9

Learned Step Size Quantization. (arXiv:1902.08153v3 [cs.LG] UPDATED)

Deep networks run with low precision operations at inference time offer power and space advantages over high precision alternatives, but need to overcome the challenge of maintaining high accuracy as precision decreases. Here, we present a method for training such networks, Learned Step Size Quantization, that achieves the highest accuracy to date on the ImageNet dataset when using models, from a variety of architectures, with weights and activations quantized to 2-, 3- or 4-bits of precision, and that can train 3-bit models that reach full precision baseline accuracy. Our approach builds upon existing methods for learning weights in quantized networks by improving how the quantizer itself is configured. Specifically, we introduce a novel means to estimate and scale the task loss gradient at each weight and activation layer's quantizer step size, such that it can be learned in conjunction with other network parameters. This approach works using different levels of precision as needed for a given system and requires only a simple modification of existing training code.




9

Multi-scale analysis of lead-lag relationships in high-frequency financial markets. (arXiv:1708.03992v3 [stat.ME] UPDATED)

We propose a novel estimation procedure for scale-by-scale lead-lag relationships of financial assets observed at high-frequency in a non-synchronous manner. The proposed estimation procedure does not require any interpolation processing of original datasets and is applicable to those with highest time resolution available. Consistency of the proposed estimators is shown under the continuous-time framework that has been developed in our previous work Hayashi and Koike (2018). An empirical application to a quote dataset of the NASDAQ-100 assets identifies two types of lead-lag relationships at different time scales.




9

Semiparametric Optimal Estimation With Nonignorable Nonresponse Data. (arXiv:1612.09207v3 [stat.ME] UPDATED)

When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using any instrumental variable. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean Labor and Income Panel Survey data.




9

COVID-19 transmission risk factors. (arXiv:2005.03651v1 [q-bio.QM])

We analyze risk factors correlated with the initial transmission growth rate of the COVID-19 pandemic. The number of cases follows an early exponential expansion; we chose as a starting point in each country the first day with 30 cases and used 12 days. We looked for linear correlations of the exponents with other variables, using 126 countries. We find a positive correlation with high C.L. with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date ($2cdot10^{-5}$), high level of contact in greeting habits ($6 cdot 10^{-5}$), lung cancer ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), urbanization ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, smaller sample, 73 countries), low Vitamin D levels ($p$-value $0.002-0.006$, smaller sample, $sim 50$ countries). There is highly significant correlation also with blood type: positive correlation with RH- ($2cdot10^{-5}$) and A+ ($2cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). We also find positive correlation with moderate C.L. ($p$-value of $0.02sim0.03$) with: CO$_2$ emissions, type-1 diabetes, low vaccination coverage for Tuberculosis (BCG). Several such variables are correlated with each other and so they likely have common interpretations. We also analyzed the possible existence of a bias: countries with low GDP-per capita, typically located in warm regions, might have less intense testing and we discuss correlation with the above variables.




9

Know Your Clients' behaviours: a cluster analysis of financial transactions. (arXiv:2005.03625v1 [econ.EM])

In Canada, financial advisors and dealers by provincial securities commissions, and those self-regulatory organizations charged with direct regulation over investment dealers and mutual fund dealers, respectively to collect and maintain Know Your Client (KYC) information, such as their age or risk tolerance, for investor accounts. With this information, investors, under their advisor's guidance, make decisions on their investments which are presumed to be beneficial to their investment goals. Our unique dataset is provided by a financial investment dealer with over 50,000 accounts for over 23,000 clients. We use a modified behavioural finance recency, frequency, monetary model for engineering features that quantify investor behaviours, and machine learning clustering algorithms to find groups of investors that behave similarly. We show that the KYC information collected does not explain client behaviours, whereas trade and transaction frequency and volume are most informative. We believe the results shown herein encourage financial regulators and advisors to use more advanced metrics to better understand and predict investor behaviours.




9

Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG])

We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.




9

Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME])

In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples.




9

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




9

Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion. (arXiv:2005.03419v1 [stat.ML])

In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.




9

Subdomain Adaptation with Manifolds Discrepancy Alignment. (arXiv:2005.03229v1 [cs.LG])

Reducing domain divergence is a key step in transfer learning problems. Existing works focus on the minimization of global domain divergence. However, two domains may consist of several shared subdomains, and differ from each other in each subdomain. In this paper, we take the local divergence of subdomains into account in transfer. Specifically, we propose to use low-dimensional manifold to represent subdomain, and align the local data distribution discrepancy in each manifold across domains. A Manifold Maximum Mean Discrepancy (M3D) is developed to measure the local distribution discrepancy in each manifold. We then propose a general framework, called Transfer with Manifolds Discrepancy Alignment (TMDA), to couple the discovery of data manifolds with the minimization of M3D. We instantiate TMDA in the subspace learning case considering both the linear and nonlinear mappings. We also instantiate TMDA in the deep learning framework. Extensive experimental studies demonstrate that TMDA is a promising method for various transfer learning tasks.




9

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




9

A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME])

An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods.




9

Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 7 November. Speaker: Dr Michael Brown (University of Roehampton), ‘Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain’ The historical study of the… Continue reading




9

Important information: COVID-19

The Library will be closed to the public and to staff from Monday 23 March 2020.




