at

Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses [ARTICLE]

The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.




at

DNAJA2 and Hero11 mediate similar conformational extension and aggregation suppression of TDP-43 [REPORT]

Many RNA-binding proteins (RBPs) contain low-complexity domains (LCDs) with prion-like compositions. These long intrinsically disordered regions regulate their solubility, contributing to their physiological roles in RNA processing and organization. However, this also makes these RBPs prone to pathological misfolding and aggregation that are characteristic of neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) forms pathological aggregates associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While molecular chaperones are well-known suppressors of these aberrant events, we recently reported that highly disordered, hydrophilic, and charged heat-resistant obscure (Hero) proteins may have similar effects. Specifically, Hero proteins can maintain the activity of other proteins from denaturing conditions in vitro, while their overexpression can suppress cellular aggregation and toxicity associated with aggregation-prone proteins. However, it is unclear how these protective effects are achieved. Here, we used single-molecule FRET to monitor the conformations of the aggregation-prone prion-like LCD of TDP-43. While we observed high conformational heterogeneity in wild-type LCD, the ALS-associated mutation A315T promoted collapsed conformations. In contrast, an Hsp40 chaperone, DNAJA2, and a Hero protein, Hero11, stabilized extended states of the LCD, consistent with their ability to suppress the aggregation of TDP-43. Our results link single-molecule effects on conformation to macro effects on bulk aggregation, where a Hero protein, like a chaperone, can maintain the conformational integrity of a client protein to prevent its aggregation.




at

Could cough hypersensitivity symptom profile differentiate phenotypes of chronic cough?

Background

Recently, cough reflex hypersensitivity has been proposed as a common underlying feature of chronic cough in adults. However, symptoms and clinical characteristics of cough hypersensitivity have not been studied amongst phenotypes of chronic cough. This study aimed to compare symptom features, such as cough triggers and associated throat sensations, of cough hypersensitivity in patients with asthmatic chronic cough and those with refractory chronic cough (RCC).

Methods

Patients with chronic cough from the Korean Chronic Cough Registry were prospectively evaluated over 6 months. Physicians determined the aetiological diagnosis based on clinical evaluations and responses to treatment at the 6-month follow-up visit. Symptoms of cough hypersensitivity and cough-specific quality of life were assessed using the Cough Hypersensitivity Questionnaire (CHQ) and the Leicester Cough Questionnaire (LCQ), respectively.

Results

The analysis included 280 patients who completed the follow-up: 79 with asthmatic cough (cough variant asthma or eosinophilic bronchitis) and 201 with RCC. Baseline CHQ scores were similar between the groups (8.3±3.7 in asthmatic cough versus 8.9±3.9 in RCC; p=0.215, adjusted for age, sex and LCQ score). There were no significant between-group differences in the LCQ and cough severity Visual Analog Scale scores. Both groups showed a similar negative correlation with LCQ scores (asthmatic cough: r=–0.427, p<0.001; RCC: r=–0.306, p<0.001).

Conclusions

The symptoms of cough hypersensitivity may not distinguish between asthmatic cough and RCC. This suggests that chronic cough is the primary diagnosis in both phenotypes. It indicates a shared mechanism in their cough pathogenesis, despite having potentially different treatable traits.




at

The noninvasive ventilation outcomes score in patients requiring NIV for COPD exacerbation without prior evidence of airflow obstruction

Introduction

Exacerbation of COPD complicated by respiratory acidaemia is the commonest indication for noninvasive ventilation (NIV). The NIV outcomes (NIVO) score offers the best estimate of survival for those ventilated. Unfortunately, two-thirds of cases of COPD are unrecognised, and patients may present without COPD having been confirmed by spirometry.

Methods

In the 10-centre NIVO validation study there was no pre-admission spirometry in 111 of 844 consecutive patients (termed "clinical diagnosis" patients). We compared the performance of the NIVO, DECAF and CURB-65 scores for in-hospital mortality in the clinical diagnosis cohort. Usual clinical practice was not influenced, but confirmation of COPD in the year following discharge was captured.

Results

In the clinical diagnosis cohort, in-hospital mortality was 19.8% and rose incrementally across the NIVO risk categories, consistent with the NIVO validation cohort. NIVO showed good discrimination in the clinical diagnosis cohort: area under the receiver operating curve 0.724, versus 0.79 in the NIVO validation cohort. At 1 year after discharge, 41 of 89 clinical diagnosis patients had undertaken diagnostic spirometry; 33 of 41 had confirmation of airflow obstruction (forced expiratory volume in 1 s/(forced) vital capacity <0.7), meaning the diagnosis of COPD was incorrect in 19.5% of cases.

Discussion

These data support the use of the NIVO score in patients with a "clinical diagnosis" of COPD. NIVO can help guide shared decision-making, assess risk-adjusted outcomes by centre and challenge prognostic pessimism. Accurate diagnosis is critical to ensure that acute and long-term treatment is optimised; this study highlights failings in the follow-up of such patients.




at

Characteristics of exacerbators in the US Bronchiectasis and NTM Research Registry: a cross-sectional study

Background

Exacerbations of noncystic fibrosis bronchiectasis (bronchiectasis) are associated with reduced health-related quality of life and increased mortality, likelihood of hospitalisation and lung function decline. This study investigated patient clinical characteristics associated with exacerbation frequency.

