ge

Joint convergence of sample autocovariance matrices when $p/n o 0$ with application

Monika Bhattacharjee, Arup Bose.

Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.

Abstract:
Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes.




ge

Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors

Kyoungjae Lee, Jaeyong Lee, Lizhen Lin.

Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.

Abstract:
In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods.




ge

Sampling and estimation for (sparse) exchangeable graphs

Victor Veitch, Daniel M. Roy.

Source: The Annals of Statistics, Volume 47, Number 6, 3274--3299.

Abstract:
Sparse exchangeable graphs on $mathbb{R}_{+}$, and the associated graphex framework for sparse graphs, generalize exchangeable graphs on $mathbb{N}$, and the associated graphon framework for dense graphs. We develop the graphex framework as a tool for statistical network analysis by identifying the sampling scheme that is naturally associated with the models of the framework, formalizing two natural notions of consistent estimation of the parameter (the graphex) underlying these models, and identifying general consistent estimators in each case. The sampling scheme is a modification of independent vertex sampling that throws away vertices that are isolated in the sampled subgraph. The estimators are variants of the empirical graphon estimator, which is known to be a consistent estimator for the distribution of dense exchangeable graphs; both can be understood as graph analogues to the empirical distribution in the i.i.d. sequence setting. Our results may be viewed as a generalization of consistent estimation via the empirical graphon from the dense graph regime to also include sparse graphs.




ge

Distributed estimation of principal eigenspaces

Jianqing Fan, Dong Wang, Kaizheng Wang, Ziwei Zhu.

Source: The Annals of Statistics, Volume 47, Number 6, 3009--3031.

Abstract:
Principal component analysis (PCA) is fundamental to statistical machine learning. It extracts latent principal factors that contribute to the most variation of the data. When data are stored across multiple machines, however, communication cost can prohibit the computation of PCA in a central location and distributed algorithms for PCA are thus needed. This paper proposes and studies a distributed PCA algorithm: each node machine computes the top $K$ eigenvectors and transmits them to the central server; the central server then aggregates the information from all the node machines and conducts a PCA based on the aggregated information. We investigate the bias and variance for the resulting distributed estimator of the top $K$ eigenvectors. In particular, we show that for distributions with symmetric innovation, the empirical top eigenspaces are unbiased, and hence the distributed PCA is “unbiased.” We derive the rate of convergence for distributed PCA estimators, which depends explicitly on the effective rank of covariance, eigengap, and the number of machines. We show that when the number of machines is not unreasonably large, the distributed PCA performs as well as the whole sample PCA, even without full access of whole data. The theoretical results are verified by an extensive simulation study. We also extend our analysis to the heterogeneous case where the population covariance matrices are different across local machines but share similar top eigenstructures.




ge

Testing for independence of large dimensional vectors

Taras Bodnar, Holger Dette, Nestor Parolya.

Source: The Annals of Statistics, Volume 47, Number 5, 2977--3008.

Abstract:
In this paper, new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose, we study the weak convergence of linear spectral statistics of central and (conditionally) noncentral Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) noncentral Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand, the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.




ge

Eigenvalue distributions of variance components estimators in high-dimensional random effects models

Zhou Fan, Iain M. Johnstone.

Source: The Annals of Statistics, Volume 47, Number 5, 2855--2886.

Abstract:
We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application.




ge

A unified treatment of multiple testing with prior knowledge using the p-filter

Aaditya K. Ramdas, Rina F. Barber, Martin J. Wainwright, Michael I. Jordan.

Source: The Annals of Statistics, Volume 47, Number 5, 2790--2821.

Abstract:
There is a significant literature on methods for incorporating knowledge into multiple testing procedures so as to improve their power and precision. Some common forms of prior knowledge include (a) beliefs about which hypotheses are null, modeled by nonuniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into (possibly overlapping) groups and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, suggesting the use of more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)–(d) simultaneously, recovering a variety of known algorithms as special cases.




ge

Linear hypothesis testing for high dimensional generalized linear models

Chengchun Shi, Rui Song, Zhao Chen, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.

Abstract:
This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.




ge

Semi-supervised inference: General theory and estimation of means

Anru Zhang, Lawrence D. Brown, T. Tony Cai.

