as A Note on Cores and Quasi Relative Interiors in Partially Finite Convex Programming. (arXiv:2005.03265v1 [math.FA]) By arxiv.org Published On :: The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis' framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive. Full Article
as Dynamical Phase Transitions for Fluxes of Mass on Finite Graphs. (arXiv:2005.03262v1 [cond-mat.stat-mech]) By arxiv.org Published On :: We study the time-averaged flux in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flux is given by a variational formulation involving paths of the density and flux. We give sufficient conditions under which the large deviations of a given time averaged flux is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph. Full Article
as Approximate Performance Measures for a Two-Stage Reneging Queue. (arXiv:2005.03239v1 [math.PR]) By arxiv.org Published On :: We study a two-stage reneging queue with Poisson arrivals, exponential services, and two levels of exponential reneging behaviors, extending the popular Erlang A model that assumes a constant reneging rate. We derive approximate analytical formulas representing performance measures for the two-stage queue following the Markov chain decomposition approach. Our formulas not only give accurate results spanning the heavy-traffic to the light-traffic regimes, but also provide insight into capacity decisions. Full Article
as The UCT problem for nuclear $C^ast$-algebras. (arXiv:2005.03184v1 [math.OA]) By arxiv.org Published On :: In recent years, a large class of nuclear $C^ast$-algebras have been classified, modulo an assumption on the Universal Coefficient Theorem (UCT). We think this assumption is redundant and propose a strategy for proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap between reduction theorems and examples. While many such bridges are possible, various approximate ideal structures appear quite promising. Full Article
as Solid hulls and cores of classes of weighted entire functions defined in terms of associated weight functions. (arXiv:2005.03167v1 [math.FA]) By arxiv.org Published On :: In the spirit of very recent articles by J. Bonet, W. Lusky and J. Taskinen we are studying the so-called solid hulls and cores of spaces of weighted entire functions when the weights are given in terms of associated weight functions coming from weight sequences. These sequences are required to satisfy certain (standard) growth and regularity properties which are frequently arising and used in the theory of ultradifferentiable and ultraholomorphic function classes (where also the associated weight function plays a prominent role). Thanks to this additional information we are able to see which growth behavior the so-called "Lusky-numbers", arising in the representations of the solid hulls and cores, have to satisfy resp. if such numbers can exist. Full Article
as Functional convex order for the scaled McKean-Vlasov processes. (arXiv:2005.03154v1 [math.PR]) By arxiv.org Published On :: We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{tin[0, T]}$ and $Y=(Y_{t})_{tin[0, T]}$ defined by [egin{cases} dX_{t}=(alpha X_{t}+eta)dt+sigma(t, X_{t}, mu_{t})dB_{t}, quad X_{0}in L^{p}(mathbb{P}),\ dY_{t}=(alpha Y_{t},+eta)dt+ heta(t, Y_{t}, u_{t})dB_{t}, quad Y_{0}in L^{p}(mathbb{P}). end{cases}] If we make the convexity and monotony assumption (only) on $sigma$ and if $sigmaleq heta$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 leq Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ with polynomial growth defined on the path space, we have $mathbb{E}F(X)leqmathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $mathbb{E},Gig(X, (mu_t)_{tin[0, T]}ig)leq mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)$ under appropriate conditions. The symmetric setting is also valid, that is, if $ heta leq sigma$ and $Y_0 leq X_0$ with respect to the convex order, then $mathbb{E},F(Y) leq mathbb{E},F(X)$ and $mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)leq mathbb{E},G(X, (mu_t)_{tin[0, T]})$. The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation. Full Article
as Quasi-Sure Stochastic Analysis through Aggregation and SLE$_kappa$ Theory. (arXiv:2005.03152v1 [math.PR]) By arxiv.org Published On :: We study SLE$_{kappa}$ theory with elements of Quasi-Sure Stochastic Analysis through Aggregation. Specifically, we show how the latter can be used to construct the SLE$_{kappa}$ traces quasi-surely (i.e. simultaneously for a family of probability measures with certain properties) for $kappa in mathcal{K}cap mathbb{R}_+ setminus ([0, epsilon) cup {8})$, for any $epsilon>0$ with $mathcal{K} subset mathbb{R}_{+}$ a nontrivial compact interval, i.e. for all $kappa$ that are not in a neighborhood of zero and are different from $8$. As a by-product of the analysis, we show in this language a version of the continuity in $kappa$ of the SLE$_{kappa}$ traces for all $kappa$ in compact intervals as above. Full Article
as Categorifying Hecke algebras at prime roots of unity, part I. (arXiv:2005.03128v1 [math.RT]) By arxiv.org Published On :: We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel. Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable. Full Article