Methods

A cross-sectional cohort study of patients ≥18 years with bronchiectasis enrolled in the US Bronchiectasis and Nontuberculous Mycobacteria (NTM) Research Registry (BRR) September 2008–March 2020. Patients were stratified by exacerbation frequency in their 2 years before enrolment. Patient demographics, respiratory symptoms, healthcare resource utilisation, microbiology, modified bronchiectasis severity index (mBSI) and select comorbidities were collected at enrolment. Patient characteristics associated with exacerbation frequency were assessed using a negative binomial model.

Results

The study included 2950 patients (mean age 65.6 years; 79.1% female). Frequency of moderate to severe airway obstruction (forced expiratory volume in 1 s (FEV1) % predicted <50%; most recent measure) was 15.9%, 17.8%, and 24.6% in patients with 1, 2, and ≥3 exacerbations versus 8.9% in patients with 0 exacerbations; severe disease (mBSI) was 27.8%, 24.2% and 51.1% versus 13.2%; respiratory hospitalisation was 24.5%, 33.0% and 36.5% versus 4.1%; and Pseudomonas aeruginosa infection was 18.8%, 23.4% and 35.2% versus 11.9%. In multivariable model analysis, respiratory hospitalisation, cough, haemoptysis, P.  aeruginosa, younger age, lower FEV1% predicted, asthma, and gastro-oesophageal reflux disease were associated with more exacerbations.

Conclusions

These findings demonstrate a high disease burden, including increased respiratory symptoms, healthcare resource utilisation, and P.  aeruginosa infection in patients with bronchiectasis and multiple exacerbations.




at

Longitudinal validation of King's Sarcoidosis Questionnaire in a prospective cohort with mild sarcoidosis

Background

Quality of life is impaired in patients with sarcoidosis. The King's Sarcoidosis Questionnaire (KSQ) is a brief questionnaire assessing health-related quality of life in patients with sarcoidosis, comprising subdomains of General Health Status (GHS), Lung, Medication, Skin and Eyes. The aim of this study was to enhance the validation of the KSQ, incorporating longitudinal validation and known-groups validity in a cohort with mild sarcoidosis.

Methods

The KSQ was linguistically validated according to guidelines. Patients with sarcoidosis completed KSQ and other questionnaires at baseline, after 2 weeks and at 12 months. Forced vital capacity (FVC) was measured. Concurrent validity, reliability and responsiveness were assessed.

Results

In patients (n=150), the KSQ had moderate to strong correlations with the Short Form-12 (Mental Component Summary), the King's Brief Interstitial Lung Disease questionnaire and the Fatigue Assessment Scale (r=0.30–0.70) and weak correlations with the Short Form-12 (Physical Component Summary) and FVC (r=0.01–0.29). The KSQ GHS and Lung domains were able to discriminate between groups of patients stratified according to fatigue, treatment and FVC. The KSQ had high internal consistency (Cronbach's α=0.73–0.90) and repeatability (interclass correlation coefficients 0.72–0.81). Correlations to comparable questionnaires at baseline were moderate or strong for the GHS, Lung and GHS–Lung subdomains and weak or moderate for FVC. The KSQ was responsive to changes over time.

Conclusion

This study strengthened the validation of the KSQ by introducing known-groups validity and assessments of responsiveness over 12 months in patients with mild sarcoidosis.




at

Ensuring availability of respiratory medicines in times of European drug shortages

Extract

It is of utmost importance that medicines are available at all times for our patients. Historically, medication unavailability has typically, if not exclusively, affected low- and middle-income countries [1]. More recently however, drug shortages have also been reported in high-income European countries [2]. Drug shortages have negative health consequences for patients [3], and a profound economic impact, with the need to resort to more expensive alternatives and demands on healthcare professionals’ time to find, prescribe and dispense alternatives [4].




at

The treatment of latent tuberculosis infection in migrants in primary care versus secondary care

Extract

With a disproportionate burden of tuberculosis (TB) amongst migrants in Europe [1], Burman et al. [2] have highlighted the pressing need for alternative approaches to make TB infection (TBI) screening comprehensive and accessible. Across high-income Organisation for Economic Co-operation and development countries, a median of 52% of TB cases occur in foreign-born individuals, who are at their highest risk of developing TB disease within the first 5 years of migration [3]. Molecular epidemiological studies indicate that the majority of these cases occur as a result of TBI reactivation, often acquired overseas [4]. Within the UK, overseas-born migrants have a 14-fold higher TB incidence than UK-born individuals [5]. The World Health Organization therefore recommends that migrants from countries with a high TB burden may be prioritised for TBI screening [6, 7].




at

Accuracy of CAD4TB (Computer-Aided Detection for Tuberculosis) on paediatric chest radiographs

Background

Computer-aided detection (CAD) systems hold promise for improving tuberculosis (TB) detection on digital chest radiographs. However, data on their performance in exclusively paediatric populations are scarce.