Source: The Annals of Statistics, Volume 47, Number 5, 2538--2566.

Abstract:
We propose a general semi-supervised inference framework focused on the estimation of the population mean. As usual in semi-supervised settings, there exists an unlabeled sample of covariate vectors and a labeled sample consisting of covariate vectors along with real-valued responses (“labels”). Otherwise, the formulation is “assumption-lean” in that no major conditions are imposed on the statistical or functional form of the data. We consider both the ideal semi-supervised setting where infinitely many unlabeled samples are available, as well as the ordinary semi-supervised setting in which only a finite number of unlabeled samples is available. Estimators are proposed along with corresponding confidence intervals for the population mean. Theoretical analysis on both the asymptotic distribution and $ell_{2}$-risk for the proposed procedures are given. Surprisingly, the proposed estimators, based on a simple form of the least squares method, outperform the ordinary sample mean. The simple, transparent form of the estimator lends confidence to the perception that its asymptotic improvement over the ordinary sample mean also nearly holds even for moderate size samples. The method is further extended to a nonparametric setting, in which the oracle rate can be achieved asymptotically. The proposed estimators are further illustrated by simulation studies and a real data example involving estimation of the homeless population.




ge

Isotonic regression in general dimensions

Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, Richard J. Samworth.

Source: The Annals of Statistics, Volume 47, Number 5, 2440--2471.

Abstract:
We study the least squares regression function estimator over the class of real-valued functions on $[0,1]^{d}$ that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order $n^{-min{2/(d+2),1/d}}$ in the empirical $L_{2}$ loss, up to polylogarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on $k$ hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of $(k/n)^{min(1,2/d)}$, again up to polylogarithmic factors. Previous results are confined to the case $dleq2$. Finally, we establish corresponding bounds (which are new even in the case $d=2$) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to polylogarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.




ge

The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics

Joshua Cape, Minh Tang, Carey E. Priebe.

Source: The Annals of Statistics, Volume 47, Number 5, 2405--2439.

Abstract:
The singular value matrix decomposition plays a ubiquitous role throughout statistics and related fields. Myriad applications including clustering, classification, and dimensionality reduction involve studying and exploiting the geometric structure of singular values and singular vectors. This paper provides a novel collection of technical and theoretical tools for studying the geometry of singular subspaces using the two-to-infinity norm. Motivated by preliminary deterministic Procrustes analysis, we consider a general matrix perturbation setting in which we derive a new Procrustean matrix decomposition. Together with flexible machinery developed for the two-to-infinity norm, this allows us to conduct a refined analysis of the induced perturbation geometry with respect to the underlying singular vectors even in the presence of singular value multiplicity. Our analysis yields singular vector entrywise perturbation bounds for a range of popular matrix noise models, each of which has a meaningful associated statistical inference task. In addition, we demonstrate how the two-to-infinity norm is the preferred norm in certain statistical settings. Specific applications discussed in this paper include covariance estimation, singular subspace recovery, and multiple graph inference. Both our Procrustean matrix decomposition and the technical machinery developed for the two-to-infinity norm may be of independent interest.




ge

Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit regression

Qian Qin, James P. Hobert.

Source: The Annals of Statistics, Volume 47, Number 4, 2320--2347.

Abstract:
The use of MCMC algorithms in high dimensional Bayesian problems has become routine. This has spurred so-called convergence complexity analysis, the goal of which is to ascertain how the convergence rate of a Monte Carlo Markov chain scales with sample size, $n$, and/or number of covariates, $p$. This article provides a thorough convergence complexity analysis of Albert and Chib’s [ J. Amer. Statist. Assoc. 88 (1993) 669–679] data augmentation algorithm for the Bayesian probit regression model. The main tools used in this analysis are drift and minorization conditions. The usual pitfalls associated with this type of analysis are avoided by utilizing centered drift functions, which are minimized in high posterior probability regions, and by using a new technique to suppress high-dimensionality in the construction of minorization conditions. The main result is that the geometric convergence rate of the underlying Markov chain is bounded below 1 both as $n ightarrowinfty$ (with $p$ fixed), and as $p ightarrowinfty$ (with $n$ fixed). Furthermore, the first computable bounds on the total variation distance to stationarity are byproducts of the asymptotic analysis.




ge

Convergence rates of least squares regression estimators with heavy-tailed errors

Qiyang Han, Jon A. Wellner.