9

Legal help during COVID-19

Find sources of legal help during COVID-19.




9

COVID-19 in-language resources




9

Wyllie's treatment of epilepsy : principles and practice

149639769X




9

Wintrobe's atlas of clinical hematology

9781605476148 hardcover




9

Uflacker's atlas of vascular anatomy

Uflacker, Andre, author.
9781496356017 (hardback)




9

Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019

Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)
9789811534188 (eBook)




9

The Startup Owner's Manual : the Step-By-Step Guide for Building a Great Company

Blank, Steven G. (Steven Gary), author.
9781119690726 (electronic book)




9

The Best and Worst Places to be a Woman in Canada 2019 : The Gender Gap in Canada’s 26 Biggest Cities

9781771254434 (print)




9

Structured object-oriented formal language and method : 9th International Workshop, SOFL+MSVL 2019, Shenzhen, China, November 5, 2019, Revised selected papers

SOFL+MSVL (Workshop) (9th : 2019 : Shenzhen, China)
9783030414184 (electronic bk.)




9

Space information networks : 4th International Conference, SINC 2019, Wuzhen, China, September 19-20, 2019, Revised Selected Papers

SINC (Conference) (4th : 2019 : Wuzhen, China)
9789811534423 (electronic bk.)




9

Semantic technology : 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25-27, 2019, Revised selected papers

Joint International Semantic Technology Conference (9th : 2019 : Hangzhou, China)
9789811534126 (electronic bk.)




9

Radiomics and radiogenomics in neuro-oncology : First International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, proceedings

Radiomics and Radiogenomics in Neuro-oncology using AI Workshop (1st : 2019 : Shenzhen Shi, China)
9783030401245




9

Lovell and Winter's pediatric orthopaedics

9781975108663 (hardcover)




9

Irwin and Rippe's intensive care medicine

9781496306081 hardcover




9

Information retrieval technology : 15th Asia Information Retrieval Societies Conference, AIRS 2019, Hong Kong, China, November 7-9, 2019, proceedings

Asia Information Retrieval Societies Conference (15th : 2019 : Hong Kong, China)
9783030428358




9

In china's wake : how the commodity boom transformed development strategies in the global south

Jepson, Nicholas, author.
9780231547598 electronic book




9

Gapenski's understanding healthcare financial management

Pink, George H., author.
9781640551145 (electronic bk.)




9

Enterprise information systems : 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece, May 3-5, 2019, Revised Selected Papers

International Conference on Enterprise Information Systems (21st : 2019 : Ērakleion, Greece)
9783030407834 (electronic bk.)




9

DeJong's the neurologic examination

Campbell, William W., Jr. (William Wesley), author.
9781496386168 (hardcover)




9

Computer security : ESORICS 2019 International Workshops, IOSec, MSTEC, and FINSEC, Luxembourg City, Luxembourg, September 26-27, 2019, Revised Selected Papers

European Symposium on Research in Computer Security (24th : 2019 : Luxembourg, Luxembourg)
9783030420512 (electronic bk.)




9

Communications and networking : 14th EAI International Conference, ChinaCom 2019, Shanghai, China, November 29 - December 1, 2019, proceedings.

ChinaCom (Conference) (14th : 2019 : Shanghai, China)
9783030411176




9

Berquist's musculoskeletal imaging companion

Peterson, Jeffrey J., author.
9781496314994




9

A handbook of nuclear applications in humans' lives

Tabbakh, Farshid, author.
9781527544512 (electronic bk.)




9

COVID-19 Update





9

New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau...

Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.

(PRWeb April 20, 2020)

Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm




9

The Mercer story and Amy's story / by Amy Moore ; with Ray Moore.

Moore, Amy, 1908-2005.




9

From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown.

Hewish Henry -- Family.




9

The Yangya Hicks : tales from the Hicks family of Yangya near Gladstone, South Australia, written from the 12th of May 1998 / by Joyce Coralie Hale (nee Hicks) (28.12.1923-17.12.2003).

Hicks (Family)




9

By the richest of God's grace / Anna Penney.

Penney, Anna -- Travels.




9

The Klemm family : descendants of Johann Gottfried Klemm and Anna Louise Klemm : these forebears are honoured and remembered at a reunion at Gruenberg, Moculta 11th-12th March 1995.

Klemm (Family)




9

The story of Thomas & Ann Stone family : including Helping Hobart's Orphans, the King's Orphan School for Boys 1831-1836 / Alexander E.H. Stone.

King's Orphan Schools (New Town, Tas.)




9

The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner.

Kuerschner (Family)




9

A family history Siglin to Siegele 1530 to 2019 : from Ditzingen, Germany over land and sea / Ian G. Siegele.

Germans -- South Australia.




9

Descendants of John & Barbara Cheesman, 1839-1999 / Gary Cheesman.

Cheesman, John -- Family.




9

Traegers in Australia. 3, Ernst's story : the story of Ernst Wilhelm Traeger and Johanne Dorothea nee Lissmann, and their descendants, 1856-2018.

Traeger, Ernst Wilhelm, 1805-1874.