Methods

We conducted a retrospective diagnostic accuracy study evaluating the performance of CAD4TBv7 (Computer-Aided Detection for Tuberculosis version 7) using digital chest radiographs from well-characterised cohorts of Gambian children aged <15 years with presumed pulmonary TB. The children were consecutively recruited between 2012 and 2022. We measured CAD4TBv7 performance against a microbiological reference standard (MRS) of confirmed TB, and also performed Bayesian latent class analysis (LCA) to address the inherent limitations of the MRS in children. Diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC) and point estimates of sensitivity and specificity.

Results

A total of 724 children were included in the analysis, with confirmed TB in 58 (8%), unconfirmed TB in 145 (20%) and unlikely TB in 521 (72%). Using the MRS, CAD4TBv7 showed an AUROC of 0.70 (95% CI 0.60–0.79), and demonstrated sensitivity and specificity of 19.0% (95% CI 11–31%) and 99.0% (95% CI 98.0–100.0%), respectively. Applying Bayesian LCA with the assumption of conditional independence between tests, sensitivity and specificity estimates for CAD4TBv7 were 42.7% (95% CrI 29.2–57.5%) and 97.9% (95% CrI 96.6–98.8%), respectively. When allowing for conditional dependence between culture and Xpert assay, CAD4TBv7 demonstrated a sensitivity of 50.3% (95% CrI 32.9–70.0%) and specificity of 98.0% (95% CrI 96.7–98.9%).

Conclusion

Although CAD4TBv7 demonstrated high specificity, its suboptimal sensitivity underscores the crucial need for optimisation of CAD4TBv7 for detecting TB in children.




at

Association between a recalled positive airway pressure device and incident cancer: a population-based study

Background

The real-world consequences of a Philips Respironics recall for positive airway pressure (PAP) devices distributed between 2009 and 2021 are unknown.

Methods

We conducted a retrospective population-based study using health administrative databases (Ontario, Canada) on all new adult PAP users identified through the provincial funding system, free of cancer at baseline, who initiated (claimed) PAP treatment between 2012 and 2018. Everyone was followed from the PAP claim date to the earliest of incident cancer diagnosis, death or end of follow-up (March 2022). We used inverse probability of treatment weighting to balance baseline characteristics between individuals on recalled devices and those on devices from other manufacturers. Weighted hazard ratios of incident cancer were compared between groups.

Results

Of 231 692 individuals identified, 58 204 (25.1%) claimed recalled devices and 173 488 (74.9%) claimed devices from other manufacturers. A meaningful baseline difference between groups (standardised difference ≥0.10) was noted only by location-relevant covariates; other variables were mostly equally distributed (standardised differences ≤0.06). Over a median (interquartile range) follow-up of 6.3 (4.9–8.0) years, 11 166 (4.8%) developed cancer: unadjusted rates per 10 000 person-years of 78.8 (95% CI 76.0–81.7) in the recall group versus 74.0 (95% CI 72.4–75.6) in others (p=0.0034). Propensity score weighting achieved excellent balance in baseline characteristics between groups (standardised differences ≤0.07). On a weighted sample, there was no statistical difference in the hazard of incident cancer between groups: cause-specific hazard ratio (recalled versus others) 0.97 (95% CI 0.89–1.06).

Conclusion

In our real-world population study, compared to other manufacturers and adjusting for confounders, recalled Philips Respironics PAP devices do not appear to be independently associated with developing cancer.




at

Multidisciplinary management of adult patients with chylothorax: a consensus statement

The management of chylothorax remains challenging given the limited evidence and significant heterogeneity in practice. In addition, there are no practical guidelines on the optimal approach to manage this complex condition. We convened an international group of 27 experts from 20 institutions across five countries and four specialties (pulmonary, interventional radiology, thoracic surgery and nutrition) with experience and expertise in managing adult patients with chylothorax. We performed a literature and internet search for reports addressing seven clinically relevant PICO (Patient, Intervention, Comparison and Outcome) questions pertaining to the management of adult patients with chylothorax. This consensus statement, consisting of best practice statements based on expert consensus addressing these seven PICO questions, was formulated by a systematic and rigorous process involving the evaluation of published evidence, augmented with provider experience. Panel members participated in the development of the final best practice statements using the modified Delphi technique. Our consensus statement aims to offer guidance in clinical decision making when managing patients with chylothorax while also identifying gaps in knowledge and informing future research.




at

Clinical review of non-invasive ventilation

Non-invasive ventilation (NIV) is the mainstay to treat patients who need augmentation of ventilation for acute and chronic forms of respiratory failure. The last several decades have witnessed an extension of the indications for NIV to a variety of acute and chronic lung diseases. Evolving advancements in technology and personalised approaches to patient care make it feasible to prioritise patient-centred care models that deliver home-based management using telemonitoring and telemedicine systems support. These trends may improve patient outcomes, reduce healthcare costs and improve the quality of life for patients who suffer from chronic diseases that precipitate respiratory failure.




at

Genome-wide association study of susceptibility to Pseudomonas aeruginosa infection in cystic fibrosis

Background

Pseudomonas aeruginosa is a common pathogen that contributes to progressive lung disease in cystic fibrosis (CF). Genetic factors other than CF-causing CFTR (CF transmembrane conductance regulator) variations contribute ~85% of the variation in chronic P. aeruginosa infection age in CF according to twin studies, but the susceptibility loci remain unknown. Our objective is to advance understanding of the genetic basis of host susceptibility to P. aeruginosa infection.

