hi

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




hi

Hubbe family history items

Hubbe (Family)




hi

Living through English history : stories of the Urlwin, Brittridge, Vasper, Partridge and Ellerby families / Janet McLeod.

Urlwin (Family).




hi

Cook family history papers

Cook, William, 1815-1897




hi

Geoff Nixon, man of the land : a history of Gunniguldrie and the Nixon family / Robert Nixon.

Nixon, Geoffrey Owen, 1921-2011.




hi

McGraw-Hill and Cengage Abandon Merger Plans

The two major companies cited what they considered onerous divestiture requirements from the U.S. Department of Justice as the reason behind their joint decision.

The post McGraw-Hill and Cengage Abandon Merger Plans appeared first on Market Brief.



  • Marketplace K-12
  • Business Strategy
  • COVID-19
  • Curriculum / Digital Curriculum
  • Mergers and Acquisitions
  • Online / Virtual Learning

hi

Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program

The Round Rock Independent School District in Texas is looking for a digital curriculum and blended learning program. Baltimore is looking for a comprehensive high school literacy program.

The post Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program appeared first on Market Brief.



  • Purchasing Alert
  • Curriculum / Digital Curriculum
  • Educational Technology/Ed-Tech
  • Learning Management / Student Information Systems
  • Procurement / Purchasing / RFPs

hi

Item 02: William Hilton Saunders WWI diary, 1 January 1917 - 24 October 1917




hi

Item 04: William Hilton Saunders WWI diary, 18 February 1919 - 8 July 1919




hi

Item 03: William Hilton Saunders WWI diary, 1 January 1918 - 31 December 1918




hi

Item 01: William Hilton Saunders WWI diary, February 1916 - 2 January 1917




hi

Item 05: William Hilton Saunders WWI 1916-1919 address book with poetry




hi

Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767]




hi

Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768]




hi

Item 10: Log book of the Swallow from 22 August 1767 to 4 June 1768 / by Philip Carteret




hi

Item 13: Swallow 1767, A journal of the proceedings on Board His Majesty's Sloop Swallow, commencing the 1st of March 1767 and Ended the 7th of July 1767




hi

Box 3: Children's book illustrations by various artists, Peg Maltby and Dorothy Wall, , ca. 1932-1975




hi

Box 4: Children's book illustrations by various artists, Dorothy Wall, ca. 1932




hi

Box 6: Children's book illustrations by various artists, Dorothy Wall and Noela Young, ca. 1932-1964




hi

Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley.




hi

Smart research for HSC students: Better searching with online resources

In this online session, we simplify searching for you so that the skills you need in one resource will work wherever you are.




hi

3 NY children die from syndrome possibly linked to COVID-19

Three children have now died in New York state from a possible complication from the coronavirus involving swollen blood vessels and heart problems, Gov. Andrew Cuomo said Saturday. At least 73 children in New York have been diagnosed with symptoms similar to Kawasaki disease — a rare inflammatory condition in children — and toxic shock syndrome.





hi

Pence aimed to project normalcy during his trip to Iowa, but coronavirus got in the way

Vice President Pence’s trip to Iowa shows how the Trump administration’s aims to move past coronavirus are sometimes complicated by the virus itself.





hi

U.S. chief justice puts hold on disclosure of Russia investigation materials

U.S. Chief Justice John Roberts on Friday put a temporary hold on the disclosure to a Democratic-led House of Representatives committee of grand jury material redacted from former Special Counsel Robert Mueller's report on Russian interference in the 2016 election. The U.S. Court of Appeals for the District of Columbia Circuit ruled in March that the materials had to be disclosed to the House Judiciary Committee and refused to put that decision on hold. The appeals court said the materials had to be handed over by May 11 if the Supreme Court did not intervene.





hi

Chaffetz: I don't understand why Adam Schiff continues to have a security clearance

Fox News contributor Jason Chaffetz and Andy McCarthy react to House Intelligence transcripts on Russia probe.





hi

As Trump returns to the road, some Democrats want to bust Biden out of his basement

While President Donald Trump traveled to the battleground state of Arizona this week, his Democratic opponent for the White House, Joe Biden, campaigned from his basement as he has done throughout the coronavirus pandemic. The freeze on in-person campaigning during the outbreak has had an upside for Biden, giving the former vice president more time to court donors and shielding him from on-the-trail gaffes. "I personally would like to see him out more because he's in his element when he's meeting people," said Tom Sacks-Wilner, a fundraiser for Biden who is on the campaign's finance committee.





hi

Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions

After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair."





hi

Meet the Ohio health expert who has a fan club — and Republicans trying to stop her

Some Buckeyes are not comfortable being told by a "woman in power" to quarantine, one expert said.





hi

CNN legal analysts say Barr dropping the Flynn case shows 'the fix was in.' Barr says winners write history.

