaster relief organizations by expanding on the C-TAM-TPB model with the inclusion of top management support, organizational rewards, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust factors. Additionally, it provides useful recommendations to managers of disaster relief organizations on the key factors to consider. Findings: The findings recorded that perceived usefulness, ease of use, top management support, enjoyment in helping others, knowledge self-efficacy, and interpersonal trust were critical factors in determining behavioral intention (BI) to use SM-based KS in the DR context. Furthermore, the mediator variables were attitude, subjective norms, and perceived behavioral control. Recommendations for Practitioners: Based on the research findings, it was determined that management should create different discussion forums among the disaster relief teams to ensure the long-term use of SM-based KS within DR organizations. They should also become involved in the discussions for disaster-related knowledge such as food supplies, shelter, or medical relief that disaster victims need. Disaster relief managers should consider effective and adequate training to enhance individual knowledge and self-efficacy since a lack of training may increase barriers and difficulties in using SM for KS during a DR process. Recommendation for Researchers: The conceptual model, further empirically investigated, can be employed by other developing countries in fostering acceptance of SM for KS during disaster relief operations. Impact on Society: Disaster relief operations can be facilitated using social media by considering the challenges DR practitioners face during emergencies. Future Research: In generalizing this study’s findings, other national or global disaster relief organizations should consider, when applying and testing, the research instruments and proposed model. The researchers may extend this study by collecting data from managers or administrators since they are different types of users of the SM-based KS system.