Materials and methods

We conducted a genome-wide association study of chronic P. aeruginosa infection age in 1037 Canadians with CF. We subsequently assessed the genetic correlation between chronic P. aeruginosa infection age and lung function through polygenic risk score (PRS) analysis and inferred their causal relationship through bidirectional Mendelian randomisation analysis.

Results

Two novel genome-wide significant loci with lead single nucleotide polymorphisms (SNPs) rs62369766 (chr5p12; p=1.98x10–8) and rs927553 (chr13q12.12; p=1.91x10–8) were associated with chronic P. aeruginosa infection age. The rs62369766 locus was validated using an independent French cohort (n=501). Furthermore, the PRS constructed from CF lung function-associated SNPs was significantly associated with chronic P. aeruginosa infection age (p=0.002). Finally, our analysis presented evidence for a causal effect of lung function on chronic P. aeruginosa infection age (β=0.782 years, p=4.24x10–4). In the reverse direction, we observed a moderate effect (β=0.002, p=0.012).

Conclusions

We identified two novel loci that are associated with chronic P. aeruginosa infection age in individuals with CF. Additionally, we provided evidence of common genetic contributors and a potential causal relationship between P. aeruginosa infection susceptibility and lung function in CF. Therapeutics targeting these genetic factors may delay the onset of chronic infections, which account for significant remaining morbidity in CF.




at

Treatment of latent tuberculosis infection in migrants in primary care versus secondary care

Background

Control of latent tuberculosis infection (LTBI) is a priority in the World Health Organization strategy to eliminate TB. Many high-income, low TB incidence countries have prioritised LTBI screening and treatment in recent migrants. We tested whether a novel model of care, based entirely within primary care, was effective and safe compared to secondary care.

Methods

This was a pragmatic cluster-randomised, parallel group, superiority trial (ClinicalTrials.gov: NCT03069807) conducted in 34 general practices in London, UK, comparing LTBI treatment in recent migrants in primary care to secondary care. The primary outcome was treatment completion, defined as taking ≥90% of antibiotic doses. Secondary outcomes included treatment acceptance, adherence, adverse effects, patient satisfaction, TB incidence and a cost-effectiveness analysis. Analyses were performed on an intention-to-treat basis.

Results

Between September 2016 and May 2019, 362 recent migrants with LTBI were offered treatment and 276 accepted. Treatment completion was similar in primary and secondary care (82.6% versus 86.0%; adjusted OR (aOR) 0.64, 95% CI 0.31–1.29). There was no difference in drug-induced liver injury between primary and secondary care (0.7% versus 2.3%; aOR 0.29, 95% CI 0.03–2.84). Treatment acceptance was lower in primary care (65.2% (146/224) versus 94.2% (130/138); aOR 0.10, 95% CI 0.03–0.30). The estimated cost per patient completing treatment was lower in primary care, with an incremental saving of GBP 315.27 (95% CI 313.47–317.07).

Conclusions

The treatment of LTBI in recent migrants within primary care does not result in higher rates of treatment completion but is safe and costs less when compared to secondary care.




at

Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I [Articles]

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (Ki) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated Ki of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low.

SIGNIFICANCE STATEMENT

The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.




at

Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles]

Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism.

SIGNIFICANCE STATEMENT

This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.




at

Functional Characterization of Reduced Folate Carrier and Protein-Coupled Folate Transporter for Antifolates Accumulation in Non-Small Cell Lung Cancer Cells [Articles]

Antifolates are important for chemotherapy in non–small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors, as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates, with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Michaelis-Menten constant (Km) value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found that antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0–7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated that increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors.

SIGNIFICANCE STATEMENT

Evaluating the role of reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) on antifolates accumulation in non–small cell lung cancer (NSCLC) is necessary for new drug designs. By using cell models, we found both RFC and PCFT were important for antifolates accumulation in NSCLC. Breast cancer resistance protein (BCRP) significantly affected PCFT-mediated antifolates accumulation at acidic pH but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.




at

Investigations into the Concentrations and Metabolite Profiles of Doping Agents and Antidepressants in Human Seminal Fluid Using Liquid Chromatography-Mass Spectrometry [Articles]

Exogenous substances, including drugs and chemicals, can transfer into human seminal fluid and influence male fertility and reproduction. In addition, substances relevant in the context of sports drug testing programs, can be transferred into the urine of a female athlete (after unprotected sexual intercourse) and trigger a so-called adverse analytical finding. Here, the question arises as to whether it is possible to distinguish analytically between intentional doping offenses and unintentional contamination of urine by seminal fluid. To this end, 480 seminal fluids from nonathletes were analyzed to identify concentration ranges and metabolite profiles of therapeutic drugs that are also classified as doping agents. Therefore, a screening procedure was developed using liquid chromatography connected to a triple quadrupole mass spectrometer, and suspect samples (i.e., samples indicating the presence of relevant compounds) were further subjected to liquid chromatography-high-resolution accurate mass (tandem) mass spectrometry. The screening method yielded 90 findings (including aromatase inhibitors, selective estrogen receptor modulators, diuretics, stimulants, glucocorticoids, beta-blockers, antidepressants, and the nonapproved proliferator-activated receptor delta agonist GW1516) in a total of 81 samples, with 91% of these suspected cases being verified by the confirmation method. In addition to the intact drug, phase-I and -II metabolites were also occasionally observed in the seminal fluid. This study demonstrated that various drugs including those categorized as doping agents partition into seminal fluid. Monitoring substances and metabolites may contribute to a better understanding of the distribution and metabolism of exogenous substances in seminal fluid that may be responsible for the impairment of male fertility.

