as

Photovoltaic cell having a substrate glass made of aluminosilicate glass

A photovoltaic cell, for example a thin-film photovoltaic cell, having a substrate glass made of aluminosilicate glass, has a glass composition which has SiO2 and Al2O3 as well as the alkali metal oxide Na2O and the alkaline earth oxides CaO, MgO, and BaO, and optionally further components. The glass composition includes 10 to 16 wt.-% Na2O, >0 to 1 to 10 wt.-% BaO, and the ratio of CaO:MgO is in the range of 0.5 to 1.7. The aluminosilicate glass used is crystallization stable because of the selected quotient of CaO/MgO and has a transformation temperature >580° C. and a processing temperature




as

Glass ceramic body, substrate for mounting light-emitting element, and light emitting device

To provide a glass ceramic body wherein the deterioration of the reflectance due to black coloration is suppressed, and the unevenness of the firing shrinkage is suppressed. A glass ceramic body comprising a glass matrix and alumina particles dispersed therein, wherein the glass matrix is not crystallized, a ceramic part composed of the dispersed alumina particles has an α-alumina crystal structure and a crystal structure other than the α-alumina crystal structure.




as

Chemically strengthened glass for display device

The present invention relates to a chemically strengthened glass for a display device, having a visible light transmittance Tva of 50% or more and less than 91% at a thickness of 1 mm using A light source, and an excitation purity Pe of less than 0.5% at a thickness of 1 mm.




as

Alumino-borosilicate glass for the confinement of radioactive liquid effluents, and method for treating radioactive liquid effluents

An alumino-borosilicate glass for the confinement, isolation of a radioactive liquid effluent of medium activity, and a method for treating a radioactive liquid effluent of medium activity, wherein calcination of said effluent is carried out in order to obtain a calcinate, and a vitrification adjuvant is added to said calcinate.




as

Glass composition for producing high strength and high modulus fibers

A glass composition including SiO2 in an amount from 74.5 to 80.0% by weight, Al2O3 in an amount from 5.0 to 9.5%>> by weight, MgO in an amount from 8.75 to 14.75% by weight, CaO in an amount from 0.0 to 3.0% by weight, Li2O in an amount from 2.0 to 3.25% by weight, Na2O in an amount from 0.0 to 2.0% by weight is provided. Glass fibers formed from the inventive composition may be used in applications that require high strength, high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades, armor plating, and aerospace structures.




as

Glass substrate for flat panel display and method for manufacturing same

A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.




as

Strengthened borosilicate glass containers with improved damage tolerance

According to one embodiment, a glass container may include a body formed from a Type I, Class B glass composition according to ASTM Standard E438-92. The body may have an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. The body may also include a compressively stressed layer extending into the wall thickness from at least one of the outer surface and the inner surface. A lubricous coating may be positioned on at least a portion of the outer surface of the body, wherein the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.




as

Tempered glass substrate and method of producing the same

A tempered glass substrate has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 70% of SiO2, 12 to 21% of Al2O3, 0 to 3.5% of Li2O, 10 to 20% of Na2O, 0 to 15% of K2O, and 0 to 4.5% of TiO2, wherein the tempered glass substrate has a plate thickness of 1.5 mm or less, and an internal tensile stress in the tempered glass substrate is 15 to 150 MPa.




as

Optical glass

Provided is an optical glass that has desired optical properties, superior resistance to devitrification, and superior mass productivity. An optical glass is made of a SiO2—Nb2O5—TiO2-based glass having a refractive index (nd) of 1.75 to 1.95 and an Abbe's number (νd) of 15 to 35 and has an operation temperature range (ΔT=(temperature at 100.5 poise)−(liquidus temperature)) of 20° C. or more. The optical glass preferably contains, in percent by mass, 15% to 45% SiO2, 15% to 40% (but excluding 40%) Nb2O5 and 1% to 30% TiO2 as glass components.




