em

Unmet Need for Family Planning and Experience of Unintended Pregnancy Among Female Sex Workers in Urban Cameroon: Results From a National Cross-Sectional Study

ABSTRACTBackground:Female sex workers (FSWs) in Cameroon commonly have unmet need for contraception posing a high risk of unintended pregnancy. Unintended pregnancy leads to a range of outcomes, and due to legal restrictions, FSWs often seek unsafe abortions. Aside from the high burden of HIV, little is known about the broader sexual and reproductive health of FSWs in Cameroon.Methods:From December 2015 to October 2016, we recruited FSWs aged ≥18 years through respondent-driven sampling across 5 Cameroonian cities. Cross-sectional data were collected through a behavioral questionnaire. Modified-robust Poisson regression was used to approximate adjusted prevalence ratios (aPR) for TOP and current use of effective nonbarrier contraception.Results:Among 2,255 FSWs (median age 28 years), 57.6% reported history of unintended pregnancy and 40.0% reported prior TOP. In multivariable analysis, TOP history was associated with current nonbarrier contraceptive use (aPR=1.23, 95% confidence interval [CI]=1.07, 1.42); ever using emergency contraception (aPR=1.34, 95% CI=1.17, 1.55); >60 clients in the past month (aPR=1.29, 95% CI= 1.07, 1.54) compared to ≤30; inconsistent condom use with clients (aPR=1.17, 95% CI=1.00, 1.37); ever experiencing physical violence (aPR=1.24, 95% CI=1.09, 1.42); and older age. Most (76.5%) women used male condoms for contraception, but only 33.2% reported consistent condom use with all partners. Overall, 26.4% of women reported currently using a nonbarrier contraceptive method, and 6.2% reported using a long-acting method. Previous TOP (aPR=1.41, 95%CI=1.16, 1.72) and ever using emergency contraception (aPR=2.70, 95% CI=2.23, 3.26) were associated with higher nonbarrier contraceptive use. Recent receipt of HIV information (aPR=0.72, 95% CI=0.59, 0.89) and membership in an FSW community-based organization (aPR=0.73, 95% CI=0.57, 0.92) were associated with lower use nonbarrier contraceptive use.Conclusions:Experience of unintended pregnancies and TOP is common among FSWs in Cameroon. Given the low use of nonbarrier contraceptive methods and inconsistent condom use, FSWs are at risk of repeat unintended pregnancies. Improved integration of client-centered, voluntary family planning within community-led HIV services may better support the sexual and reproductive health and human rights of FSWs consistent with the United Nations Declaration of Human Rights.




em

Insights Into Provider Bias in Family Planning from a Novel Shared Decision Making Based Counseling Initiative in Rural, Indigenous Guatemala




em

Sex Disparities in Cardiovascular Outcome Trials of Populations With Diabetes: A Systematic Review and Meta-analysis

BACKGROUND

Sex differences have been described in diabetes cardiovascular outcome trials (CVOTs).

PURPOSE

We systematically reviewed for baseline sex differences in cardiovascular (CV) risk factors and CV protection therapy in diabetes CVOTs.

DATA SOURCES

Randomized placebo-controlled trials examining the effect of diabetes medications on major adverse cardiovascular events in people ≥18 years of age with type 2 diabetes.

STUDY SELECTION

Included trials reported baseline sex-specific CV risks and use of CV protection therapy.

DATA EXTRACTION

Two reviewers independently abstracted study data.

DATA SYNTHESIS

We included five CVOTs with 46,606 participants. We summarized sex-specific data using mean differences (MDs) and relative risks (RRs) and pooled estimates using random effects meta-analysis. There were fewer women than men in included trials (28.5–35.8% women). Women more often had stroke (RR 1.28; 95% CI 1.09, 1.50), heart failure (RR 1.30; 95% CI 1.21,1.40), and chronic kidney disease (RR 1.33; 95% CI 1.17; 1.51). They less often used statins (RR 0.90; 95% CI 0.86, 0.93), aspirin (RR 0.82; 95% CI 0.71, 0.95), and β-blockers (RR 0.93; 95% CI 0.88, 0.97) and had a higher systolic blood pressure (MD 1.66 mmHg; 95% CI 0.90, 2.41), LDL cholesterol (MD 0.34 mmol/L; 95% CI 0.29, 0.39), and hemoglobin A1c (MD 0.11%; 95% CI 0.09, 0.14 [1.2 mmol/mol; 1.0, 1.5]) than men.

LIMITATIONS

We could not carry out subgroup analyses due to the small number of studies. Our study is not generalizable to low CV risk groups nor to patients in routine care.

CONCLUSIONS

There were baseline sex disparities in diabetes CVOTs. We suggest efforts to recruit women into trials and promote CV management across the sexes.




em

Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials

BACKGROUND

Continuous glucose monitoring (CGM) provides important information to aid in achieving glycemic targets in people with diabetes.

PURPOSE

We performed a meta-analysis of randomized controlled trials (RCTs) comparing CGM with usual care for parameters of glycemic control in both type 1 and type 2 diabetes.

DATA SOURCES

Many electronic databases were searched for articles published from inception until 30 June 2019.

STUDY SELECTION

We selected RCTs that assessed both changes in HbA1c and time in target range (TIR), together with time below range (TBR), time above range (TAR), and glucose variability expressed as coefficient of variation (CV).

DATA EXTRACTION

Data were extracted from each trial by two investigators.