SIGNIFICANCE STATEMENT

This study demonstrates that doping agents as well as clinically relevant substances are transferred/eliminated into seminal fluid to a substantial extent and that knowledge about drug levels (and potential consequences for the male fertility and female exposure) is limited. The herein generated new dataset provides new insights into an important and yet little explored area of drug deposition and elimination, and hereby a basis for the assessment of contamination cases by seminal fluid in sports drug testing.




at

Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats [Articles]

Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450’s metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug–processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes.

SIGNIFICANCE STATEMENT

This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.




at

The Simultaneous Inhibition of Solute Carrier Family 6 Member 19 and Breast Cancer Resistance Protein Transporters Leads to an Increase of Indoxyl Sulfate (a Uremic Toxin) in Plasma and Kidney [Articles]

Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography–mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma.

SIGNIFICANCE STATEMENT

This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients.




at

Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model [Articles]

Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = aiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th–95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5–2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters.

SIGNIFICANCE STATEMENT

This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.




at

Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA) [Articles]

In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration.

SIGNIFICANCE STATEMENT

This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.




at

Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human [Articles]

The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2–57 days old) and human hepatocytes (pediatric liver tissue donors: age 2–12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals.

SIGNIFICANCE STATEMENT

Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults.




at

The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1 [Articles]

Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2.

SIGNIFICANCE STATEMENT

The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2.




at

CYP8B1 Catalyzes 12alpha-Hydroxylation of C27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid [Articles]

Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes–1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.

SIGNIFICANCE STATEMENT

The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.




at

Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models [Articles]

Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method.

SIGNIFICANCE STATEMENT

The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.




at

Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook [Minireview]

Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings.

SIGNIFICANCE STATEMENT

This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.




at

Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met

A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments.

SIGNIFICANCE STATEMENT

An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.:




at

Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides.

SIGNIFICANT STATEMENT

At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.




at

Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells.

SIGNIFICANCE STATEMENT

PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.




at

Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases.

SIGNIFICANCE STATEMENT

Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases’ expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.




at

50th Anniversary Celebration Collection Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II--Editorial [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part




at

Inhibitory Actions of Potentiating Neuroactive Steroids in the Human {alpha}1{beta}3{gamma}2L {gamma}-Aminobutyric Acid Type A Receptor [Article]

The -aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β32L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ~13 μM and maximal inhibitory effects of 70–90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN.

SIGNIFICANCE STATEMENT

The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β32L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions.




at

Ghrelin Modulates Voltage-Gated Ca2+ Channels through Voltage-Dependent and Voltage-Independent Pathways in Rat Gastric Vagal Afferent Neurons [Article]

The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = –2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gαi/o or Gαq/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin’s effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gαi/o and Gαq/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin’s regulation of gastric vagal afferents.

SIGNIFICANCE STATEMENT

This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.




at

Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors [Article]

Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, , and ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ~100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system.

SIGNIFICANCE STATEMENT

This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, , and opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine’s therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.




at

Simplified Method for Kinetic and Thermodynamic Screening of Cardiotonic Steroids through the K+-Dependent Phosphatase Activity of Na+/K+-ATPase with Chromogenic pNPP Substrate [Article]

The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon), dissociation rate (koff), and equilibrium (Ki) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon. In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon. When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff. A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon. Raising the temperature did not alter the koff of digitoxin, generating a H (koff) of –10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon, koff, and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds.

SIGNIFICANCE STATEMENT

This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure.




at

Arachidonic Acid Directly Activates the Human DP2 Receptor [Article]

Aberrant type 2 inflammatory responses are the underlying cause of the pathophysiology of allergic asthma, allergic rhinitis, and other atopic diseases, with an alarming prevalence in relevant parts of the Western world. A bulk of evidence points out the important role of the DP2 receptor in these inflammation processes. A screening of different polyunsaturated fatty acids at a fluorescence resonance energy transfer–based DP2 receptor conformation sensor expressed in human embryonic kidney (HEK) cells revealed an agonistic effect of the prostaglandin (PG)-D2 precursor arachidonic acid on DP2 receptor activity of about 80% of the effect induced by PGD2. In a combination of experiments at the conformation sensor and using a bioluminescence resonance energy transfer–based G protein activation sensor expressed together with DP2 receptor wild type in HEK cells, we found that arachidonic acid acts as a direct activator of the DP2 receptor, but not the DP1 receptor, in a concentration range considered physiologically relevant. Pharmacological inhibition of cyclooxygenases and lipoxygenases as well as cytochrome P450 did not lead to a diminished arachidonic acid response on the DP2 receptor, confirming a direct action of arachidonic acid on the receptor.