The Justice Department announced Thursday that it is dropping its criminal case against President Trump's first national security adviser Michael Flynn. Flynn twice admitted in court he lied to the FBI about his conversations with Russia's U.S. ambassador, and then cooperated in Special Counsel Robert Mueller's investigation. It was an unusual move by the Justice Department, and CNN's legal and political analysts smelled a rat."Attorney General [William] Barr is already being accused of creating a special justice system just for President Trump's friends," and this will only feed that perception, CNN's Jake Tapper suggested. Political correspondent Sara Murray agreed, noting that the prosecutor in the case, Brandon Van Grack, withdrew right before the Justice Department submitted its filing, just like when Barr intervened to request a reduced sentence for Roger Stone.National security correspondent Jim Sciutto laid out several reason why the substance of Flynn's admitted lie was a big deal, and chief legal analyst Jeffrey Toobin was appalled. "It is one of the most incredible legal documents I have read, and certainly something that I never expected to see from the United States Department of Justice," Toobin said. "The idea that the Justice Department would invent an argument -- an argument that the judge in this case has already rejected -- and say that's a basis for dropping a case where a defendant admitted his guilt shows that this is a case where the fix was in."Barr told CBS News' Cathrine Herridge on Thursday that dropping Flynn's case actually "sends the message that there is one standard of justice in this country." Herridge told Barr he would take flak for this, asking: "When history looks back on this decision, how do you think it will be written?" Barr laughed: "Well, history's written by the winners. So it largely depends on who's writing the history." Watch below. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





hi

Nearly one-third of Americans believe a coronavirus vaccine exists and is being withheld, survey finds

The Democracy Fund + UCLA Nationscape Project found some misinformation about the coronavirus is more widespread that you might think.





hi

Coronavirus: Chinese official admits health system weaknesses

China says it will improve public health systems after criticism of its early response to the virus.





hi

Bayesian Inference in Nonparanormal Graphical Models

Jami J. Mulgrave, Subhashis Ghosal.

Source: Bayesian Analysis, Volume 15, Number 2, 449--475.

Abstract:
Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set.




hi

High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression

Xuan Cao, Kshitij Khare, Malay Ghosh.

Source: Bayesian Analysis, Volume 15, Number 1, 241--262.

Abstract:
The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where $p$ is allowed to increase at a polynomial rate with $n$ or even at a sub-exponential rate with $n$ . Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings.




hi

Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model

Matthew Moores, Geoff Nicholls, Anthony Pettitt, Kerrie Mengersen.

Source: Bayesian Analysis, Volume 15, Number 1, 1--27.

Abstract:
The inverse temperature parameter of the Potts model governs the strength of spatial cohesion and therefore has a major influence over the resulting model fit. A difficulty arises from the dependence of an intractable normalising constant on the value of this parameter and thus there is no closed-form solution for sampling from the posterior distribution directly. There is a variety of computational approaches for sampling from the posterior without evaluating the normalising constant, including the exchange algorithm and approximate Bayesian computation (ABC). A serious drawback of these algorithms is that they do not scale well for models with a large state space, such as images with a million or more pixels. We introduce a parametric surrogate model, which approximates the score function using an integral curve. Our surrogate model incorporates known properties of the likelihood, such as heteroskedasticity and critical temperature. We demonstrate this method using synthetic data as well as remotely-sensed imagery from the Landsat-8 satellite. We achieve up to a hundredfold improvement in the elapsed runtime, compared to the exchange algorithm or ABC. An open-source implementation of our algorithm is available in the R package bayesImageS .




hi

Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling

Andrea Cremaschi, Raffaele Argiento, Katherine Shoemaker, Christine Peterson, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 4, 1271--1301.

Abstract:
Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate $t$ -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet $t$ -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas.




hi

Variance Prior Forms for High-Dimensional Bayesian Variable Selection

Gemma E. Moran, Veronika Ročková, Edward I. George.

Source: Bayesian Analysis, Volume 14, Number 4, 1091--1119.

