ic

Precession electron diffraction – a topical review

This topical review highlights progress made recently in the development and application of precession electron diffraction (PED) and its scanning variant for the determination of unknown crystal structures and the mapping of orientations at the nanoscale.






































ic

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.




ic

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.





ic

Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023.




ic

Confidence maps: statistical inference of cryo-EM maps

The concept of statistical signal detection by controlling the false-discovery rate (FDR) to aid the atomic model interpretation of cryo-EM density maps is reviewed. The recommended usage of the FDR software tool is presented together with its successful integration into the CCP-EM suite.




ic

The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo

The crystal structure of the c-type cytochrome NirC from Pseudomonas aeruginosa has been determined and reveals the simultaneous presence of monomers and 3D domain-swapped dimers in the same asymmetric unit.




ic

Development of basic building blocks for cryo-EM: the emcore and emvis software libraries

This article presents an overview of the development of two basic software libraries for image manipulation and data visualization in cryo-EM: emcore and emvis.




ic

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




ic

Structure of ClpC1-NTD in complex with the anti-TB natural product ecumicin reveals unique binding interactions

Comparison of the structures of ClpC1-Ecumicin and ClpC1-Rufomycin reveals unique interaction relevant to the mode of action.




ic

Structure–function study of AKR4C14, an aldo-keto reductase from Thai Jasmine rice (Oryza sativa L. ssp. Indica cv. KDML105)

Rice AKR in the apo structure reveals the ordered open conformation and its key residues which form the substrate channel wall and determine its substrate preference for straight-chain aldehydes.




ic

Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate]

The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water mol­ecules in an octa­hedral geometry. Another ZnII atom is coordinated by two carboxyl­ate-O atoms, one hy­droxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxyl­ate) inter­action derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octa­hedral fashion by two hy­droxy-O atoms, one carboxyl­ate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxyl­ate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.




ic

2-Amino-6-chloro­pyridine–glutaric acid (1/1)

In the title 1:1 co-crystal [systematic name: 6-chloro­pyridin-2-amine–penta­nedioic acid (1/1)], C5H5ClN2·C5H8O4, the pyridine ring is essentially planar, with a maximum deviation of 0.003 (1) Å. The base and acid mol­ecules are linked via N—H⋯O and O—H⋯N hydrogen bonds, while inversion-related acid mol­ecules are linked via pairs of O—H⋯O hydrogen bonds. These inter­actions together with a C—H⋯O hydrogen bond connect the two components, forming (001) sheets.




ic

Poly[di­aqua­[μ4-2-(carboxyl­atometh­oxy)benzoato][μ2-2-(carboxyl­atometh­oxy)benzoato]dicad­mium(II)]

In the title compound, [Cd2(C9H6O5)2(H2O)2]n, the crystallographically distinct CdII cations are coordinated in penta­gonal–bipyramidal and octa­hedral fashions. The 2-(carb­oxy­meth­oxy)benzoate (cmb) ligands connect the Cd atoms into [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons that are oriented along the a-axis direction. Supra­molecular layers are formed parallel to (01overline{1}) by O—H⋯O hydrogen bonding between the ribbons. The supra­molecular three-dimensional crystal structure of the title compound is then constructed by π–π stacking inter­actions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs.




ic

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




ic

1-(Cyclo­heptyl­idene)thio­semicarbazide

The asymmetric unit of the title compound, C8H15N3S, contains two independent mol­ecules. In both mol­ecules, the seven-membered cyclo­heptane ring adopts a chair conformation. An intra­molecular N—H⋯N hydrogen bond is observed in both mol­ecules, forming S(5) graph-set motifs. In the crystal, the two independent mol­ecules are connected through N—H⋯S hydrogen bonds, forming dimers which are in turn further connected by N—H⋯S hydrogen bonds into chains along [010].