DATA SYNTHESIS

All results were analyzed by a random effects model to calculate the weighted mean difference (WMD) with the 95% CI. We identified 15 RCTs, lasting 12–36 weeks and involving 2,461 patients. Compared with the usual care (overall data), CGM was associated with modest reduction in HbA1c (WMD –0.17%, 95% CI –0.29 to –0.06, I2 = 96.2%), increase in TIR (WMD 70.74 min, 95% CI 46.73–94.76, I2 = 66.3%), and lower TAR, TBR, and CV, with heterogeneity between studies. The increase in TIR was significant and robust independently of diabetes type, method of insulin delivery, and reason for CGM use. In preplanned subgroup analyses, real-time CGM led to the higher improvement in mean HbA1c (WMD –0.23%, 95% CI –0.36 to –0.10, P < 0.001), TIR (WMD 83.49 min, 95% CI 52.68–114.30, P < 0.001), and TAR, whereas both intermittently scanned CGM and sensor-augmented pump were associated with the greater decline in TBR.

LIMITATIONS

Heterogeneity was high for most of the study outcomes; all studies were sponsored by industry, had short duration, and used an open-label design.

CONCLUSIONS

CGM improves glycemic control by expanding TIR and decreasing TBR, TAR, and glucose variability in both type 1 and type 2 diabetes.




em

Evaluation of Factors Related to Glycemic Management in Professional Cyclists With Type 1 Diabetes Over a 7-Day Stage Race

OBJECTIVE

To investigate factors related to glycemic management among members of a professional cycling team with type 1 diabetes over a 7-day Union Cycliste Internationale World Tour stage race.

RESEARCH DESIGN AND METHODS

An observational evaluation of possible factors related to glycemic management and performance in six male professional cyclists with type 1 diabetes (HbA1c 6.4 ± 0.6%) during the 2019 Tour of California.

RESULTS

In-ride time spent in euglycemia (3.9–10.0 mmol/L glucose) was 63 ± 11%, with a low percentage of time spent in level 1 (3.0–3.9 mmol/L; 0 ± 1% of time) and level 2 (<3.0 mmol/L; 0 ± 0% of time) hypoglycemia over the 7-day race. Riders spent 25 ± 9% of time in level 1 (10.1–13.9 mmol/L) and 11 ± 9% in level 2 (>13.9 mmol/L) hyperglycemia during races. Bolus insulin use was uncommon during races, despite high carbohydrate intake (76 ± 23 g ⋅ h–1). Overnight, the riders spent progressively more time in hypoglycemia from day 1 (6 ± 12% in level 1 and 0 ± 0% in level 2) to day 7 (12 ± 12% in level 1 and 2 ± 4% in level 2) (2[1] > 4.78, P < 0.05).

CONCLUSIONS

Professional cyclists with type 1 diabetes have excellent in-race glycemia, but significant hypoglycemia during recovery overnight, throughout a 7-day stage race.




em

Intrahepatic Fat and Postprandial Glycemia Increase After Consumption of a Diet Enriched in Saturated Fat Compared With Free Sugars

OBJECTIVE

Debate continues regarding the influence of dietary fats and sugars on the risk of developing metabolic diseases, including insulin resistance and nonalcoholic fatty liver disease (NAFLD). We investigated the effect of two eucaloric diets, one enriched with saturated fat (SFA) and the other enriched with free sugars (SUGAR), on intrahepatic triacylglycerol (IHTAG) content, hepatic de novo lipogenesis (DNL), and whole-body postprandial metabolism in overweight males.

RESEARCH DESIGN AND METHODS

Sixteen overweight males were randomized to consume the SFA or SUGAR diet for 4 weeks before consuming the alternate diet after a 7-week washout period. The metabolic effects of the respective diets on IHTAG content, hepatic DNL, and whole-body metabolism were investigated using imaging techniques and metabolic substrates labeled with stable-isotope tracers.

RESULTS

Consumption of the SFA diet significantly increased IHTAG by mean ± SEM 39.0 ± 10.0%, while after the SUGAR diet IHTAG was virtually unchanged. Consumption of the SFA diet induced an exaggerated postprandial glucose and insulin response to a standardized test meal compared with SUGAR. Although whole-body fat oxidation, lipolysis, and DNL were similar following the two diets, consumption of the SUGAR diet resulted in significant (P < 0.05) decreases in plasma total, HDL, and non-HDL cholesterol and fasting β-hydroxybutyrate plasma concentrations.

CONCLUSIONS

Consumption of an SFA diet had a potent effect, increasing IHTAG together with exaggerating postprandial glycemia. The SUGAR diet did not influence IHTAG and induced minor metabolic changes. Our findings indicate that a diet enriched in SFA is more harmful to metabolic health than a diet enriched in free sugars.




em

The Impact of Medicaid Expansion on Diabetes Management

OBJECTIVE

Diabetes is a chronic health condition contributing to a substantial burden of disease. According to the Robert Wood Johnson Foundation, 10.9 million people were newly insured by Medicaid between 2013 and 2016. Considering this coverage expansion, the Affordable Care Act (ACA) could significantly affect people with diabetes in their management of the disease. This study evaluates the impact of the Medicaid expansion under the ACA on diabetes management.