Abstract:
Consider the problem of high dimensional variable selection for the Gaussian linear model when the unknown error variance is also of interest. In this paper, we show that the use of conjugate shrinkage priors for Bayesian variable selection can have detrimental consequences for such variance estimation. Such priors are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work, however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators can result from inducing dependence between parameters a priori . In a similar way, we show that conjugate priors for linear regression, which induce prior dependence, can lead to such underestimation in the Bayesian high-dimensional regression setting. Following Jeffreys, we recommend as a remedy to treat regression coefficients and the error variance as independent a priori . Using such an independence prior framework, we extend the Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on simulated data. On the protein activity dataset of Clyde and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-validation error than alternative penalized likelihood methods, demonstrating the gains in predictive accuracy afforded by simultaneous error variance estimation. The unknown variance implementation of the Spike-and-Slab Lasso is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017).




hi

Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis

Claudia Kirch, Matthew C. Edwards, Alexander Meier, Renate Meyer.

Source: Bayesian Analysis, Volume 14, Number 4, 1037--1073.

Abstract:
Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).




hi

High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors

Joseph Antonelli, Giovanni Parmigiani, Francesca Dominici.

Source: Bayesian Analysis, Volume 14, Number 3, 825--848.

Abstract:
In observational studies, estimation of a causal effect of a treatment on an outcome relies on proper adjustment for confounding. If the number of the potential confounders ( $p$ ) is larger than the number of observations ( $n$ ), then direct control for all potential confounders is infeasible. Existing approaches for dimension reduction and penalization are generally aimed at predicting the outcome, and are less suited for estimation of causal effects. Under standard penalization approaches (e.g. Lasso), if a variable $X_{j}$ is strongly associated with the treatment $T$ but weakly with the outcome $Y$ , the coefficient $eta_{j}$ will be shrunk towards zero thus leading to confounding bias. Under the assumption of a linear model for the outcome and sparsity, we propose continuous spike and slab priors on the regression coefficients $eta_{j}$ corresponding to the potential confounders $X_{j}$ . Specifically, we introduce a prior distribution that does not heavily shrink to zero the coefficients ( $eta_{j}$ s) of the $X_{j}$ s that are strongly associated with $T$ but weakly associated with $Y$ . We compare our proposed approach to several state of the art methods proposed in the literature. Our proposed approach has the following features: 1) it reduces confounding bias in high dimensional settings; 2) it shrinks towards zero coefficients of instrumental variables; and 3) it achieves good coverages even in small sample sizes. We apply our approach to the National Health and Nutrition Examination Survey (NHANES) data to estimate the causal effects of persistent pesticide exposure on triglyceride levels.




hi

Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models

Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli.

Source: Bayesian Analysis, Volume 14, Number 3, 797--823.

Abstract:
We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset.




hi

Alleviating Spatial Confounding for Areal Data Problems by Displacing the Geographical Centroids

Marcos Oliveira Prates, Renato Martins Assunção, Erica Castilho Rodrigues.

Source: Bayesian Analysis, Volume 14, Number 2, 623--647.

Abstract:
Spatial confounding between the spatial random effects and fixed effects covariates has been recently discovered and showed that it may bring misleading interpretation to the model results. Techniques to alleviate this problem are based on decomposing the spatial random effect and fitting a restricted spatial regression. In this paper, we propose a different approach: a transformation of the geographic space to ensure that the unobserved spatial random effect added to the regression is orthogonal to the fixed effects covariates. Our approach, named SPOCK, has the additional benefit of providing a fast and simple computational method to estimate the parameters. Also, it does not constrain the distribution class assumed for the spatial error term. A simulation study and real data analyses are presented to better understand the advantages of the new method in comparison with the existing ones.




hi

Efficient Bayesian Regularization for Graphical Model Selection

Suprateek Kundu, Bani K. Mallick, Veera Baladandayuthapani.

Source: Bayesian Analysis, Volume 14, Number 2, 449--476.

Abstract:
There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse–Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example.




hi

Modeling Population Structure Under Hierarchical Dirichlet Processes

Lloyd T. Elliott, Maria De Iorio, Stefano Favaro, Kaustubh Adhikari, Yee Whye Teh.

Source: Bayesian Analysis, Volume 14, Number 2, 313--339.

