pr Brazilian and Indian scientists produce crystal with many potential applications By www.eurekalert.org Published On :: Mon, 04 May 2020 00:00:00 EDT (Fundação de Amparo à Pesquisa do Estado de São Paulo) Thanks to its magnetic properties, the material -- zinc-doped manganese chromite -- can be used in a range of products, from gas sensors to data storage devices. Full Article
pr Inhibiting thrombin protects against dangerous infant digestive disease By www.eurekalert.org Published On :: Tue, 05 May 2020 00:00:00 EDT (University of South Florida (USF Health)) A new preclinical study by researchers at the University of South Florida Health (USF Health) Morsani College of Medicine and Johns Hopkins University School of Medicine offers promise of a specific treatment for NEC, a rare inflammatory bowel disease that is a leading cause of death in premature infants. The team found that inhibiting the inflammatory and blood-clotting molecule thrombin with targeted nanotherapy can protect against NEC-like injury in newborn mice. Full Article
pr Surfaces that grip like gecko feet could be easily mass-produced By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Georgia Institute of Technology) The science behind sticky gecko's feet lets gecko adhesion materials pick up about anything. But cost-effective mass production of the materials was out of reach until now. A new method of making them could usher the spread of gecko-inspired grabbers to assembly lines and homes. Full Article
pr High color purity 3D printing By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (ICFO-The Institute of Photonic Sciences) ICFO researchers report on a new method to obtain high color purity 3D objects with the use of a new class of nanoparticles. Full Article
pr Young Scientist prize for Lancaster physicist By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (Lancaster University) Lancaster University's Dr Samuli Autti has been awarded a Young Scientist Prize 2020 by the International Union of Pure and Applied Physics. The prestigious prize, awarded only once every three years, was made by the Low Temperature Commission of the IUPAP. Full Article
pr CE inspects CuMask production By www.news.gov.hk Published On :: Wed, 06 May 2020 00:00:00 +0800 Chief Executive Carrie Lam inspected one of the CuMask production sites in Tsuen Wan today and expressed gratitude to those manufacturing the reusable masks for Hong Kong residents to fight against the COVID-19 epidemic. She chatted with the staff and noted that many of them are retired textile industry workers who have re-joined the production workforce to combat the virus. Mrs Lam praised them for their commitment to serving the community and thanked them for their hard work. The masks produced in the workshop will be delivered to a clean workspace for sterilising with ozone and packing before distribution. There is no need to wash the mask before it is used for the first time. In the face of the tight supply of masks amid the epidemic, the Government set aside funds to subsidise projects on technology applications of reusable masks under the first round of the Anti-epidemic Fund. The CuMask complies with the American Society for Testing & Materials F2100 Level 1 standard and can be washed up to 60 times. It can also be used for a longer period after replacing the filter. Mrs Lam said she is pleased to note that CuMask is well received by the public and the registration process has been very smooth. “CuMask is a home-grown scientific research achievement with local application. The whole process has involved co-operation between the Government, industry, academia and the research sector and is an outstanding example of the use of technology to improve people’s lives. “It will also help solve the problem of the supply of face masks during an epidemic in the long run. I highly commend all the people who have participated in the relevant work and I am fully confident in the development of innovation and technology in Hong Kong.” Mrs Lam appealed to the public to make use of the registration quota of up to six people to minimise delivery resources and enhance efficiency. She added that relevant departments will deliver the masks as soon as possible. Full Article
pr Scheduled premises' rules clarified By www.news.gov.hk Published On :: Fri, 08 May 2020 00:00:00 +0800 Premises can still operate other licensed businesses which are not required to be suspended if they were operating more than one licensed business before the closure, the Food & Health Bureau said today. The bureau made the statement in response to media enquiries on some anti-epidemic measures which were relaxed from today. The statement noted that in accordance with the Prevention & Control of Disease (Requirements & Directions) (Business & Premises) Regulation, the Secretary for Food & Health has issued directions by notices in the Gazette that certain scheduled premises, namely karaoke establishments, clubs or nightclubs, party rooms and bathhouses, should remain closed until May 21. These scheduled premises may still operate other licensed businesses if the operators have implemented all measures to effectively stop or avoid operation of businesses and offering services which are required to be suspended. For example, premises originally operated as karaoke establishments and catering businesses can continue their catering business in accordance with the relevant directions if all karaoke operation and services are suspended. The directions state that facilities, installations and equipment for karaoke activities are closed or properly sealed off and notices are posted in prominent locations at the entrances clearly indicating that only catering services but no karaoke services are provided in the premises. Other scheduled premises operating more than one licensed business can adopt similar measures to operate other licensed businesses which are not required to be suspended, the bureau added. Full Article