RESEARCH DESIGN AND METHODS

This study includes 22,335 individuals with diagnosed diabetes from the 2011 to 2016 Behavioral Risk Factor Surveillance System. It uses a difference-in-differences approach to evaluate the impact of the Medicaid expansion on self-reported access to health care, self-reported diabetes management, and self-reported health status. Additionally, it performs a triple-differences analysis to compare the impact between Medicaid expansion and nonexpansion states considering diabetes rates of the states.

RESULTS

Significant improvements in Medicaid expansion states as compared with non–Medicaid expansion states were evident in self-reported access to health care (0.09 score; P = 0.023), diabetes management (1.91 score; P = 0.001), and health status (0.10 score; P = 0.026). Among states with large populations with diabetes, states that expanded Medicaid reported substantial improvements in these areas in comparison with those that did not expand.

CONCLUSIONS

The Medicaid expansion has significant positive effects on self-reported diabetes management. While states with large diabetes populations that expanded Medicaid have experienced substantial improvements in self-reported diabetes management, non–Medicaid expansion states with high diabetes rates may be facing health inequalities. The findings provide policy implications for the diabetes care community and policy makers.




em

Trends in Emergency Department Visits and Inpatient Admissions for Hyperglycemic Crises in Adults With Diabetes in the U.S., 2006-2015

OBJECTIVE

To report U.S. national population-based rates and trends in diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) among adults, in both the emergency department (ED) and inpatient settings.

RESEARCH DESIGN AND METHODS

We analyzed data from 1 January 2006 through 30 September 2015 from the Nationwide Emergency Department Sample and National Inpatient Sample to characterize ED visits and inpatient admissions with DKA and HHS. We used corresponding year cross-sectional survey data from the National Health Interview Survey to estimate the number of adults ≥18 years with diagnosed diabetes to calculate population-based rates for DKA and HHS in both ED and inpatient settings. Linear trends from 2009 to 2015 were assessed using Joinpoint software.

RESULTS

In 2014, there were a total of 184,255 and 27,532 events for DKA and HHS, respectively. The majority of DKA events occurred in young adults aged 18–44 years (61.7%) and in adults with type 1 diabetes (70.6%), while HHS events were more prominent in middle-aged adults 45–64 years (47.5%) and in adults with type 2 diabetes (88.1%). Approximately 40% of the hyperglycemic events were in lower-income populations. Overall, event rates for DKA significantly increased from 2009 to 2015 in both ED (annual percentage change [APC] 13.5%) and inpatient settings (APC 8.3%). A similar trend was seen for HHS (APC 16.5% in ED and 6.3% in inpatient). The increase was in all age-groups and in both men and women.

CONCLUSIONS

Causes of increased rates of hyperglycemic events are unknown. More detailed data are needed to investigate the etiology and determine prevention strategies.




em

Multilevel Variation in Diabetes Screening Within an Integrated Health System

OBJECTIVE

Variation in diabetes screening in clinical practice is poorly described. We examined the interplay of patient, provider, and clinic factors explaining variation in diabetes screening within an integrated health care system in the U.S.

RESEARCH DESIGN AND METHODS

We conducted a retrospective cohort study of primary care patients aged 18–64 years with two or more outpatient visits between 2010 and 2015 and no diagnosis of diabetes according to electronic health record (EHR) data. Hierarchical three-level models were used to evaluate multilevel variation in screening at the patient, provider, and clinic levels across 12 clinics. Diabetes screening was defined by a resulted gold standard screening test.

RESULTS

Of 56,818 patients, 70% completed diabetes screening with a nearly twofold variation across clinics (51–92%; P < 0.001). Of those meeting American Diabetes Association (ADA) (69%) and U.S. Preventive Services Task Force (USPSTF) (36%) screening criteria, three-quarters were screened with a nearly twofold variation across clinics (ADA 53–92%; USPSTF 49–93%). The yield of ADA and USPSTF screening was similar for diabetes (11% vs. 9%) and prediabetes (38% vs. 36%). Nearly 70% of patients not eligible for guideline-based screening were also tested. The USPSTF guideline missed more cases of diabetes (6% vs. 3%) and prediabetes (26% vs. 19%) than the ADA guideline. After adjustment for patient, provider, and clinic factors and accounting for clustering, twofold variation in screening by provider and clinic remained (median odds ratio 1.97; intraclass correlation 0.13).

CONCLUSIONS

Screening practices vary widely and are only partially explained by patient, provider, and clinic factors available in the EHR. Clinical decision support and system-level interventions are needed to optimize screening practices.




em

Initial Glycemic Control and Care Among Younger Adults Diagnosed With Type 2 Diabetes

OBJECTIVE

The prevalence of type 2 diabetes is increasing among adults under age 45. Onset of type 2 diabetes at a younger age increases an individual’s risk for diabetes-related complications. Given the lasting benefits conferred by early glycemic control, we compared glycemic control and initial care between adults with younger onset (21–44 years) and mid-age onset (45–64 years) of type 2 diabetes.

RESEARCH DESIGN AND METHODS

Using data from a large, integrated health care system, we identified 32,137 adults (aged 21–64 years) with incident diabetes (first HbA1c ≥6.5% [≥48 mmol/mol]). We excluded anyone with evidence of prior type 2 diabetes, gestational diabetes mellitus, or type 1 diabetes. We used generalized linear mixed models, adjusting for demographic and clinical variables, to examine differences in glycemic control and care at 1 year.