as

Optical glass, optical element, and method for manufacturing optical glass

An optical glass including B3+, La3+ and Nb5+ as cationic components constituting the glass, wherein the optical glass satisfies the following expressions represented in cation percentages: 10 cat. %≦B3+≦50 cat. %;40 cat. %≦La3+≦65 cat. %;0 cat. %≦Nb5+≦40 cat. %;80 cat. %≦(total amount of B3++La3++Nb5+)≦100 cat. %; and0 cat. %≦Si4+≦10 cat. %;0 cat. %≦Ge4+≦5 cat. %;0 cat. %≦Mg2+≦5 cat. %;0 cat. %≦Ba2+≦10 cat. %;0 cat. %≦Ca2+≦10 cat. %;0 cat. %≦Sr2+≦10 cat. %;0 cat. %≦Zn2+≦20 cat. %;0 cat. %≦W6+≦5 cat. %;0 cat. %≦Zr4+≦5 cat. %;0 cat. %≦Ti4+≦5 cat. %;0 cat. %≦Bi3+≦5 cat. %;0 cat. %≦Ta5+≦10 cat. %;0 cat. %≦(total amount of Y3++Gd3+)≦20 cat. %; and0 cat. %≦(total amount of Yb3++Lu3+)≦10 cat. %.




as

Adsorption of acid gases

An adsorption process is disclosed for removal of acid gas contaminants from a liquid or gas which comprises providing an activated alumina adsorbent which is impregnated with a compound selected from the group consisting of one or more alkali metal compounds, one or more alkaline earth metal compounds, or a mixture of such compounds; contacting the liquid or gas containing acid gas contaminants with the activated alumina adsorbent to adsorb enough acid gas contaminant in the liquid or gas to lower the contaminant content of the liquid or gas, the alumina adsorbent being formed from agglomerated calcined alumina powder and provided with a mercury pore volume of pores greater than 500 angstroms at least 0.10 cc/g.




as

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using basic molecular sieves

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with a basic catalyst to convert a portion of the weakly basic nitrogen compounds to basic nitrogen compounds. The method also includes contacting the hydrocarbon feed stream with an acidic adsorbent to adsorb the basic nitrogen compounds from the stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




as

Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst

This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.




as

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using acidic clay

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




as

High octane unleaded aviation gasoline

High octane unleaded aviation fuel compositions having high aromatics content and a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa, freezing point is less than −58° C. is provided.




as

Biomass feed system including gas assist

An improved biomass feed system and processes for transporting biomass to downstream processing locations are disclosed. The system uses a pressurized gas to assist in the transporting of the biomass to the conversion reactor.




as

Co-processing of biomass and synthetic polymer based materials in a pyrolysis conversion process

Disclosed is a process for biomass conversion which includes co-processing the biomass with thermoplastic and non-thermoplastic polymer based materials in a catalytic pyrolysis reactor to convert such to liquid hydrocarbons; wherein hydrogen atoms originating with the polymer materials can remove oxygen from oxygenated hydrocarbons produced in the conversion of the biomass in the reactor.




as

Method of fabricating Ag-doped Te-based nano-material and memory device using the same

A nano-ionic memory device is provided. The memory device includes a substrate, a chemically inactive lower electrode provided on the substrate, a solid electrolyte layer provided on the lower electrode and including a silver (Ag)-doped telluride (Te)-based nano-material, and an oxidizable upper electrode provided on the electrolyte layer.




as

Nanostructured thermoplastic polyimide films

Structured films containing multi-walled carbon nanotubes (“MWCNTs”) have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide (“PI”) films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60° C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.




as

Water-borne paints based on epoxy resins

An aqueous epoxy resin system AB is described comprising an aqueously dispersed epoxy resin A having, on the average, at least one epoxy group per molecule, and a water-soluble or water-dispersible curing agent B which comprises the reaction product of an amine B1 having at least one primary and/or at least one secondary amino group, an adduct B2 of a polyalkylene ether polyol B21 and an epoxide component B22, and an aromatic compound B3 having at least one acidic group selected from the group consisting of hydroxyl and carboxyl groups, which system can be applied by rolling, spraying or brushing to provide corrosion protection on base metals.




as

Epoxy group-terminated polymers, the compositions thereof and the use thereof as impact resistance modifiers