Source: The Annals of Statistics, Volume 47, Number 4, 2286--2319.

Abstract:
We study the performance of the least squares estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$th moment ($pgeq1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard “entropy condition” with exponent $alphain(0,2)$, then the $L_{2}$ loss of the LSE converges at a rate [mathcal{O}_{mathbf{P}}igl(n^{-frac{1}{2+alpha}}vee n^{-frac{1}{2}+frac{1}{2p}}igr).] Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq1+2/alpha$ moments, the $L_{2}$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_{2}$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_{2}$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the “multiplier empirical process” associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.




ge

Negative association, ordering and convergence of resampling methods

Mathieu Gerber, Nicolas Chopin, Nick Whiteley.

Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.

Abstract:
We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling.




ge

Generalized cluster trees and singular measures

Yen-Chi Chen.

Source: The Annals of Statistics, Volume 47, Number 4, 2174--2203.

Abstract:
In this paper we study the $alpha $-cluster tree ($alpha $-tree) under both singular and nonsingular measures. The $alpha $-tree uses probability contents within a set created by the ordering of points to construct a cluster tree so that it is well defined even for singular measures. We first derive the convergence rate for a density level set around critical points, which leads to the convergence rate for estimating an $alpha $-tree under nonsingular measures. For singular measures, we study how the kernel density estimator (KDE) behaves and prove that the KDE is not uniformly consistent but pointwise consistent after rescaling. We further prove that the estimated $alpha $-tree fails to converge in the $L_{infty }$ metric but is still consistent under the integrated distance. We also observe a new type of critical points—the dimensional critical points (DCPs)—of a singular measure. DCPs are points that contribute to cluster tree topology but cannot be defined using density gradient. Building on the analysis of the KDE and DCPs, we prove the topological consistency of an estimated $alpha $-tree.




ge

Correction: Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects

Trang Quynh Nguyen, Elizabeth A. Stuart.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 518--520.




ge

A comparison of principal component methods between multiple phenotype regression and multiple SNP regression in genetic association studies

Zhonghua Liu, Ian Barnett, Xihong Lin.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 433--451.

Abstract:
Principal component analysis (PCA) is a popular method for dimension reduction in unsupervised multivariate analysis. However, existing ad hoc uses of PCA in both multivariate regression (multiple outcomes) and multiple regression (multiple predictors) lack theoretical justification. The differences in the statistical properties of PCAs in these two regression settings are not well understood. In this paper we provide theoretical results on the power of PCA in genetic association testings in both multiple phenotype and SNP-set settings. The multiple phenotype setting refers to the case when one is interested in studying the association between a single SNP and multiple phenotypes as outcomes. The SNP-set setting refers to the case when one is interested in studying the association between multiple SNPs in a SNP set and a single phenotype as the outcome. We demonstrate analytically that the properties of the PC-based analysis in these two regression settings are substantially different. We show that the lower order PCs, that is, PCs with large eigenvalues, are generally preferred and lead to a higher power in the SNP-set setting, while the higher-order PCs, that is, PCs with small eigenvalues, are generally preferred in the multiple phenotype setting. We also investigate the power of three other popular statistical methods, the Wald test, the variance component test and the minimum $p$-value test, in both multiple phenotype and SNP-set settings. We use theoretical power, simulation studies, and two real data analyses to validate our findings.




ge

Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries

Yicheng Li, Adrian E. Raftery.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.

Abstract:
Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods.




ge

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




ge

Modifying the Chi-square and the CMH test for population genetic inference: Adapting to overdispersion

Kerstin Spitzer, Marta Pelizzola, Andreas Futschik.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 202--220.