RESULTS

Of identified individuals, 26.4% had younger-onset and 73.6% had mid-age–onset type 2 diabetes. Adults with younger onset had higher initial mean HbA1c values (8.9% [74 mmol/mol]) than adults with onset in mid-age (8.4% [68 mmol/mol]) (P < 0.0001) and lower odds of achieving an HbA1c <7% (<53 mmol/mol) 1 year after the diagnosis (adjusted odds ratio [aOR] 0.70 [95% CI 0.66–0.74]), even after accounting for HbA1c at diagnosis. Adults with younger onset had lower odds of in-person primary care contact (aOR 0.82 [95% CI 0.76–0.89]) than those with onset during mid-age, but they did not differ in telephone contact (1.05 [0.99–1.10]). Adults with younger onset had higher odds of starting metformin (aOR 1.20 [95% CI 1.12–1.29]) but lower odds of adhering to that medication (0.74 [0.69–0.80]).

CONCLUSIONS

Adults with onset of type 2 diabetes at a younger age were less likely to achieve glycemic control at 1 year following diagnosis, suggesting the need for tailored care approaches to improve outcomes for this high-risk patient population.




em

Global Disability Burdens of Diabetes-Related Lower-Extremity Complications in 1990 and 2016

OBJECTIVE

No study has reported global disability burden estimates for individual diabetes-related lower-extremity complications (DRLECs). The Global Burden of Disease (GBD) study presents a robust opportunity to address this gap.

RESEARCH DESIGN AND METHODS

GBD 2016 data, including prevalence and years lived with disability (YLDs), for the DRLECs of diabetic neuropathy, foot ulcer, and amputation with and without prosthesis were used. The GBD estimated prevalence using data from systematic reviews and DisMod-MR 2.1, a Bayesian meta-regression tool. YLDs were estimated as the product of prevalence estimates and disability weights for each DRLEC. We reported global and sex-, age-, region-, and country-specific estimates for each DRLEC for 1990 and 2016.

RESULTS

In 2016, an estimated 131 million people (1.8% of the global population) had DRLECs. An estimated 16.8 million YLDs (2.1% global YLDs) were caused by DRLECs, including 12.9 million (95% uncertainty interval 8.30–18.8) from neuropathy only, 2.5 million (1.7–3.6) from foot ulcers, 1.1 million (0.7–1.4) from amputation without prosthesis, and 0.4 million (0.3–0.5) from amputation with prosthesis. Age-standardized YLD rates of all DRLECs increased by between 14.6% and 31.0% from 1990 estimates. Male-to-female YLD ratios ranged from 0.96 for neuropathy only to 1.93 for foot ulcers. The 50- to 69-year-old age-group accounted for 47.8% of all YLDs from DRLECs.

CONCLUSIONS

These first-ever global estimates suggest that DRLECs are a large and growing contributor to the disability burden worldwide and disproportionately affect males and middle- to older-aged populations. These findings should facilitate policy makers worldwide to target strategies at populations disproportionately affected by DRLECs.




em

Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight

OBJECTIVE

We evaluated the effect of optimizing metformin dosing on glycemia and body weight in type 2 diabetes.

RESEARCH DESIGN AND METHODS

This was a prespecified analysis of 6,823 participants in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE) taking metformin as the sole glucose-lowering drug who completed a 4- to 14-week (mean ± SD 7.9 ± 2.4) run-in in which metformin was adjusted to 2,000 mg/day or a maximally tolerated lower dose. Participants had type 2 diabetes for <10 years and an HbA1c ≥6.8% (51 mmol/mol) while taking ≥500 mg of metformin/day. Participants also received diet and exercise counseling. The primary outcome was the change in HbA1c during run-in.

RESULTS

Adjusted for duration of run-in, the mean ± SD change in HbA1c was –0.65 ± 0.02% (–7.1 ± 0.2 mmol/mol) when the dose was increased by ≥1,000 mg/day, –0.48 ± 0.02% (–5.2 ± 0.2 mmol/mol) when the dose was unchanged, and –0.23 ± 0.07% (–2.5 ± 0.8 mmol/mol) when the dose was decreased (n = 2,169, 3,548, and 192, respectively). Higher HbA1c at entry predicted greater reduction in HbA1c (P < 0.001) in univariate and multivariate analyses. Weight loss adjusted for duration of run-in averaged 0.91 ± 0.05 kg in participants who increased metformin by ≥1,000 mg/day (n = 1,894).

CONCLUSIONS

Optimizing metformin to 2,000 mg/day or a maximally tolerated lower dose combined with emphasis on medication adherence and lifestyle can improve glycemia in type 2 diabetes and HbA1c values ≥6.8% (51 mmol/mol). These findings may help guide efforts to optimize metformin therapy among persons with type 2 diabetes and suboptimal glycemic control.




em

Pre-transplant testosterone and outcome of men after allogeneic stem cell transplantation