The present invention relates to epoxy group-terminated polymers of the formula (I). Said epoxy group-terminated polymers are suited extremely well as impact resistance modifiers, particularly in epoxy resin compositions. They are particularly suited for use in heat-curing epoxy resin adhesives. It has been found that such epoxy resin compositions not only have excellent mechanical properties and high glass transition temperatures, but also above all improved impact resistance properties, both at room temperature and at low temperatures.




as

Paste-like bone cement

The present invention relates to a kit comprising at least two pastes, A and B. Paste A contains at least one monomer for radical polymerization; and at least one barbituric acid derivative as polymerization initiator. Paste B contains at least one monomer for radical polymerization; and at least one heavy metal compound as polymerization accelerator that is selected from heavy metal salts and heavy metal complexes. Paste B contains less than 0.01% by weight, relative to the total weight of paste B, of a peroxide; at least one of the pastes A and B contains-at least one filling agent that is poorly soluble or insoluble in the monomer for radical polymerization in either paste A or B respectively; and at least one of the pastes A and B contains at least one inorganic halide salt.




as

Substances for use as bisphenol a substitutes

Bis-Phenol A (BPA) can now be replaced in industrial processes by BPA substitutes. The BPA substitutes can have structures that are derivatives of BPA. The BPA substitutes can be used in preparing epoxy composition, polycarbonate compositions, and polysulfonate compositions or for other uses in place of BPA.




as

Hydroswellable, segmented, aliphatic polyurethanes and polyurethane ureas

Hydroswellable, absorbable and non-absorbable, aliphatic, segmented polyurethanes and polyurethane-urea capable of swelling in the biological environment with associated increase in volume of at least 3 percent have more than one type of segments, including those derived from polyethylene glycol and the molecular chains are structurally tailored to allow the use of corresponding formulations and medical devices as carriers for bioactive agents, rheological modifiers of cyanoacrylate-based tissue adhesives, as protective devices for repairing defective or diseased components of articulating joints and their cartilage, and scaffolds for cartilage tissue engineering.




as

Salts of dehydroacetic acid as a pyrithione stabilizer in plastics

The invention provides a method for preventing discoloration of pyrithione-containing materials, in particular plastic materials or other material such as paints, coatings, adhesives or textiles which are exposed to an outdoor environment. The method is likewise suited for preventing discoloration of other pyrithione-containing materials such as personal care compositions like shampoos. A discoloration inhibitor that includes dehydroacetic acid or a salt thereof is added to the pyrithione-containing material. The discoloration is prevented without the addition of a cyclic organic phosphoric acid ester or an organic phosphite. Use of the discoloration inhibitor does not interfere with the antimicrobial effect of the pyrithione.




as

Method for producing flame-proofed thermoplastic molding compounds

The invention relates to a method for producing thermoplastic molding compounds, comprising: A) 40 to 99 wt % of at least one thermoplastic polymer, B) 1 to 60 wt % of a flame-proofing agent component containing an expandable graphite, and C) 0 to 60 wt % of further additives, by melt-mixing components A), B) and C) in a screw-type extruder, wherein the screw-type extruder, along the feed direction, comprises, in the following order, at least one dosing zone, a plastifying zone, a homogenizing zone, a second dosing zone, and a discharge zone, in that the dosing takes place into the screw-type extruder having the length L, wherein the length L is defined as the section starting with the first dosing unit for adding components A, B and/or C and ending, in the feed direction, at the discharge opening, a melt is generated after adding components A, B and C in the range of 0 liter to 0.15 liter in a first method step in the presence of component B1), and in a second method step, after the addition of component B1) in the range of 0.5 liter to 0.95 liter, component B1) is mixed into said melt, wherein said method offers technical advantages.




as

Polymerization process and raman analysis for olefin-based polymers

The invention provides a process for monitoring and/or adjusting a dispersion polymerization of an olefin-based polymer, the process comprising monitoring the concentration of the carbon-carbon unsaturations in the dispersion using Raman Spectroscopy. The invention also provides a process for polymerizing an olefin-based polymer, the process comprising polymerizing one or more monomer types, in the presence of at least one catalyst and at least one solvent, to form the polymer as a dispersed phase in the solvent; and monitoring the concentration of the carbon-carbon unsaturations in the dispersion using Raman Spectroscopy.