as A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA]) By arxiv.org Published On :: Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes. Full Article
as Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG]) By arxiv.org Published On :: We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor. Full Article
as General Asymptotic Regional Gradient Observer. (arXiv:2005.03009v1 [math.OC]) By arxiv.org Published On :: The main purpose of this paper is to study and characterize the existing of general asymptotic regional gradient observer which observe the current gradient state of the original system in connection with gradient strategic sensors. Thus, we give an approach based to Luenberger observer theory of linear distributed parameter systems which is enabled to determinate asymptotically regional gradient estimator of current gradient system state. More precisely, under which condition the notion of asymptotic regional gradient observability can be achieved. Furthermore, we show that the measurement structures allows the existence of general asymptotic regional gradient observer and we give a sufficient condition for such asymptotic regional gradient observer in general case. We also show that, there exists a dynamical system for the considered system is not general asymptotic gradient observer in the usual sense, but it may be general asymptotic regional gradient observer. Then, for this purpose we present various results related to different types of sensor structures, domains and boundary conditions in two dimensional distributed diffusion systems Full Article
as GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED) By arxiv.org Published On :: High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model. Full Article
as GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. (arXiv:2005.02936v2 [cs.CV] UPDATED) By arxiv.org Published On :: Input transformation based defense strategies fall short in defending against strong adversarial attacks. Some successful defenses adopt approaches that either increase the randomness within the applied transformations, or make the defense computationally intensive, making it substantially more challenging for the attacker. However, it limits the applicability of such defenses as a pre-processing step, similar to computationally heavy approaches that use retraining and network modifications to achieve robustness to perturbations. In this work, we propose a defense strategy that applies random image corruptions to the input image alone, constructs a self-correlation based subspace followed by a projection operation to suppress the adversarial perturbation. Due to its simplicity, the proposed defense is computationally efficient as compared to the state-of-the-art, and yet can withstand huge perturbations. Further, we develop proximity relationships between the projection operator of a clean image and of its adversarially perturbed version, via bounds relating geodesic distance on the Grassmannian to matrix Frobenius norms. We empirically show that our strategy is complementary to other weak defenses like JPEG compression and can be seamlessly integrated with them to create a stronger defense. We present extensive experiments on the ImageNet dataset across four different models namely InceptionV3, ResNet50, VGG16 and MobileNet models with perturbation magnitude set to {epsilon} = 16. Unlike state-of-the-art approaches, even without any retraining, the proposed strategy achieves an absolute improvement of ~ 4.5% in defense accuracy on ImageNet. Full Article
as A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED) By arxiv.org Published On :: Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values. Full Article
as Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED) By arxiv.org Published On :: In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance. Full Article
as The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED) By arxiv.org Published On :: Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets. Full Article
as Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED) By arxiv.org Published On :: Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes. Full Article
as Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED) By arxiv.org Published On :: The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations. Full Article
as On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED) By arxiv.org Published On :: With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)). Full Article