Testosterone is an important determinant of endothelial function and vascular health in men. As both factors play a role in mortality after allogeneic stem cell transplantation (alloSCT), we retrospectively evaluated the impact of pre-transplant testosterone levels on outcome in male patients undergoing alloSCT. In the discovery cohort (n=346), an impact on outcome was observed only in the subgroup of patients allografted for acute myeloid leukemia (AML) (n=176, hereafter termed ‘training cohort’). In the training cohort, lower pre-transplant testosterone levels were significantly associated with shorter overall survival (OS) [hazard ratio (HR) for a decrease of 100 ng/dL: 1.11, P=0.045]. This was based on a higher hazard of non-relapse mortality (NRM) (cause-specific HR: 1.25, P=0.013), but not relapse (cause-specific HR: 1.06, P=0.277) in the multivariable models. These findings were replicated in a confirmation cohort of 168 male patients allografted for AML in a different center (OS, HR: 1.15, P=0.012 and NRM, cause-specific HR: 1.23; P=0.008). Next, an optimized cut-off point for pre-transplant testosterone was derived from the training set and evaluated in the confirmation cohort. In multivariable models, low pre-transplant testosterone status (<250 ng/dL) was associated with worse OS (hazard ratio 1.95, P=0.021) and increased NRM (cause-specific HR 2.68, P=0.011) but not with relapse (cause-specific HR: 1.28, P=0.551). Our findings may provide a rationale for prospective studies on testosterone/androgen assessment and supplementation in male patients undergoing alloSCT for AML.




em

Relationship between factor VIII activity, bleeds and individual characteristics in severe hemophilia A patients

Pharmacokinetic-based prophylaxis of replacement factor VIII (FVIII) products has been encouraged in recent years, but the relationship between exposure (factor VIII activity) and response (bleeding frequency) remains unclear. The aim of this study was to characterize the relationship between FVIII dose, plasma FVIII activity, and bleeding patterns and individual characteristics in severe hemophilia A patients. Pooled pharmacokinetic and bleeding data during prophylactic treatment with BAY 81-8973 (octocog alfa) were obtained from the three LEOPOLD trials. The population pharmacokinetics of FVIII activity and longitudinal bleeding frequency, as well as bleeding severity, were described using non-linear mixed effects modeling in NONMEM. In total, 183 patients [median age 22 years (range, 1-61); weight 60 kg (11-124)] contributed with 1,535 plasma FVIII activity observations, 633 bleeds and 11 patient/study characteristics [median observation period 12 months (3.1-13.1)]. A parametric repeated time-to-categorical bleed model, guided by plasma FVIII activity from a 2-compartment population pharmacokinetic model, described the time to the occurrence of bleeds and their severity. Bleeding probability decreased with time of study, and a bleed was not found to affect the time of the next bleed. Several covariate effects were identified, including the bleeding history in the 12-month pre-study period increasing the bleeding hazard. However, unexplained inter-patient variability in the phenotypic bleeding pattern remained large (111%CV). Further studies to translate the model into a tool for dose individualization that considers the individual bleeding risk are required. Research was based on a post-hoc analysis of the LEOPOLD studies registered at clinicaltrials.gov identifiers: 01029340, 01233258 and 01311648.




em

Accuracy of the Ottawa score in risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism: a systematic review and meta-analysis

In patients with cancer-associated venous thromboembolism, knowledge of the estimated rate of recurrent events is important for clinical decision-making regarding anticoagulant therapy. The Ottawa score is a clinical prediction rule designed for this purpose, stratifying patients according to their risk of recurrent venous thromboembolism during the first six months of anticoagulation. We conducted a systematic review and meta-analysis of studies validating either the Ottawa score in its original or modified versions. Two investigators independently reviewed the relevant articles published from 1st June 2012 to 15th December 2018 and indexed in MEDLINE and EMBASE. Nine eligible studies were identified; these included a total of 14,963 patients. The original score classified 49.3% of the patients as high-risk, with a sensitivity of 0.7 [95% confidence interval (CI): 0.6-0.8], a 6-month pooled rate of recurrent venous thromboembolism of 18.6% (95%CI: 13.9-23.9). In the low-risk group, the recurrence rate was 7.4% (95%CI: 3.4-12.5). The modified score classified 19.8% of the patients as low-risk, with a sensitivity of 0.9 (95%CI: 0.4-1.0) and a 6-month pooled rate of recurrent venous thromboembolism of 2.2% (95%CI: 1.6-2.9). In the high-risk group, recurrence rate was 10.2% (95%CI: 6.4-14.6). Limitations of our analysis included type and dosing of anticoagulant therapy. We conclude that new therapeutic strategies are needed in patients at high risk for recurrent cancer-associated venous thromboembolism. Low-risk patients, as per the modified score, could be good candidates for oral anticoagulation. (This systematic review was registered with the International Prospective Registry of Systematic Reviews as: PROSPERO CRD42018099506).




em

The contact system proteases play disparate roles in streptococcal sepsis

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.




em

Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice

Receptor-mediated endocytosis, which contributes to a wide range of cellular functions, including receptor signaling, cell adhesion, and migration, requires endocytic vesicle release by the large GTPase dynamin 2. Here, the role of dynamin 2 was investigated in platelet hemostatic function using both pharmacological and genetic approaches. Dnm2fl/fl Pf4-Cre (Dnm2Plt/) mice specifically lacking dynamin 2 within the platelet lineage developed severe thrombocytopenia and bleeding diathesis and Dnm2Plt/ platelets adhered poorly to collagen under arterial shear rates. Signaling via the collagen receptor GPVI was impaired in platelets treated with the dynamin GTPase inhibitor dynasore, as evidenced by poor protein tyrosine phosphorylation, including that of the proximal tyrosine kinase Lyn on its activating tyrosine 396 residue. Platelet stimulation via GPVI resulted in a slight decrease in GPVI, which was maintained by dynasore treatment. Dynasore-treated platelets had attenuated function when stimulated via GPVI, as evidenced by reduced GPIbα downregulation, α-granule release, integrin αIIbβ3 activation, and spreading onto immobilized fibrinogen. By contrast, responses to the G-protein coupled receptor agonist thrombin were minimally affected by dynasore treatment. GPVI expression was severely reduced in Dnm2Plt–/– platelets, which were dysfunctional in response to stimulation via GPVI, and to a lesser extent to thrombin. Dnm2Plt–/– platelets lacked fibrinogen in their α-granules, but retained von Willebrand factor. Taken together, the data show that dynamin 2 plays a proximal role in signaling via the collagen receptor GPVI and is required for fibrinogen uptake and normal platelet hemostatic function.