Abstract:
Evolve and resequence studies provide a popular approach to simulate evolution in the lab and explore its genetic basis. In this context, Pearson’s chi-square test, Fisher’s exact test as well as the Cochran–Mantel–Haenszel test are commonly used to infer genomic positions affected by selection from temporal changes in allele frequency. However, the null model associated with these tests does not match the null hypothesis of actual interest. Indeed, due to genetic drift and possibly other additional noise components such as pool sequencing, the null variance in the data can be substantially larger than accounted for by these common test statistics. This leads to $p$-values that are systematically too small and, therefore, a huge number of false positive results. Even, if the ranking rather than the actual $p$-values is of interest, a naive application of the mentioned tests will give misleading results, as the amount of overdispersion varies from locus to locus. We therefore propose adjusted statistics that take the overdispersion into account while keeping the formulas simple. This is particularly useful in genome-wide applications, where millions of SNPs can be handled with little computational effort. We then apply the adapted test statistics to real data from Drosophila and investigate how information from intermediate generations can be included when available. We also discuss further applications such as genome-wide association studies based on pool sequencing data and tests for local adaptation.




ge

Assessing wage status transition and stagnation using quantile transition regression

Chih-Yuan Hsu, Yi-Hau Chen, Ruoh-Rong Yu, Tsung-Wei Hung.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 160--177.

Abstract:
Workers in Taiwan overall have been suffering from long-lasting wage stagnation since the mid-1990s. In particular, there seems to be little mobility for the wages of Taiwanese workers to transit across wage quantile groups. It is of interest to see if certain groups of workers, such as female, lower educated and younger generation workers, suffer from the problem more seriously than the others. This work tries to apply a systematic statistical approach to study this issue, based on the longitudinal data from the Panel Study of Family Dynamics (PSFD) survey conducted in Taiwan since 1999. We propose the quantile transition regression model, generalizing recent methodology for quantile association, to assess the wage status transition with respect to the marginal wage quantiles over time as well as the effects of certain demographic and job factors on the wage status transition. Estimation of the model can be based on the composite likelihoods utilizing the binary, or ordinal-data information regarding the quantile transition, with the associated asymptotic theory established. A goodness-of-fit procedure for the proposed model is developed. The performances of the estimation and the goodness-of-fit procedures for the quantile transition model are illustrated through simulations. The application of the proposed methodology to the PSFD survey data suggests that female, private-sector workers with higher age and education below postgraduate level suffer from more severe wage status stagnation than the others.




ge

Surface temperature monitoring in liver procurement via functional variance change-point analysis

Zhenguo Gao, Pang Du, Ran Jin, John L. Robertson.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 143--159.

Abstract:
Liver procurement experiments with surface-temperature monitoring motivated Gao et al. ( J. Amer. Statist. Assoc. 114 (2019) 773–781) to develop a variance change-point detection method under a smoothly-changing mean trend. However, the spotwise change points yielded from their method do not offer immediate information to surgeons since an organ is often transplanted as a whole or in part. We develop a new practical method that can analyze a defined portion of the organ surface at a time. It also provides a novel addition to the developing field of functional data monitoring. Furthermore, numerical challenge emerges for simultaneously modeling the variance functions of 2D locations and the mean function of location and time. The respective sample sizes in the scales of 10,000 and 1,000,000 for modeling these functions make standard spline estimation too costly to be useful. We introduce a multistage subsampling strategy with steps educated by quickly-computable preliminary statistical measures. Extensive simulations show that the new method can efficiently reduce the computational cost and provide reasonable parameter estimates. Application of the new method to our liver surface temperature monitoring data shows its effectiveness in providing accurate status change information for a selected portion of the organ in the experiment.




ge

BART with targeted smoothing: An analysis of patient-specific stillbirth risk

Jennifer E. Starling, Jared S. Murray, Carlos M. Carvalho, Radek K. Bukowski, James G. Scott.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 28--50.

Abstract:
This article introduces BART with Targeted Smoothing, or tsBART, a new Bayesian tree-based model for nonparametric regression. The goal of tsBART is to introduce smoothness over a single target covariate $t$ while not necessarily requiring smoothness over other covariates $x$. tsBART is based on the Bayesian Additive Regression Trees (BART) model, an ensemble of regression trees. tsBART extends BART by parameterizing each tree’s terminal nodes with smooth functions of $t$ rather than independent scalars. Like BART, tsBART captures complex nonlinear relationships and interactions among the predictors. But unlike BART, tsBART guarantees that the response surface will be smooth in the target covariate. This improves interpretability and helps to regularize the estimate. After introducing and benchmarking the tsBART model, we apply it to our motivating example—pregnancy outcomes data from the National Center for Health Statistics. Our aim is to provide patient-specific estimates of stillbirth risk across gestational age $(t)$ and based on maternal and fetal risk factors $(x)$. Obstetricians expect stillbirth risk to vary smoothly over gestational age but not necessarily over other covariates, and tsBART has been designed precisely to reflect this structural knowledge. The results of our analysis show the clear superiority of the tsBART model for quantifying stillbirth risk, thereby providing patients and doctors with better information for managing the risk of fetal mortality. All methods described here are implemented in the R package tsbart .