as Teaching Cameras to Feel: Estimating Tactile Physical Properties of Surfaces From Images. (arXiv:2004.14487v2 [cs.CV] UPDATED) By arxiv.org Published On :: The connection between visual input and tactile sensing is critical for object manipulation tasks such as grasping and pushing. In this work, we introduce the challenging task of estimating a set of tactile physical properties from visual information. We aim to build a model that learns the complex mapping between visual information and tactile physical properties. We construct a first of its kind image-tactile dataset with over 400 multiview image sequences and the corresponding tactile properties. A total of fifteen tactile physical properties across categories including friction, compliance, adhesion, texture, and thermal conductance are measured and then estimated by our models. We develop a cross-modal framework comprised of an adversarial objective and a novel visuo-tactile joint classification loss. Additionally, we develop a neural architecture search framework capable of selecting optimal combinations of viewing angles for estimating a given physical property. Full Article
as Warwick Image Forensics Dataset for Device Fingerprinting In Multimedia Forensics. (arXiv:2004.10469v2 [cs.CV] UPDATED) By arxiv.org Published On :: Device fingerprints like sensor pattern noise (SPN) are widely used for provenance analysis and image authentication. Over the past few years, the rapid advancement in digital photography has greatly reshaped the pipeline of image capturing process on consumer-level mobile devices. The flexibility of camera parameter settings and the emergence of multi-frame photography algorithms, especially high dynamic range (HDR) imaging, bring new challenges to device fingerprinting. The subsequent study on these topics requires a new purposefully built image dataset. In this paper, we present the Warwick Image Forensics Dataset, an image dataset of more than 58,600 images captured using 14 digital cameras with various exposure settings. Special attention to the exposure settings allows the images to be adopted by different multi-frame computational photography algorithms and for subsequent device fingerprinting. The dataset is released as an open-source, free for use for the digital forensic community. Full Article
as Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED) By arxiv.org Published On :: A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions. Full Article
as Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED) By arxiv.org Published On :: Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems. Full Article
as A memory of motion for visual predictive control tasks. (arXiv:2001.11759v3 [cs.RO] UPDATED) By arxiv.org Published On :: This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Standard regression techniques, such as k-nearest neighbors and Gaussian process regression, are used to query the memory and provide on-line a warm-start and a way point to the control optimization process. The proposed technique allows the control scheme to achieve high performance and, at the same time, keep the computational time limited. Simulation and experimental results, carried out with a 7-axis manipulator, show the effectiveness of the approach. Full Article
as Continuous speech separation: dataset and analysis. (arXiv:2001.11482v3 [cs.SD] UPDATED) By arxiv.org Published On :: This paper describes a dataset and protocols for evaluating continuous speech separation algorithms. Most prior studies on speech separation use pre-segmented signals of artificially mixed speech utterances which are mostly emph{fully} overlapped, and the algorithms are evaluated based on signal-to-distortion ratio or similar performance metrics. However, in natural conversations, a speech signal is continuous, containing both overlapped and overlap-free components. In addition, the signal-based metrics have very weak correlations with automatic speech recognition (ASR) accuracy. We think that not only does this make it hard to assess the practical relevance of the tested algorithms, it also hinders researchers from developing systems that can be readily applied to real scenarios. In this paper, we define continuous speech separation (CSS) as a task of generating a set of non-overlapped speech signals from a extit{continuous} audio stream that contains multiple utterances that are emph{partially} overlapped by a varying degree. A new real recorded dataset, called LibriCSS, is derived from LibriSpeech by concatenating the corpus utterances to simulate a conversation and capturing the audio replays with far-field microphones. A Kaldi-based ASR evaluation protocol is also established by using a well-trained multi-conditional acoustic model. By using this dataset, several aspects of a recently proposed speaker-independent CSS algorithm are investigated. The dataset and evaluation scripts are available to facilitate the research in this direction. Full Article
as Intra-Variable Handwriting Inspection Reinforced with Idiosyncrasy Analysis. (arXiv:1912.12168v2 [cs.CV] UPDATED) By arxiv.org Published On :: In this paper, we work on intra-variable handwriting, where the writing samples of an individual can vary significantly. Such within-writer variation throws a challenge for automatic writer inspection, where the state-of-the-art methods do not perform well. To deal with intra-variability, we analyze the idiosyncrasy in individual handwriting. We identify/verify the writer from highly idiosyncratic text-patches. Such patches are detected using a deep recurrent reinforcement learning-based architecture. An idiosyncratic score is assigned to every patch, which is predicted by employing deep regression analysis. For writer identification, we propose a deep neural architecture, which makes the final decision by the idiosyncratic score-induced weighted average of patch-based decisions. For writer verification, we propose two algorithms for patch-fed deep feature aggregation, which assist in authentication using a triplet network. The experiments were performed on two databases, where we obtained encouraging results. Full Article