as

Epoxy resin composition for encapsulating semiconductor, semiconductor device, and mold releasing agent

Disclosed is an epoxy resin composition used for encapsulation of a semiconductor containing an epoxy resin (A), a curing agent (B), an inorganic filler (C) and a mold releasing agent, in which the mold releasing agent contains a compound (D) having a copolymer of an α-olefin having 28 to 60 carbon atoms and a maleic anhydride esterified with a long chain aliphatic alcohol having 10 to 25 carbon atoms.




as

Phosphorylcholine-based amphiphilic silicones for medical applications

Amphiphilic biomimetic phosphorylcholine-containing silicone compounds for use in both topical and internal applications as components in biomedical devices. The silicone compounds, which include zwitterionic phosphorylcholine groups, may be polymerizable or non-polymerizable. Specific examples of applications include use as active functional components in ophthalmic lenses, ophthalmic lens care solutions, liquid bandages, wound dressings, and lubricious and anti-thrombogenic coatings.




as

Intelligently responding to hardware failures so as to optimize system performance

A method, system and computer program product for intelligently responding to hardware failures so as to optimize system performance. An administrative server monitors the utilization of the hardware as well as the software components running on the hardware to assess a context of the software components running on the hardware. Upon detecting a hardware failure, the administrative server analyzes the hardware failure to determine the type of hardware failure and analyzes the properties of the workload running on the failed hardware. The administrative server then responds to the detected hardware failure based on various factors, including the type of the hardware failure, the properties of the workload running on the failed hardware and the context of the software running on the failed hardware. In this manner, by taking into consideration such factors in responding to the detected hardware failure, a more intelligent response is provided that optimizes system performance.




as

Securing crash dump files

In a computer storage system, crash dump files are secured without power fencing in a cluster of a plurality of nodes connected to a storage system. Upon an occurrence of a panic of a crashing node and prior to receiving a panic message of the crashing node by a surviving node loading, in the cluster, a capturing node to become active, prior to a totem token being declared lost by the surviving node, for capturing the crash dump files of the crashing node, while manipulating the surviving node to continue to operate under the assumption the power fencing was performed on the crashing node.




as

Functional fabric based test wrapper for circuit testing of IP blocks

A Test Wrapper and associated Test Access Mechanism (TAM) architecture for facilitating testing of IP blocks integrated on a System on a Chip (SoC). The TAM architecture includes a Test Controller and one or more Test Wrappers that are integrated on the SoC proximate to IP blocks. Test data and commands corresponding to input from an external tester are packaged by the Test Controller and sent to one or more Test Wrappers via an interconnect fabric. The Test Wrappers interface with one or more IP test ports to provide test data, control, and/or stimulus signals to the IP blocks to facilitate circuit-level testing of the IP blocks. Test results for the circuit-level tests are returned to the Test Controller via the fabric. Test Wrappers may be configured to pass through interconnect signals, enabling functional testing of IP blocks to be facilitated via test packages and test results transmitted between the Test Controller and the IP blocks via the fabric. Test wrappers may also be configured to test multiple IP blocks comprising a test partition.




as

Method for transmitting data from an infrastructure of a radio communication network to user devices, and devices for implementing the method

Within a radio communication network infrastructure transmitting data organized into a sequence of symbols to a receiving device over a plurality of radio links, data to be transmitted is encoded according to an error correction coding scheme in order to produce a set of systematic symbols and a set of corresponding redundancy symbols; the systematic symbols and a first subset of the corresponding redundancy symbols are transmitted, over a first radio link among said plurality of radio links, in broadcast mode, and a second subset of the corresponding redundancy symbols, distinct from the first one, is transmitted over a second radio link among said plurality of radio links.




as

Techniques for reusing components of a logical operations functional block as an error correction code correction unit