em

Cardiac biomarkers are prognostic in systemic light chain amyloidosis with no cardiac involvement by standard criteria

Patients with systemic immunoglobulin light chain amyloidosis (AL) with no evidence of cardiac involvement by consensus criteria have excellent survival, but 20% will die within 5 years of diagnosis and prognostic factors remain poorly characterised. We report the outcomes of 378 prospectively followed Mayo stage I patients (N-terminal pro b-type natriuretic peptide <332 ng/L, high sensitivity cardiac troponin <55 ng/L). The median presenting N-terminal pro b-type natriuretic peptide was 161 ng/L, high sensitivity cardiac troponin 10 ng/L, creatinine 76 μmol/L and mean left ventricular septal wall thickness, 10 mm. Median follow up was 42 (1-117 months), with 71 deaths; median overall survival was not reached (78% survival at 5 years). Although no patients had cardiac involvement by echocardiogram, a proportion (n=25/90, 28%) had cardiac involvement by cardiac magnetic resonance imaging. Age, autonomic nervous system involvement, N-terminal pro b-type natriuretic peptide >152 ng/L, high sensitivity cardiac troponin >10 ng/L and cardiac involvement by magnetic resonance imaging were predictive for survival; on multivariate analysis only N-terminal pro b-type natriuretic peptide >152 ng/L (P<0.008, hazard ratio [HR] 3.180, confidence interval [CI]: 1.349-7.495) and cardiac involvement on magnetic resonance imaging (P=0.026, HR=5.360, CI: 1.219-23.574) were prognostic. At 5 years, 70% of patients with N-terminal pro b-type natriuretic peptide >152 ng/L were alive. In conclusion, N-terminal pro b-type natriuretic peptide is prognostic for survival in patients with no cardiac involvement by consensus criteria and cardiac involvement is detected by magnetic resonance imaging in such cases. This suggests that N-terminal pro b-type natriuretic peptide thresholds for cardiac involvement in AL may need to be redefined.




em

Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.




em

Identification of a miR-146b-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia

Tlarge granular lymphocyte leukemia (T-LGLL) is characterized by the expansion of several large granular lymphocyte clones, among which a subset of large granular lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4 phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNAs has not been evaluated in T-LGLL patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-LGLL through an altered expression of miRNAs. The expression level of 756 mature miRNA was assessed on purified T large granular lymphocytes (T-LGLs) by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-LGLs. Remarkably, CD8 T-LGLs exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of Fas ligand (FasL), that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-LGLs occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-LGLs lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-LGLL.




em

An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma

Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo. This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.




em

Impact of cytogenetic abnormalities on outcomes of adult Philadelphia-negative acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation: a study by the Acute Leukemia Working Committee of the Center for International Blood and

Cytogenetic risk stratification at diagnosis has long been one of the most useful tools to assess prognosis in acute lymphoblastic leukemia (ALL). To examine the prognostic impact of cytogenetic abnormalities on outcomes after allogeneic hematopoietic cell transplantation, we studied 1731 adults with Philadelphia-negative ALL in complete remission who underwent myeloablative or reduced intensity/non-myeloablative conditioning transplant from unrelated or matched sibling donors reported to the Center for International Blood and Marrow Transplant Research. A total of 632 patients had abnormal conventional metaphase cytogenetics. The leukemia-free survival and overall survival rates at 5 years after transplantation in patients with abnormal cytogenetics were 40% and 42%, respectively, which were similar to those in patients with a normal karyotype. Of the previously established cytogenetic risk classifications, modified Medical Research Council-Eastern Cooperative Oncology Group score was the only independent prognosticator of leukemia-free survival (P=0.03). In the multivariable analysis, monosomy 7 predicted post-transplant relapse [hazard ratio (HR)=2.11; 95% confidence interval (95% CI): 1.04-4.27] and treatment failure (HR=1.97; 95% CI: 1.20-3.24). Complex karyotype was prognostic for relapse (HR=1.69; 95% CI: 1.06-2.69), whereas t(8;14) predicted treatment failure (HR=2.85; 95% CI: 1.35-6.02) and overall mortality (HR=3.03; 95% CI: 1.44-6.41). This large study suggested a novel transplant-specific cytogenetic scheme with adverse [monosomy 7, complex karyotype, del(7q), t(8;14), t(11;19), del(11q), tetraploidy/near triploidy], intermediate (normal karyotype and all other abnormalities), and favorable (high hyperdiploidy) risks to prognosticate leukemia-free survival (P=0.02). Although some previously established high-risk Philadelphia-negative cytogenetic abnormalities in ALL can be overcome by transplantation, monosomy 7, complex karyotype, and t(8;14) continue to pose significant risks and yield inferior outcomes.




em

Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.