as Measuring Social Bias in Knowledge Graph Embeddings. (arXiv:1912.02761v2 [cs.CL] UPDATED) By arxiv.org Published On :: It has recently been shown that word embeddings encode social biases, with a harmful impact on downstream tasks. However, to this point there has been no similar work done in the field of graph embeddings. We present the first study on social bias in knowledge graph embeddings, and propose a new metric suitable for measuring such bias. We conduct experiments on Wikidata and Freebase, and show that, as with word embeddings, harmful social biases related to professions are encoded in the embeddings with respect to gender, religion, ethnicity and nationality. For example, graph embeddings encode the information that men are more likely to be bankers, and women more likely to be homekeepers. As graph embeddings become increasingly utilized, we suggest that it is important the existence of such biases are understood and steps taken to mitigate their impact. Full Article
as Multi-group Multicast Beamforming: Optimal Structure and Efficient Algorithms. (arXiv:1911.08925v2 [eess.SP] UPDATED) By arxiv.org Published On :: This paper considers the multi-group multicast beamforming optimization problem, for which the optimal solution has been unknown due to the non-convex and NP-hard nature of the problem. By utilizing the successive convex approximation numerical method and Lagrangian duality, we obtain the optimal multicast beamforming solution structure for both the quality-of-service (QoS) problem and the max-min fair (MMF) problem. The optimal structure brings valuable insights into multicast beamforming: We show that the notion of uplink-downlink duality can be generalized to the multicast beamforming problem. The optimal multicast beamformer is a weighted MMSE filter based on a group-channel direction: a generalized version of the optimal downlink multi-user unicast beamformer. We also show that there is an inherent low-dimensional structure in the optimal multicast beamforming solution independent of the number of transmit antennas, leading to efficient numerical algorithm design, especially for systems with large antenna arrays. We propose efficient algorithms to compute the multicast beamformer based on the optimal beamforming structure. Through asymptotic analysis, we characterize the asymptotic behavior of the multicast beamformers as the number of antennas grows, and in turn, provide simple closed-form approximate multicast beamformers for both the QoS and MMF problems. This approximation offers practical multicast beamforming solutions with a near-optimal performance at very low computational complexity for large-scale antenna systems. Full Article
as t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams. (arXiv:1911.06147v2 [cs.CL] UPDATED) By arxiv.org Published On :: A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations. Full Article
as Box Covers and Domain Orderings for Beyond Worst-Case Join Processing. (arXiv:1909.12102v2 [cs.DB] UPDATED) By arxiv.org Published On :: Recent beyond worst-case optimal join algorithms Minesweeper and its generalization Tetris have brought the theory of indexing and join processing together by developing a geometric framework for joins. These algorithms take as input an index $mathcal{B}$, referred to as a box cover, that stores output gaps that can be inferred from traditional indexes, such as B+ trees or tries, on the input relations. The performances of these algorithms highly depend on the certificate of $mathcal{B}$, which is the smallest subset of gaps in $mathcal{B}$ whose union covers all of the gaps in the output space of a query $Q$. We study how to generate box covers that contain small size certificates to guarantee efficient runtimes for these algorithms. First, given a query $Q$ over a set of relations of size $N$ and a fixed set of domain orderings for the attributes, we give a $ ilde{O}(N)$-time algorithm called GAMB which generates a box cover for $Q$ that is guaranteed to contain the smallest size certificate across any box cover for $Q$. Second, we show that finding a domain ordering to minimize the box cover size and certificate is NP-hard through a reduction from the 2 consecutive block minimization problem on boolean matrices. Our third contribution is a $ ilde{O}(N)$-time approximation algorithm called ADORA to compute domain orderings, under which one can compute a box cover of size $ ilde{O}(K^r)$, where $K$ is the minimum box cover for $Q$ under any domain ordering and $r$ is the maximum arity of any relation. This guarantees certificates of size $ ilde{O}(K^r)$. We combine ADORA and GAMB with Tetris to form a new algorithm we call TetrisReordered, which provides several new beyond worst-case bounds. On infinite families of queries, TetrisReordered's runtimes are unboundedly better than the bounds stated in prior work. Full Article