A logical operations functional block for an execution unit of a processor includes a first input data link for a first operand and a second input data link for a second operand. The execution unit includes a register connected to an error correction code detection unit. The logical operations functional block includes a look-up table configured to receive an error correction code syndrome from the error correction code detection unit. The logical operations functional block also includes a multiplexer configured to receive an output signal from the look-up table at a first input and the first operand at a second input, wherein an output of the multiplexer is coupled to the first input data link of a logical functional unit.




as

Method and facility for treating carbonaceous radioactive waste

The invention relates to the treatment of carbonaceous radioactive waste, comprising the delivery of waste to one or more radioactive isotope separation stations isotopes, said isotopes being among at least carbon 14, chlorine 36, and tritium. Advantageously, the delivery to each of the stations occurs in wet form, with water being a common medium for conveying the waste to each of the separation stations.




as

Thermal treatment of carbonaceous waste

A method is provided for the decontamination of radioactive carbonaceous material, such as graphite, in which an injection of steam is planned into the material, concurrent with a first roasting thermal treatment of the material at a temperature between 1200° C. and 1500° C. Advantageously, the first treatment may be followed by a second treatment at a lower temperature with an injection of carbon oxide for oxidation according to the Boudouard reaction.




as

Method for temporary or permanent disposal of nuclear waste

A method of disposing nuclear waste in underground rock formations is presented. The method includes the steps of selecting a land area having a rock formation positioned there-below of a depth able to prevent radioactive material placed therein from reaching the surface and drilling a vertical wellbore from the surface, to a depth ranging between 5,000 feet and 25,000 feet, into the underground rock formation or repository. A plurality of horizontal laterals or horizontal wellbores, ranging in length from 500 feet to 40,000 feet, are drilled from the vertical wellbore into the underground rock formation or repository. Nuclear waste to be stored within these laterals is encapsulated in a special waste canister and these nuclear waste canisters are positioned within the horizontal laterals wherein they are sealed to prevent loss and leakage. Means are also provided by which these canisters are adapted to allow retrievability of the canisters from the wellbore at a later date and to return the waste to the surface for use after retrieval.




as

Method for managing sulfide in wastewater systems

Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, in a treatment zone, reacting an oxygen-comprising gas, one or more selected ferric/ferrous chelates, one or more selected nitrates and/or nitrites, and/or anaerobic wastewater.




as

Hydrothermal conversion of biomass to hydrocarbon products

A process for the conversion of biomass to hydrocarbon products such as transportation fuels, kerosene, diesel oil, fuel oil, chemical and refinery plant feeds. The instant process uses a hydrocarbon or synthesis gas co-feed and hot pressurized water to convert the biomass in a manner commonly referred to as hydrothermal liquefaction.




as

Reduced fossil fuel in an oxidizer downstream of a biomass furnace

Method of extracting syngas between the zone in a furnace where oxygen-starved combustion of biomass occurs and the zone in the furnace where secondary air is added to complete combustion, conditioning and cleaning the extracted syngas, and delivering it in a metered amount to the oxidizer or upstream of the oxidizer to reduce or eliminate the need for additional fossil fuels once the oxidizer has achieved its operating temperature. The gasifier or furnace burns solid waste and produces a syngas containing relatively high levels of CO, which is extracted from the furnace, conditioned, and introduced into an RTO as a fuel source. In certain embodiments, no extraction of syngas from the furnace takes place; the furnace conditions are manipulated so that normally undesirable levels of CO and other VOC's remain in the process stream. The heat from the furnace is used as intended (e.g., to heat a dryer), the stream is conditioned, and ultimately proceeds to a downstream RTO. Since the gas stream remains rich in CO and VOC's, its fuel value in the RTO is substantially higher than otherwise would be the case.




as

Process for utilising waste drill cuttings in plastics

An environmentally beneficial process for utilizing waste drill cuttings from oil and gas exploration. The waste drill cuttings (20) are used as a filler and combined with plastic to provide a plastic based product (26) in the plastics industry. In an embodiment the cuttings are thermally treated and formed into pellets. In a further embodiment the cuttings are treated and mixed with recycled plastic to be formed into pellets. The pellets are then used in the manufacture of rigid plastic products such as bollards, planters, benches and decking.




as

Apparatus and method for the granulation of radioactive waste, and vitrification method thereof