em

TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment

Immunotherapeutic strategies targeting the rare leukemic stem cell compartment might provide salvage to the high relapse rates currently observed in acute myeloid leukemia (AML). We applied gene expression profiling for comparison of leukemic blasts and leukemic stem cells with their normal counterparts. Here, we show that the T-cell receptor chain alternate reading frame protein (TARP) is over-expressed in de novo pediatric (n=13) and adult (n=17) AML sorted leukemic stem cells and blasts compared to hematopoietic stem cells and normal myeloblasts (15 healthy controls). Moreover, TARP expression was significantly associated with a fms-like tyrosine kinase receptor-3 internal tandem duplication in pediatric AML. TARP overexpression was confirmed in AML cell lines (n=9), and was found to be absent in B-cell acute lymphocytic leukemia (n=5) and chronic myeloid leukemia (n=1). Sequencing revealed that both a classical TARP transcript, as described in breast and prostate adenocarcinoma, and an AML-specific alternative TARP transcript, were present. Protein expression levels mostly matched transcript levels. TARP was shown to reside in the cytoplasmic compartment and showed sporadic endoplasmic reticulum co-localization. TARP-T-cell receptor engineered cytotoxic T-cells in vitro killed AML cell lines and patient leukemic cells co-expressing TARP and HLA-A*0201. In conclusion, TARP qualifies as a relevant target for immunotherapeutic T-cell therapy in AML.




em

Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia

Mixed lineage leukemia (MLL/KMT2A) rearrangements (MLL-r) are one of the most frequent chromosomal aberrations in acute myeloid leukemia. We evaluated the function of Meningioma 1 (MN1), a co-factor of HOXA9 and MEIS1, in human and murine MLL-rearranged leukemia by CRISPR-Cas9 mediated deletion of MN1. MN1 was required for in vivo leukemogenicity of MLL positive murine and human leukemia cells. Loss of MN1 inhibited cell cycle and proliferation, promoted apoptosis and induced differentiation of MLL-rearranged cells. Expression analysis and chromatin immunoprecipitation with sequencing from previously reported data sets demonstrated that MN1 primarily maintains active transcription of HOXA9 and HOXA10, which are critical downstream genes of MLL, and their target genes like BCL2, MCL1 and Survivin. Treatment of MLL-rearranged primary leukemia cells with anti-MN1 siRNA significantly reduced their clonogenic potential in contrast to normal CD34+ hematopoietic progenitor cells, suggesting a therapeutic window for MN1 targeting. In summary, our findings demonstrate that MN1 plays an essential role in MLL fusion leukemias and serve as a therapeutic target in MLL-rearranged acute myeloid leukemia.




em

Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia

Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells.




em

Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model

Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.




em

Appropriation of GPIb{alpha} from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation

Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-β1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-β1-stimulated cremaster muscle, while in the ApoE–/– model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic.




em

Extensive multilineage analysis in patients with mixed chimerism after allogeneic transplantation for sickle cell disease: insight into hematopoiesis and engraftment thresholds for gene therapy

Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included. A selective advantage of donor RBC and their progenitors/precursors led to full chimerism in mature RBC (despite partial engraftment of other lineages), and resulted in the clinical control of the disease. Six patients with donor chimerism <50% had hemolysis (reticulocytosis) and higher HbS than their donor. Four of them had donor chimerism <30%, including a patient with AA donor (hemoglobin >10 g/dL) and three with AS donors (hemoglobin <10 g/dL). However, only one vaso-occlusive crisis occurred with 68.7% HbS. Except in the patients with the lowest chimerism, the donor engraftment was lower for T cells than for the other lineages. In a context of mixed chimerism after hematopoietic stem cell transplantation for SCD, myeloid (rather than T cell) engraftment was the key efficacy criterion. Results show that myeloid chimerism as low as 30% was sufficient to prevent a vaso-occlusive crisis in transplants from an AA donor but not constantly from an AS donor. However, the correction of hemolysis requires higher donor chimerism levels (i.e. ≥50%) in both AA and AS recipients. In the future, this group of patients may need a different therapeutic approach.




em

Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women

In iron-depleted women without anemia, oral iron supplements induce an increase in serum hepcidin (SHep) that persists for 24 hours, decreasing iron absorption from supplements given later on the same or next day. Consequently, iron absorption from supplements is highest if iron is given on alternate days. Whether this dosing schedule is also beneficial in women with iron-deficiency anemia (IDA) given high-dose iron supplements is uncertain. The primary objective of this study was to assess whether, in women with IDA, alternate-day administration of 100 and 200 mg iron increases iron absorption compared to consecutive-day iron administration. Secondary objectives were to correlate iron absorption with SHep and iron status parameters. We performed a cross-over iron absorption study in women with IDA (n=19; median hemoglobin 11.5 mg/dL; mean serum ferritin 10 mg/L) who received either 100 or 200 mg iron as ferrous sulfate given at 8 AM on days 2, 3 and 5 labeled with stable iron isotopes 57Fe, 58Fe and 54Fe; after a 16-day incorporation period, the other labeled dose was given at 8 AM on days 23, 24 and 26 (days 2, 3 and 5 of the second period). Iron absorption on days 2 and 3 (consecutive) and day 5 (alternate) was assessed by measuring erythrocyte isotope incorporation. For both doses, SHep was higher on day 3 than on day 2 (P<0.001) or day 5 (P<0.01) with no significant difference between days 2 and 5. Similarly, for both doses, fractional iron absorption (FIA) on days 2 and 5 was 40-50% higher than on day 3 (P<0.001), while absorption on day 2 did not differ significantly from day 5. There was no significant difference in the incidence of gastrointestinal side effects comparing the two iron doses (P=0.105). Alternate day dosing of oral iron supplements in anemic women may be preferable because it sharply increases FIA. If needed, to provide the same total amount of iron with alternate day dosing, twice the daily target dose should be given on alternate days, as total iron absorption from a single dose of 200 mg given on alternate days was approximately twice that from 100 mg given on consecutive days (P<0.001). In IDA, even if hepatic hepcidin expression is strongly suppressed by iron deficiency and erythropoietic drive, the intake of oral iron supplements leads to an acute hepcidin increase for 24 hours. The study was funded by ETH Zürich, Switzerland. This study has been registered at www.clinicaltrials.gov as #NCT03623997.