as The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale. (arXiv:1909.04422v2 [cs.CV] UPDATED) By arxiv.org Published On :: Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign. Full Article
as A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED) By arxiv.org Published On :: The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher. Full Article
as Fast Cross-validation in Harmonic Approximation. (arXiv:1903.10206v3 [math.NA] UPDATED) By arxiv.org Published On :: Finding a good regularization parameter for Tikhonov regularization problems is a though yet often asked question. One approach is to use leave-one-out cross-validation scores to indicate the goodness of fit. This utilizes only the noisy function values but, on the downside, comes with a high computational cost. In this paper we present a general approach to shift the main computations from the function in question to the node distribution and, making use of FFT and FFT-like algorithms, even reduce this cost tremendously to the cost of the Tikhonov regularization problem itself. We apply this technique in different settings on the torus, the unit interval, and the two-dimensional sphere. Given that the sampling points satisfy a quadrature rule our algorithm computes the cross-validations scores in floating-point precision. In the cases of arbitrarily scattered nodes we propose an approximating algorithm with the same complexity. Numerical experiments indicate the applicability of our algorithms. Full Article
as Keeping out the Masses: Understanding the Popularity and Implications of Internet Paywalls. (arXiv:1903.01406v4 [cs.CY] UPDATED) By arxiv.org Published On :: Funding the production of quality online content is a pressing problem for content producers. The most common funding method, online advertising, is rife with well-known performance and privacy harms, and an intractable subject-agent conflict: many users do not want to see advertisements, depriving the site of needed funding. Because of these negative aspects of advertisement-based funding, paywalls are an increasingly popular alternative for websites. This shift to a "pay-for-access" web is one that has potentially huge implications for the web and society. Instead of a system where information (nominally) flows freely, paywalls create a web where high quality information is available to fewer and fewer people, leaving the rest of the web users with less information, that might be also less accurate and of lower quality. Despite the potential significance of a move from an "advertising-but-open" web to a "paywalled" web, we find this issue understudied. This work addresses this gap in our understanding by measuring how widely paywalls have been adopted, what kinds of sites use paywalls, and the distribution of policies enforced by paywalls. A partial list of our findings include that (i) paywall use is accelerating (2x more paywalls every 6 months), (ii) paywall adoption differs by country (e.g. 18.75% in US, 12.69% in Australia), (iii) paywalls change how users interact with sites (e.g. higher bounce rates, less incoming links), (iv) the median cost of an annual paywall access is $108 per site, and (v) paywalls are in general trivial to circumvent. Finally, we present the design of a novel, automated system for detecting whether a site uses a paywall, through the combination of runtime browser instrumentation and repeated programmatic interactions with the site. We intend this classifier to augment future, longitudinal measurements of paywall use and behavior. Full Article
as Asymptotic expansions of eigenvalues by both the Crouzeix-Raviart and enriched Crouzeix-Raviart elements. (arXiv:1902.09524v2 [math.NA] UPDATED) By arxiv.org Published On :: Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix--Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart--Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart--Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions. Full Article
as Machine learning topological phases in real space. (arXiv:1901.01963v4 [cond-mat.mes-hall] UPDATED) By arxiv.org Published On :: We develop a supervised machine learning algorithm that is able to learn topological phases for finite condensed matter systems from bulk data in real lattice space. The algorithm employs diagonalization in real space together with any supervised learning algorithm to learn topological phases through an eigenvector ensembling procedure. We combine our algorithm with decision trees and random forests to successfully recover topological phase diagrams of Su-Schrieffer-Heeger (SSH) models from bulk lattice data in real space and show how the Shannon information entropy of ensembles of lattice eigenvectors can be used to retrieve a signal detailing how topological information is distributed in the bulk. The discovery of Shannon information entropy signals associated with topological phase transitions from the analysis of data from several thousand SSH systems illustrates how model explainability in machine learning can advance the research of exotic quantum materials with properties that may power future technological applications such as qubit engineering for quantum computing. Full Article
as Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR]) By arxiv.org Published On :: In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy. Full Article
as On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation. (arXiv:2005.03642v1 [cs.CL]) By arxiv.org Published On :: The standard training algorithm in neural machine translation (NMT) suffers from exposure bias, and alternative algorithms have been proposed to mitigate this. However, the practical impact of exposure bias is under debate. In this paper, we link exposure bias to another well-known problem in NMT, namely the tendency to generate hallucinations under domain shift. In experiments on three datasets with multiple test domains, we show that exposure bias is partially to blame for hallucinations, and that training with Minimum Risk Training, which avoids exposure bias, can mitigate this. Our analysis explains why exposure bias is more problematic under domain shift, and also links exposure bias to the beam search problem, i.e. performance deterioration with increasing beam size. Our results provide a new justification for methods that reduce exposure bias: even if they do not increase performance on in-domain test sets, they can increase model robustness to domain shift. Full Article
as Mutli-task Learning with Alignment Loss for Far-field Small-Footprint Keyword Spotting. (arXiv:2005.03633v1 [eess.AS]) By arxiv.org Published On :: In this paper, we focus on the task of small-footprint keyword spotting under the far-field scenario. Far-field environments are commonly encountered in real-life speech applications, and it causes serve degradation of performance due to room reverberation and various kinds of noises. Our baseline system is built on the convolutional neural network trained with pooled data of both far-field and close-talking speech. To cope with the distortions, we adopt the multi-task learning scheme with alignment loss to reduce the mismatch between the embedding features learned from different domains of data. Experimental results show that our proposed method maintains the performance on close-talking speech and achieves significant improvement on the far-field test set. Full Article
as Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV]) By arxiv.org Published On :: Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation. Full Article
as Real-Time Context-aware Detection of Unsafe Events in Robot-Assisted Surgery. (arXiv:2005.03611v1 [cs.RO]) By arxiv.org Published On :: Cyber-physical systems for robotic surgery have enabled minimally invasive procedures with increased precision and shorter hospitalization. However, with increasing complexity and connectivity of software and major involvement of human operators in the supervision of surgical robots, there remain significant challenges in ensuring patient safety. This paper presents a safety monitoring system that, given the knowledge of the surgical task being performed by the surgeon, can detect safety-critical events in real-time. Our approach integrates a surgical gesture classifier that infers the operational context from the time-series kinematics data of the robot with a library of erroneous gesture classifiers that given a surgical gesture can detect unsafe events. Our experiments using data from two surgical platforms show that the proposed system can detect unsafe events caused by accidental or malicious faults within an average reaction time window of 1,693 milliseconds and F1 score of 0.88 and human errors within an average reaction time window of 57 milliseconds and F1 score of 0.76. Full Article
as Delayed approximate matrix assembly in multigrid with dynamic precisions. (arXiv:2005.03606v1 [cs.MS]) By arxiv.org Published On :: The accurate assembly of the system matrix is an important step in any code that solves partial differential equations on a mesh. We either explicitly set up a matrix, or we work in a matrix-free environment where we have to be able to quickly return matrix entries upon demand. Either way, the construction can become costly due to non-trivial material parameters entering the equations, multigrid codes requiring cascades of matrices that depend upon each other, or dynamic adaptive mesh refinement that necessitates the recomputation of matrix entries or the whole equation system throughout the solve. We propose that these constructions can be performed concurrently with the multigrid cycles. Initial geometric matrices and low accuracy integrations kickstart the multigrid, while improved assembly data is fed to the solver as and when it becomes available. The time to solution is improved as we eliminate an expensive preparation phase traditionally delaying the actual computation. We eliminate algorithmic latency. Furthermore, we desynchronise the assembly from the solution process. This anarchic increase of the concurrency level improves the scalability. Assembly routines are notoriously memory- and bandwidth-demanding. As we work with iteratively improving operator accuracies, we finally propose the use of a hierarchical, lossy compression scheme such that the memory footprint is brought down aggressively where the system matrix entries carry little information or are not yet available with high accuracy. Full Article