ge

A general theory for preferential sampling in environmental networks

Joe Watson, James V. Zidek, Gavin Shaddick.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2662--2700.

Abstract:
This paper presents a general model framework for detecting the preferential sampling of environmental monitors recording an environmental process across space and/or time. This is achieved by considering the joint distribution of an environmental process with a site-selection process that considers where and when sites are placed to measure the process. The environmental process may be spatial, temporal or spatio-temporal in nature. By sharing random effects between the two processes, the joint model is able to establish whether site placement was stochastically dependent of the environmental process under study. Furthermore, if stochastic dependence is identified between the two processes, then inferences about the probability distribution of the spatio-temporal process will change, as will predictions made of the process across space and time. The embedding into a spatio-temporal framework also allows for the modelling of the dynamic site-selection process itself. Real-world factors affecting both the size and location of the network can be easily modelled and quantified. Depending upon the choice of the population of locations considered for selection across space and time under the site-selection process, different insights about the precise nature of preferential sampling can be obtained. The general framework developed in the paper is designed to be easily and quickly fit using the R-INLA package. We apply this framework to a case study involving particulate air pollution over the UK where a major reduction in the size of a monitoring network through time occurred. It is demonstrated that a significant response-biased reduction in the air quality monitoring network occurred, namely the relocation of monitoring sites to locations with the highest pollution levels, and the routine removal of sites at locations with the lowest. We also show that the network was consistently unrepresenting levels of particulate matter seen across much of GB throughout the operating life of the network. Finally we show that this may have led to a severe overreporting of the population-average exposure levels experienced across GB. This could have great impacts on estimates of the health effects of black smoke levels.




ge

Hierarchical infinite factor models for improving the prediction of surgical complications for geriatric patients

Elizabeth Lorenzi, Ricardo Henao, Katherine Heller.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2637--2661.

Abstract:
Nearly a third of all surgeries performed in the United States occur for patients over the age of 65; these older adults experience a higher rate of postoperative morbidity and mortality. To improve the care for these patients, we aim to identify and characterize high risk geriatric patients to send to a specialized perioperative clinic while leveraging the overall surgical population to improve learning. To this end, we develop a hierarchical infinite latent factor model (HIFM) to appropriately account for the covariance structure across subpopulations in data. We propose a novel Hierarchical Dirichlet Process shrinkage prior on the loadings matrix that flexibly captures the underlying structure of our data while sharing information across subpopulations to improve inference and prediction. The stick-breaking construction of the prior assumes an infinite number of factors and allows for each subpopulation to utilize different subsets of the factor space and select the number of factors needed to best explain the variation. We develop the model into a latent factor regression method that excels at prediction and inference of regression coefficients. Simulations validate this strong performance compared to baseline methods. We apply this work to the problem of predicting surgical complications using electronic health record data for geriatric patients and all surgical patients at Duke University Health System (DUHS). The motivating application demonstrates the improved predictive performance when using HIFM in both area under the ROC curve and area under the PR Curve while providing interpretable coefficients that may lead to actionable interventions.




ge

On Bayesian new edge prediction and anomaly detection in computer networks

Silvia Metelli, Nicholas Heard.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2586--2610.

Abstract:
Monitoring computer network traffic for anomalous behaviour presents an important security challenge. Arrivals of new edges in a network graph represent connections between a client and server pair not previously observed, and in rare cases these might suggest the presence of intruders or malicious implants. We propose a Bayesian model and anomaly detection method for simultaneously characterising existing network structure and modelling likely new edge formation. The method is demonstrated on real computer network authentication data and successfully identifies some machines which are known to be compromised.




ge

Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge”

Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.