Abstract:
We propose a Bayesian nonparametric model to infer population admixture, extending the hierarchical Dirichlet process to allow for correlation between loci due to linkage disequilibrium. Given multilocus genotype data from a sample of individuals, the proposed model allows inferring and classifying individuals as unadmixed or admixed, inferring the number of subpopulations ancestral to an admixed population and the population of origin of chromosomal regions. Our model does not assume any specific mutation process, and can be applied to most of the commonly used genetic markers. We present a Markov chain Monte Carlo (MCMC) algorithm to perform posterior inference from the model and we discuss some methods to summarize the MCMC output for the analysis of population admixture. Finally, we demonstrate the performance of the proposed model in a real application, using genetic data from the ectodysplasin-A receptor (EDAR) gene, which is considered to be ancestry-informative due to well-known variations in allele frequency as well as phenotypic effects across ancestry. The structure analysis of this dataset leads to the identification of a rare haplotype in Europeans. We also conduct a simulated experiment and show that our algorithm outperforms parametric methods.




hi

Statistical Inference for the Evolutionary History of Cancer Genomes

Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury Lambert, Simon Tavaré.

Source: Statistical Science, Volume 35, Number 1, 129--144.

Abstract:
Recent years have seen considerable work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time, genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the classical linear birth-death process. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing experiment, we can estimate for each site at which a novel somatic point mutation has arisen, the proportion of cells that carry that mutation. These numbers are then grouped into collections of sites which have similar mutant fractions. We examine how the SFS based on birth-death processes differs from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show that despite this, they are quantitatively comparable for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, and demonstrate how it may help in understanding the history of a tumor as well as the influence of data pre-processing. We illustrate the theory with applications to several examples from The Cancer Genome Atlas tumors.




hi

Gaussianization Machines for Non-Gaussian Function Estimation Models

T. Tony Cai.

Source: Statistical Science, Volume 34, Number 4, 635--656.

Abstract:
A wide range of nonparametric function estimation models have been studied individually in the literature. Among them the homoscedastic nonparametric Gaussian regression is arguably the best known and understood. Inspired by the asymptotic equivalence theory, Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) developed a unified approach to turn a collection of non-Gaussian function estimation models into a standard Gaussian regression and any good Gaussian nonparametric regression method can then be used. These Gaussianization Machines have two key components, binning and transformation. When combined with BlockJS, a wavelet thresholding procedure for Gaussian regression, the procedures are computationally efficient with strong theoretical guarantees. Technical analysis given in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) shows that the estimators attain the optimal rate of convergence adaptively over a large set of Besov spaces and across a collection of non-Gaussian function estimation models, including robust nonparametric regression, density estimation, and nonparametric regression in exponential families. The estimators are also spatially adaptive. The Gaussianization Machines significantly extend the flexibility and scope of the theories and methodologies originally developed for the conventional nonparametric Gaussian regression. This article aims to provide a concise account of the Gaussianization Machines developed in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046), Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433).




hi

A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear

Gregorio Quintana-Ortí, Amelia Simó.

Source: Statistical Science, Volume 34, Number 2, 236--252.

Abstract:
This paper is focused on kernel regression when the response variable is the shape of a 3D object represented by a configuration matrix of landmarks. Regression methods on this shape space are not trivial because this space has a complex finite-dimensional Riemannian manifold structure (non-Euclidean). Papers about it are scarce in the literature, the majority of them are restricted to the case of a single explanatory variable, and many of them are based on the approximated tangent space. In this paper, there are several methodological innovations. The first one is the adaptation of the general method for kernel regression analysis in manifold-valued data to the three-dimensional case of Kendall’s shape space. The second one is its generalization to the multivariate case and the addressing of the curse-of-dimensionality problem. Finally, we propose bootstrap confidence intervals for prediction. A simulation study is carried out to check the goodness of the procedure, and a comparison with a current approach is performed. Then, it is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear.




hi

Matching Methods for Causal Inference: A Review and a Look Forward

Elizabeth A. Stuart

Source: Statist. Sci., Volume 25, Number 1, 1--21.

Abstract:
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.




hi

The hidden holocaust.

[London?], [199-?]




hi

Karachi Plague Committee in 1897. Album of photographs.

1897.




hi

The 2019 Victoria’s Secret Fashion Show Is Canceled After Facing Backlash for Lack of Body Diversity

The reaction on social media has been fierce.




hi

Kourtney Kardashian's Favorite Leggings Are So Good, Everyone Should Own A Pair

And they're on sale for Black Friday.