as VM placement over WDM-TDM AWGR PON Based Data Centre Architecture. (arXiv:2005.03590v1 [cs.NI]) By arxiv.org Published On :: Passive optical networks (PON) can play a vital role in data centres and access fog solutions by providing scalable, cost and energy efficient architectures. This paper proposes a Mixed Integer Linear Programming (MILP) model to optimize the placement of virtual machines (VMs) over an energy efficient WDM-TDM AWGR PON based data centre architecture. In this optimization, the use of VMs and their requirements affect the optimum number of servers utilized in the data centre when minimizing the power consumption and enabling more efficient utilization of servers is considered. Two power consumption minimization objectives were examined for up to 20 VMs with different computing and networking requirements. The results indicate that considering the minimization of the processing and networking power consumption in the allocation of VMs in the WDM-TDM AWGR PON can reduce the networking power consumption by up to 70% compared to the minimization of the processing power consumption. Full Article
as A Reduced Basis Method For Fractional Diffusion Operators II. (arXiv:2005.03574v1 [math.NA]) By arxiv.org Published On :: We present a novel numerical scheme to approximate the solution map $smapsto u(s) := mathcal{L}^{-s}f$ to partial differential equations involving fractional elliptic operators. Reinterpreting $mathcal{L}^{-s}$ as interpolation operator allows us to derive an integral representation of $u(s)$ which includes solutions to parametrized reaction-diffusion problems. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. Avoiding further discretization, the integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation $L$ of the operator whose inverse is projected to a low-dimensional space, where explicit diagonalization is feasible. The universal character of the underlying $s$-independent reduced space allows the approximation of $(u(s))_{sin(0,1)}$ in its entirety. We prove exponential convergence rates and confirm the analysis with a variety of numerical examples. Further improvements are proposed in the second part of this investigation to avoid inversion of $L$. Instead, we directly project the matrix to the reduced space, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance. Full Article
as QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol. (arXiv:2005.03564v1 [cs.CR]) By arxiv.org Published On :: To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols may face vulnerability to fully adaptive corruptions. In literature, researchers address this issue at the cost of performance. In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions without compromising on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality. Full Article
as Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling. (arXiv:2005.03555v1 [cs.LO]) By arxiv.org Published On :: We present a sound and complete method for the verification of qualitative liveness properties of replicated systems under stochastic scheduling. These are systems consisting of a finite-state program, executed by an unknown number of indistinguishable agents, where the next agent to make a move is determined by the result of a random experiment. We show that if a property of such a system holds, then there is always a witness in the shape of a Presburger stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due to the high complexity of the verification problem (non-elementary), we introduce an incomplete procedure for the construction of Presburger stage graphs, and implement it on top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders, and of the structural theory of Petri nets and vector addition systems. We apply our results to a set of benchmarks, in particular to a large collection of population protocols, a model of distributed computation extensively studied by the distributed computing community. Full Article
as Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI]) By arxiv.org Published On :: Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking. Full Article
as CounQER: A System for Discovering and Linking Count Information in Knowledge Bases. (arXiv:2005.03529v1 [cs.IR]) By arxiv.org Published On :: Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting predicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo. Full Article
as An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT]) By arxiv.org Published On :: In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative. Full Article
as Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET]) By arxiv.org Published On :: We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal. Full Article