em

Long-term outcome of a randomized controlled study in patients with newly diagnosed severe aplastic anemia treated with antithymocyte globulin and cyclosporine, with or without granulocyte colony-stimulating factor: a Severe Aplastic Anemia Working Party

This follow-up study of a randomized, prospective trial included 192 patients with newly diagnosed severe aplastic anemia receiving antithymoglobulin and cyclosporine, with or without granulocyte colony-stimulating factor (G-CSF). We aimed to evaluate the long-term effect of G-CSF on overall survival, event-free survival, probability of secondary myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), clinical paroxysmal nocturnal hemoglobinuria, relapse, avascular osteonecrosis and chronic kidney disease. The median follow-up was 11.7 years (95% CI, 10.9-12.5). The overall survival rate at 15 years was 57±12% in the group given G-CSF and 63±12% in the group not given G-CSF (P=0.92); the corresponding event-free survival rates were 24±10% and 23±10%, respectively (P=0.36). In total, 9 patients developed MDS or AML, 10 only a clonal cytogenetic abnormality, 7 a solid cancer, 18 clinical paroxysmal nocturnal hemoglobinuria, 8 osteonecrosis, and 12 chronic kidney disease, without any difference between patients treated with or without G-CSF. The cumulative incidence of MDS, AML or isolated cytogenetic abnormality at 15 years was 8.5±3% for the G-CSF group and 8.2±3% for the non-G-CSF group (P=0.90). The cumulative incidence of any late event including myelodysplastic syndrome or acute myeloid leukemia, isolated cytogenetic abnormalities, solid cancer, clinical paroxysmal nocturnal hemoglobinuria, aseptic osteonecrosis, chronic kidney disease and relapse was 50±12% for the G-CSF group and 49±12% for the non-G-CSF group (P=0.65). Our results demonstrate that it is unlikely that G-CSF has an impact on the outcome of severe aplastic anemia; nevertheless, very late events are common and eventually affect the prognosis of these patients, irrespectively of their age at the time of immunosuppressive therapy (NCT01163942).




em

Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation

Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.




em

Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.




em

Genetics of "high-risk" chronic lymphocytic leukemia in the times of chemoimmunotherapy




em

A post-stem cell transplant risk score for Philadelphia-negative acute lymphoblastic leukemia




em

Role of Meningioma 1 for maintaining the transformed state in MLL-rearranged acute myeloid leukemia: potential for therapeutic intervention?




em

Recruiting TP53 to target chronic myeloid leukemia stem cells




em

Immunosuppression and growth factors for severe aplastic anemia: new data for old questions




em

100-Year Old Haematologica Images: The Quarrel about the Origin of Platelets (I)




em

Hemolytic anemia due to the unstable hemoglobin Wien: manifestations and long-term course in the largest pedigree identified to date




em

Early high plasma ST2, the decoy IL-33 receptor, in children undergoing hematopoietic cell transplantation is associated with the development of post-transplant diabetes mellitus




em

Revisiting the link between platelets and depression through genetic epidemiology: new insights from platelet distribution width




em

CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model




em

EZH2 mutations and impact on clinical outcome: an analysis in 1,604 patients with newly diagnosed acute myeloid leukemia




em

Prolonged treatment-free remission in chronic myeloid leukemia patients with previous BCR-ABL1 kinase domain mutations




em

Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells




em

Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis




em

Haematologica




em

A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function

Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.




em

Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy

Identifying gene variants causing monogenic diabetes (MD) increases understanding of disease etiology and allows for implementation of precision therapy to improve metabolic control and quality of life. Here, we aimed to assess the prevalence of MD in youth with diabetes in Lithuania, uncover potential diabetes-related gene variants, and prospectively introduce precision treatment. First, we assessed all pediatric and most young-adult patients with diabetes in Lithuania (n = 1,209) for diabetes-related autoimmune antibodies. We then screened all antibody-negative patients (n = 153) using targeted high-throughput sequencing of >300 potential candidate genes. In this group, 40.7% had MD, with the highest percentage (100%) in infants (diagnosis at ages 0–12 months), followed by those diagnosed at ages >1–18 years (40.3%) and >18–25 years (22.2%). The overall prevalence of MD in youth with diabetes in Lithuania was 3.5% (1.9% for GCK diabetes, 0.7% for HNF1A, 0.2% for HNF4A and ABCC8, 0.3% for KCNJ11, and 0.1% for INS). Furthermore, we identified likely pathogenic variants in 11 additional genes. Microvascular complications were present in 26% of those with MD. Prospective treatment change was successful in >50% of eligible candidates, with C-peptide >252 pmol/L emerging as the best prognostic factor.