SIGNIFICANCE STATEMENT

This study identified the prostaglandin precursor arachidonic acid to directly activate the DP2 receptor, a G protein–coupled receptor that is known to play an important role in type 2 inflammation.




at

Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G{alpha} in Human Cancer [Minireview]

G protein–coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and β subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein β subunits (Gβ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα. Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants.

SIGNIFICANCE STATEMENT

Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.




at

Learnings From an Innovative Model to Expand Access to a New and Underutilized Nonhormonal Contraceptive Diaphragm

ABSTRACTWe document the effort over the last 30 years to respond to the call by women advocates at the International Conference on Population and Development for more woman-initiated single or dual-purpose contraceptive methods by developing the Caya contoured diaphragm, an innovative diaphragm designed to meet the needs of women and their partners and expand options for nonhormonal barrier contraception. We describe the complex and interrelated set of activities undertaken to develop the product using a human-centered design process and how we are working to create a corollary sustainable market. This review includes the evidence generated around improved acceptability among couples in low- and middle-income countries and depicts challenges and practical actions on how to dispel misconceptions about diaphragm use. Importantly, we share programmatic lessons learned on increasing universal access to this new sexual and reproductive health technology. Following our new model for increasing access to new and underutilized methods, Caya is now registered and being marketed in nearly 40 countries worldwide.




at

Establishment of the First Institution-Based Poison Information Center in Nepal Through a Multilateral International Partnership

ABSTRACTToxicological emergencies present a significant health challenge in Nepal. Despite the high burden, the country has inadequate formal toxicology training, medical toxicology expertise, and adequate poison control infrastructure. In recognition of this need, the Nepal Poison Information Center (PIC) was established as a collaborative effort involving local and international partners. Through a comprehensive partnership framework, the Nepal PIC provides 24 hours a day, 7 days a week expert guidance to health care workers, conducts educational webinars, and engages in research. Initial data from the pilot phase indicate successful consultation delivery. Challenges include bureaucratic hurdles and the need for sustainable funding. Despite these challenges, the Nepal PIC demonstrates early feasibility and potential for expansion into a comprehensive toxicology center, contributing to the advancement of clinical toxicology in Nepal. Long-term sustainability relies on governmental support and continued advocacy efforts.




at

Family Planning, Reproductive Health, and Progress Toward the Sustainable Development Goals: Reflections and Directions on the 30th Anniversary of the International Conference on Population and Development




at

Can the International Conference on Population and Development Programme of Action and Cairo Consensus Normalize the Discourse on Population?




at

Early Lessons From Working With Local Partners to Expand Private-Sector Health Care Networks in Burundi and Mali

ABSTRACTThe private health care sector is an important source of service delivery in low- and middle-income countries (LMICs). Yet, the private sector remains fragmented, making it difficult for health system actors to support and ensure the availability of quality health care services. In global health programs, social franchising is one model used to engage and organize the private health care sector. Two social franchise networks, ProFam in West Africa and Tunza in East and Central Africa, provide health care through branded networks of facilities. However, these social franchise networks include a limited number of private health care facilities, and in fragile contexts, like Burundi and Mali, they have faced challenges in integrating with national health systems. The MOMENTUM Private Healthcare Delivery (MPHD) project in Burundi and Mali sought to expand the number of health facilities it engaged beyond the existing ProFam and Tunza networks. The expansion aimed to help improve service quality in more private facilities while advancing localization and reducing fragmentation for improved stewardship by health system actors. MPHD achieved this expansion by removing barriers for private health facilities to join inclusive, nonbranded networks and engaging local partners to build and maintain these networks. We share lessons learned regarding the growing role of local organizations as actors within mixed health systems and provide insights on strengthening stewardship of the increasingly heterogeneous private health care delivery sector in LMICs, particularly in fragile settings.




at

Maturity Assessment of the Health Information System Using Stages of Continuous Improvement Methodology: Results From Serbia

ABSTRACTIntroduction:Since the health information system (HIS) in public health care services in Serbia was introduced in 2009, it has gradually expanded. However, it is unclear how well the HIS components have developed and the whole system’s stage of maturity.Method:In June–September 2021, a maturity assessment of the Serbian HIS was conducted for the first time using the HIS Stages of Continuous Improvement (SOCI) toolkit. The toolkit measures HIS status across 5 HIS domains: leadership and governance, management and workforce, information and communication technology (ICT), standards and interoperability, and data quality and use. The domains were further divided into 13 components and 39 subcomponents whose maturity stage was assessed on a 5-point Likert scale, indicating the level of development: (1) emerging/ad hoc; (2) repeatable; (3) defined; (4) managed; and (5) optimized. The toolkit was applied in a working group of 32 professionals and experts who were engaged in developing the new national eHealth strategy and action plan.Results:The overall maturity score of the Serbian HIS was 1.6, which indicates a low level. The highest baseline score (2) was given to the standards and interoperability domain, and the lowest (1.1) was given to ICT infrastructure. The remaining 3 domains (leadership and governance, Management and Workforce, and Data Quality and Use) were similarly rated (1.7, 1.7, and 1.6, respectively).Conclusion:A baseline assessment of the maturity level of Serbian HIS indicates that the majority of components are between the emerging/ad hoc stage and repeatable, which represent isolated, ad hoc efforts, with some basic processes in place and existing and accessible policies. This exercise provided an opportunity to address identified weaknesses in the upcoming national eHealth strategy.