An apparatus and method for the granulation of radioactive waste in which a preprocessing method for the vitrification of radioactive waste is simplified to conform to onsite conditions of a nuclear power plant, additives are improved, and pellets suitable for vitrification are manufactured. The apparatus for the granulation of radioactive waste includes: a body frame having an inlet and an outlet; a hopper supplying the radioactive waste to be transferred and fed through the inlet; a feeder transferring/supplying the radioactive waste supplied to a specific position and in a certain quantity; a stirrer pulverizing/mixing lumps of the radioactive waste supplied; an additive supply part supplying a lubricant to the radioactive waste fed into the stirrer; and a pellet press pressing the radioactive waste fed through the feeder into a pellet shape and discharging the pellet through the outlet.




as

Mitigation of secondary phase formation during waste vitrification

A method for vitrification of waste to reduce the formation of persistent secondary phases comprising separating at least one glass frit constituent from an initial glass frit to form a modified glass frit. The waste, modified glass frit, and the at least one glass frit constituent are mixed together with the modified glass frit and the at least one glass frit constituent being added as separate components. The resulting mixture is vitrified.




as

Waste treatment

The present invention relates to a process for the treatment of hazardous waste, the process comprising: (i) providing a hazardous waste; (ii) providing a further waste; (iii) plasma treating the hazardous waste in a first plasma treatment unit, (iv) gasifying the further waste in a gasification unit to produce an offgas and a char material; and (v) plasma treating the offgas, and optionally the char material, in a second plasma treatment unit to produce a syngas, (vi) optionally treating the syngas in a gas cleaning plant, wherein the first plasma treatment unit is arranged to plasma treat at least some of the solid by-products from the gasification unit and/or the second plasma treatment unit and/or the gas cleaning plant.




as

Steam plasma arc hydrolysis of ozone depleting substances

A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.




as

Method for treatment and disposal of pharmaceutical waste

An exemplary system for treatment and disposal of pharmaceutical waste comprises a sealable pail, a stirring device, a sealable bag, a container, an acidic substance, and a denaturant. The sealable pail receives the pharmaceutical waste and the acidic substance. The acidic substance dissolves the pharmaceutical waste, and the stirring device stirs the acidic substance to ensure that the pharmaceutical waste is completely dissolved. The denaturant is added to the dissolved pharmaceutical waste and renders the dissolved pharmaceutical waste safe for transport. The treated pharmaceutical waste is sealed within the sealable pail, and the sealable bag receives the sealed pail and is sealed. The sealed bag is then placed in the container for transport to a disposal facility.




as

Coal waste treatment processes and products

Techniques for disposing of one or more toxic materials, such as coal waste (e.g., fly ash, sludge, etc.), include incorporating the toxic materials into artificial feldspar or forming artificial feldspar from the toxic material(s). The artificial feldspar may be used to form an artificial aggregate, which may be used in a construction material, as road base, as a fill material or for any other suitable purpose. Artificial aggregates that are formed from toxic materials are also disclosed, as are construction materials that include such artificial aggregates.




as

Method for stabilization and removal of radioactive waste and non hazardous waste contained in buried objects

A method and apparatus for the stabilization and safe removal of buried waste that is tested and classified as being transuranic or not transuranic waste and disposed accordingly. The buried waste (usually in vertical pipe units) is enclosed in a casing and ground and mixed with the surrounding soil. This process allows for chemical reactions to occur that stabilizes the mixture. The entire process is contained within the casing to avoid contamination. In situ or external testing is done for radio isotopes to classify the waste. If it is classified as transuranic the waste is removed in a controlled way into a retrieval enclosure and disposed off in drums. If the waste is not transuranic then grout is introduced into the mixture, allowed to set and the resulting monolith is removed and buried in trenches.




as

Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.




as

Processing radioactive waste for shipment and storage

A process for encapsulating a radioactive object to render the object suitable for shipment and/or storage, and including the steps of preparing a plastic material, causing the plastic material to react with a foaming agent, generating a foaming plastic, encapsulating the radioactive object in the foaming plastic, and allowing the foaming plastic to solidify around the radioactive object to form an impervious coating.