Abstract:
We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events.




ge

A simple, consistent estimator of SNP heritability from genome-wide association studies

Armin Schwartzman, Andrew J. Schork, Rong Zablocki, Wesley K. Thompson.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2509--2538.

Abstract:
Analysis of genome-wide association studies (GWAS) is characterized by a large number of univariate regressions where a quantitative trait is regressed on hundreds of thousands to millions of single-nucleotide polymorphism (SNP) allele counts, one at a time. This article proposes an estimator of the SNP heritability of the trait, defined here as the fraction of the variance of the trait explained by the SNPs in the study. The proposed GWAS heritability (GWASH) estimator is easy to compute, highly interpretable and is consistent as the number of SNPs and the sample size increase. More importantly, it can be computed from summary statistics typically reported in GWAS, not requiring access to the original data. The estimator takes full account of the linkage disequilibrium (LD) or correlation between the SNPs in the study through moments of the LD matrix, estimable from auxiliary datasets. Unlike other proposed estimators in the literature, we establish the theoretical properties of the GWASH estimator and obtain analytical estimates of the precision, allowing for power and sample size calculations for SNP heritability estimates and forming a firm foundation for future methodological development.




ge

Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator

Ningshan Zhang, Kyle Schmaus, Patrick O. Perry.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.

Abstract:
We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models.




ge

Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis

Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.

Abstract:
Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields.




ge

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




ge

Radio-iBAG: Radiomics-based integrative Bayesian analysis of multiplatform genomic data

Youyi Zhang, Jeffrey S. Morris, Shivali Narang Aerry, Arvind U. K. Rao, Veerabhadran Baladandayuthapani.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1957--1988.

Abstract:
Technological innovations have produced large multi-modal datasets that include imaging and multi-platform genomics data. Integrative analyses of such data have the potential to reveal important biological and clinical insights into complex diseases like cancer. In this paper, we present Bayesian approaches for integrative analysis of radiological imaging and multi-platform genomic data, where-in our goals are to simultaneously identify genomic and radiomic, that is, radiology-based imaging markers, along with the latent associations between these two modalities, and to detect the overall prognostic relevance of the combined markers. For this task, we propose Radio-iBAG: Radiomics-based Integrative Bayesian Analysis of Multiplatform Genomic Data , a multi-scale Bayesian hierarchical model that involves several innovative strategies: it incorporates integrative analysis of multi-platform genomic data sets to capture fundamental biological relationships; explores the associations between radiomic markers accompanying genomic information with clinical outcomes; and detects genomic and radiomic markers associated with clinical prognosis. We also introduce the use of sparse Principal Component Analysis (sPCA) to extract a sparse set of approximately orthogonal meta-features each containing information from a set of related individual radiomic features, reducing dimensionality and combining like features. Our methods are motivated by and applied to The Cancer Genome Atlas glioblastoma multiforme data set, where-in we integrate magnetic resonance imaging-based biomarkers along with genomic, epigenomic and transcriptomic data. Our model identifies important magnetic resonance imaging features and the associated genomic platforms that are related with patient survival times.




ge

Approximate inference for constructing astronomical catalogs from images

Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1884--1926.

Abstract:
We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a random variable with parameters that depend on the latent properties of stars and galaxies. These latent properties are themselves modeled as random. We compare two procedures for posterior inference. One procedure is based on Markov chain Monte Carlo (MCMC) while the other is based on variational inference (VI). The MCMC procedure excels at quantifying uncertainty, while the VI procedure is 1000 times faster. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores to construct an astronomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating the scaling characteristics necessary to construct catalogs for upcoming astronomical surveys.




ge

Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?

Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.

Abstract:
The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models.




ge

A Bayesian mark interaction model for analysis of tumor pathology images

Qiwei Li, Xinlei Wang, Faming Liang, Guanghua Xiao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1708--1732.

Abstract:
With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of $188$ lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell–cell interactions in cancer progression.




ge

Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation

Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.

Abstract:
Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios.




ge

Convergence of persistence diagrams for topological crackle

Takashi Owada, Omer Bobrowski.

Source: Bernoulli, Volume 26, Number 3, 2275--2310.