at

Documenting the Provision of Emergency Contraceptive Pills Through Youth-Serving Delivery Channels: Exploratory Mixed Methods Research on Malawi&#x2019;s Emergency Contraception Strategy

ABSTRACTIntroduction:Emergency contraceptive pills (ECPs) are effective and can be used safely at any age repeatedly within the same cycle. They are often favored by youth yet are underutilized. Private facilities can increase ECP access but present barriers including cost. Identifying effective public-sector ECP distribution models can help ensure equitable access. The Malawi Ministry of Health developed a strategy to improve ECP access in 2020. We documented ECP provision through select public, youth-serving channels recommended by the strategy: general and youth-specific outreach, paid and unpaid community health workers (CHWs), and youth clubs.Methods:We conducted this mixed methods study from November 2022–March 2023 in 2 rural districts (Mchinji and Phalombe) implementing the strategy. We conducted qualitative interviews with 10 national stakeholders, 46 providers, and 24 clients aged 15–24 years about ECP service delivery. Additionally, 25 providers collected quantitative tally data about clients seeking ECPs. We analyzed qualitative data using grounded theory and quantitative data descriptively.Results:Stakeholders and providers reported ECP uptake increased in geographies where the strategy was implemented, especially among youth. Providers documented 3,988 client visits for ECPs over 3 months. Of these visits, 26% were from male clients, 36% were from clients aged younger than 20 years, and 64% received ECPs for the first time. Across channels, youth club leaders and unpaid CHWs reported the most client visits per provider and served the youngest clients. However, no ECPs were dispensed during 29% of visits due to stock-outs. While many providers were supportive of youth accessing ECPs, most held unfavorable attitudes toward repeat use.Conclusion:ECP access should be expanded through provision in the studied channels, especially youth clubs and CHWs. However, to meet demand, the supply chain must be strengthened. We recommend addressing providers’ attitudes about repeat use to ensure informed method choice.




at

Antenatal Care Interventions to Increase Contraceptive Use Following Birth in Low- and Middle-Income Countries: Systematic Review and Narrative Synthesis

ABSTRACTIntroduction:Health risks associated with short interpregnancy intervals, coupled with women’s desires to avoid pregnancy following childbirth, underscore the need for effective postpartum family planning programs. The antenatal period provides an opportunity to intervene; however, evidence is limited on the effectiveness of interventions aimed at reaching women in the antenatal period to increase voluntary postpartum family planning in low- and middle-income countries (LMICs). This systematic review aimed to identify and describe interventions in LMICs that attempted to increase postpartum contraceptive use via contacts with pregnant women in the antenatal period.Methods:Studies published from January 2012 to July 2022 were considered if they were conducted in LMICs, evaluated an intervention delivered during the antenatal period, were designed to affect postpartum contraceptive use, were experimental or quasi-experimental, and were published in French or English. The main outcome of interest was postpartum contraceptive use within 1 year after birth, defined as the use of any method of contraception at the time of data collection. We searched EMBASE, Global Health, and Medline and manually searched the reference lists from studies included in the full-text screening.Results:We double-screened 771 records and included 34 reports on 31 unique interventions in the review. Twenty-three studies were published from 2018 on, with 21 studies conducted in sub-Saharan Africa. Approximately half of the study designs (n=16) were randomized controlled trials, and half (n=15) were quasi-experimental. Interventions were heterogeneous. Among the 24 studies that reported on the main outcome of interest, 18 reported a positive intervention effect, with intervention recipients having greater contraceptive use in the first year postpartum.Conclusion:While the studies in this systematic review were heterogeneous, the findings suggest that interventions that included a multifaceted package of initiatives appeared to be most likely to have a positive effect.




at

Adapting the Social Norms Exploration Tool in the Democratic Republic of the Congo to Identify Social Norms for Behavior Change

ABSTRACTIn the Democratic Republic of the Congo (DRC), male engagement, social norms, and social networks mitigate family planning behavior. We discuss the adaptation of the Social Norms Exploration Tool (SNET), which identifies relevant social norms and community members upholding these norms, to inform the development of family planning interventions in the DRC. The SNET provides activity tools and templates to guide users through the following steps: (1) plan and prepare, (2) identify reference groups, (3) explore social norms, (4) analyze results, and (5) apply findings.The SNET approach resulted in discussion of social norms, particularly around birth spacing and gender norms framing the man as the decision-maker. However, despite applying a methodology specifically designed to identify social norms, other factors limiting use of contraceptive methods were identified in the process, including lack of education, rumors, and misconceptions. Adaptations were needed to include the full range of reference groups due to narrow phrasing of primary questions, and some of the participatory methods were overly complicated. Feedback from experienced data collectors suggested that the social norms framework is not intuitive, is difficult to apply correctly, and may require that data collectors have a stronger foundation in the relevant concepts to produce valid and actionable results.Although the SNET provides language for discussing normative factors and techniques to identify reference groups and social norms, modifications to the implementation process are recommended when adapting the tool for research.




at

Improving Maternity Care Where Home Births Are Still the Norm: Establishing Local Birthing Centers in Guatemala That Incorporate Traditional Midwives

ABSTRACTMore than half of births among Indigenous women in Guatemala are still being attended at home by providers with no formal training. We describe the incorporation of comadronas (traditional midwives) into casas maternas (birthing centers) in the rural highlands of western Guatemala. Although there was initial resistance to the casa, comadronas and clients have become increasingly enthusiastic about them. The casas provide the opportunity for comadronas to continue the cultural traditions of prayers, massages, and other practices that honor the vital spiritual dimension of childbirth close to home in a home-like environment with extended family support while at the same time providing a safer childbirth experience in which complications can be detected by trained personnel at the casa, managed locally, or promptly referred to a higher-level facility. Given the growing acceptance of this innovation in an environment in which geographical, financial, and cultural barriers to deliveries at higher-level facilities lead most women to deliver at home, casas maternas represent a feasible option for reducing the high level of maternal mortality in Guatemala.This article provides an update on the growing utilization of casas and provides new insights into the role of comadronas as birthing team members and enthusiastic promotors of casas maternas as a preferable alternative to home births. Through the end of 2023, these casas maternas had cared for 4,322 women giving birth. No maternal deaths occurred at a casa, but 4 died after referral.The Ministry of Health of Guatemala has recently adopted this approach and has begun to implement it in other rural areas where home births still predominate. This approach deserves consideration as a viable and feasible option for reducing maternal mortality throughout the world where home births are still common, while at the same time providing women with respectful and culturally appropriate care.




at

Capacity-Building Through Digital Approaches: Evaluating the Feasibility and Effectiveness of eLearning to Introduce Subcutaneous DMPA Self-Injection in Senegal and Uganda

ABSTRACTTraining health workers is one of the biggest challenges and cost drivers when introducing a new contraceptive method or service delivery innovation. PATH developed a digital training curriculum for family planning providers who are learning to offer subcutaneous DMPA (DMPA-SC), including through self-injection, as an option among a range of contraceptive methods. The DMPA-SC eLearning course for health workers includes 10 lessons with an emphasis on informed choice counseling and training clients to self-inject. In partnership with Ministries of Health in Senegal and Uganda, the course was rolled out in select areas in 2019–2020, including during the COVID-19 pandemic when physical distancing requirements restricted in-person training. We conducted evaluations in both countries to assess the practical application of this digital training approach for contraceptive introduction. The evaluation consisted of a post-training survey, an observational assessment conducted during post-training supportive supervision, and an estimation of training costs.In both countries, a majority (88.6% in Uganda and 64.3% in Senegal) scored above 80% on a DMPA-SC knowledge test following the training. In Senegal, where there was a comparison group of providers trained in person, those providers scored similar on the post-test to eLearners. Providers in both groups and in both countries felt more prepared to administer DMPA-SC or offer self-injection to clients after receiving a supervision visit (93%–98% of eLearners felt very prepared after supervision as compared to 45%–72% prior). The evaluation results suggest that digital approaches offer a number of benefits, can be cost-effective, and are most optimal when blended with in-person training and/or supportive supervision.




at

Innovations in Providing HIV Index Testing Services: A Retrospective Evaluation of Partner Elicitation Models in Southern Nigeria

ABSTRACTBackground: This analysis aimed to evaluate the effectiveness of eliciting sexual partners from HIV-positive clients using the elicitation box model (where an HIV-positive index can report sexual contacts on paper and insert in a box for a health care provider to contact at a later time) compared to the conventional model (in which a health care provider elicits sexual contacts directly from clients) in Akwa Ibom, Southern Nigeria.Methods: Between March 2021 and April 2022, data were collected from index testing registers at 4 health facilities with a high volume of HIV clients currently on treatment in 4 local government areas in Akwa Ibom State. Primary outcome analyzed was the elicitation ratio (number of partners elicited per HIV-index offered index testing services). Secondary outcomes were the index testing acceptance (index HIV-positive clients accepted index testing service), testing coverage (partners tested for HIV from a list of partners elicited from HIV-index accepted index testing services), testing yield (index partners identified HIV positive from index partners HIV-tested), and linkage rate (index partners identified HIV positive and linked to antiretroviral therapy).Results: Of the total 2,705 index clients offered index testing services, 91.9% accepted, with 2,043 and 439 indexes opting for conventional elicitation and elicitation box models, respectively. A total of 3,796 sexual contacts were elicited: 2,546 using the conventional model (elicitation ratio=1:1) and 1,250 using the elicitation box model (elicitation ratio=1:3). Testing coverage was significantly higher in the conventional compared to the elicitation box model (P<.001). However, there was no significant difference in the testing yield (P=.81) and linkage rate using the conventional compared to elicitation box models (P=.13).Conclusion: The implementation of the elicitation box model resulted in an increase in partner elicitation compared to the conventional model. Increasing the testing coverage by implementing the elicitation box model should be considered.