Abstract:
In this paper, we study the persistent homology associated with topological crackle generated by distributions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions. Topological crackle is a term that refers to topological cycles generated by random points far away from the bulk of other points, when the support is unbounded. We establish weak convergence results for persistence diagrams – a point process representation for persistent homology, where each topological cycle is represented by its $({mathit{birth},mathit{death}})$ coordinates. In this work, we treat persistence diagrams as random closed sets, so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is a two-dimensional Poisson process, representing persistence pairs with a longer lifespan.




ge

On sampling from a log-concave density using kinetic Langevin diffusions

Arnak S. Dalalyan, Lionel Riou-Durand.

Source: Bernoulli, Volume 26, Number 3, 1956--1988.

Abstract:
Langevin diffusion processes and their discretizations are often used for sampling from a target density. The most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and strongly log-concave densities defined on $mathbb{R}^{p}$. The present work focuses on this framework and studies the behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in terms of its dependence on the condition number. We then use this result for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error measured in Wasserstein distance.




ge

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard.

Source: Bernoulli, Volume 26, Number 3, 1832--1862.

Abstract:
We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.




ge

On the eigenproblem for Gaussian bridges

Pavel Chigansky, Marina Kleptsyna, Dmytro Marushkevych.

Source: Bernoulli, Volume 26, Number 3, 1706--1726.

Abstract:
Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately, it is notoriously hard to derive in a closed form. In this paper, we consider the eigenproblem for Gaussian bridges. Given a base process, its bridge is obtained by conditioning the trajectories to start and terminate at the given points. What can be said about the spectrum of a bridge, given the spectrum of its base process? We show how this question can be answered asymptotically for a family of processes, including the fractional Brownian motion.




ge

A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case

Denis Talay, Milica Tomašević.

Source: Bernoulli, Volume 26, Number 2, 1323--1353.

Abstract:
In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model.




ge

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




ge

Characterization of probability distribution convergence in Wasserstein distance by &#36;L^{p}&#36;-quantization error function

Yating Liu, Gilles Pagès.

Source: Bernoulli, Volume 26, Number 2, 1171--1204.

Abstract:
We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper.




ge

Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics

Sumit Mukherjee.

Source: Bernoulli, Volume 26, Number 2, 1016--1043.

Abstract:
A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why statistics such as alternating $k$-star are non-degenerate, whereas subgraph counts are degenerate. It is further shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-degenerate Exponential Random Graph Models.




ge

Distances and large deviations in the spatial preferential attachment model

Christian Hirsch, Christian Mönch.

Source: Bernoulli, Volume 26, Number 2, 927--947.

Abstract:
This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express the rate function as solution to an entropy minimisation problem in the space of stationary marked point processes.




ge

Convergence of the age structure of general schemes of population processes

Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner.

Source: Bernoulli, Volume 26, Number 2, 893--926.

Abstract:
We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation.




ge

Stochastic differential equations with a fractionally filtered delay: A semimartingale model for long-range dependent processes

Richard A. Davis, Mikkel Slot Nielsen, Victor Rohde.

Source: Bernoulli, Volume 26, Number 2, 799--827.

Abstract:
In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which is based on the linear stochastic delay differential equation and produces stationary processes with hyperbolically decaying autocovariance functions. The model departs from the usual way of incorporating this type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter to the drift term rather than to the noise term. The advantages of this approach are that the corresponding long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider the task of simulating from the defining SFDDEs.




ge

Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces

Jing Lei.

Source: Bernoulli, Volume 26, Number 1, 767--798.

Abstract:
We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions.




ge

A Feynman–Kac result via Markov BSDEs with generalised drivers

Elena Issoglio, Francesco Russo.

Source: Bernoulli, Volume 26, Number 1, 728--766.

Abstract:
In this paper, we investigate BSDEs where the driver contains a distributional term (in the sense of generalised functions) and derive general Feynman–Kac formulae related to these BSDEs. We introduce an integral operator to give sense to the equation and then we show the existence of a strong solution employing results on a related PDE. Due to the irregularity of the driver, the $Y$-component of a couple $(Y,Z)$ solving the BSDE is not necessarily a semimartingale but a weak Dirichlet process.




ge

On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

Keisuke Yano, Kengo Kato.

Source: Bernoulli, Volume 26, Number 1, 616--641.

Abstract:
In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.