pr Aid to food producers disbursed By www.news.gov.hk Published On :: Fri, 08 May 2020 00:00:00 +0800 Subsidies to local primary producers and wholesale traders operating in fresh food wholesale markets are being disbursed from today, the Agriculture, Fisheries & Conservation Department announced. The department said 2,847 applications for the subsidy scheme of $10,000 to each local primary producer under the second round of the Anti-epidemic Fund have been received, with 1,294 approved involving a total of $12,940,000. A total of 346 applications to the scheme to provide a subsidy of $40,000 to each eligible wholesale trader operating in fresh food wholesale markets were also received with 148 approved involving a total of $5,920,000. The application periods of the two schemes will end on June 1. Additionally, 57 borrowers have participated in the arrangement of a one-off interest-free deferral of loan repayment for one year under the Fisheries Development Loan Fund, it said. Full Article
pr $140m approved for support scheme By www.news.gov.hk Published On :: Sat, 09 May 2020 00:00:00 +0800 More than 8,200 applications for the Anti-epidemic Support Scheme for Property Management Sector (ASPM) have been received, with over 3,850 approved, the Government announced today. The approved applications involve subsidies of more than $140 million and will benefit around 22,000 building blocks and about 35,750 frontline property management workers. Launched under the Anti-epidemic Fund, the ASPM provides subsidies to owners' organisations or property management companies of eligible buildings to provide hardship allowance to frontline property management workers. It also provides the Anti-epidemic Cleansing Subsidy to owners' organisations or property management companies. The scheme’s first phase covers private residential and composite buildings, while its second phase covers industrial and commercial buildings. The ASPM is still open for applications and continues to disburse subsidies. Contact the Property Management Services Authority at 3696 1156 or 3696 1166, or visit its website for details. Full Article
pr Mathematician Emily Riehl earns President's Frontier Award By www.ams.org Published On :: Tue, 21 Jan 2020 00:00:00 EST Emily Riehl, Johns Hopkins University, received the university's $250,000 President's Frontier Award, whose purpose is to nurture individuals at Johns Hopkins University who are breaking new ground and poised to become leaders in their field. Riehl studies category theory and says that "I just thought the proofs were the most beautiful of any of the other areas I've encountered. ... It was sort of love at first sight and I am lucky to be able to do what I love." The award is considered a "$250,000 investment in doing more of what she loves." Also see and hear this coverage: "Johns Hopkins Mathematician from B-N [Bloomington-Normal, IL] Breaks Barriers and Wins Research Grant, by Jolie Sherman, WGLT, February 27, 2020. Full Article
pr Correction: Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. [Additions and Corrections] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 VOLUME 285 (2010) PAGES 13742–13747In Fig. 1E, passage 10, the splicing of a non-adjacent lane from the same immunoblot was not marked. This error has now been corrected and does not affect the results or conclusions of this work.jbc;295/16/5533/F1F1F1Figure 1E. Full Article
pr Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity. Full Article
pr Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy. Full Article
pr A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding [Plant Biology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)3]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4. Full Article
pr Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration. Full Article
pr Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
pr Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes [Enzymology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles. Full Article
pr Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells. Full Article
pr Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens. Full Article
pr Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts. Full Article
pr The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis. Full Article
pr Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C. Full Article
pr Correction: Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. [Additions and Corrections] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 VOLUME 294 (2019) PAGES 2555–2568Due to publisher error, “150 l/mm” was changed to “150 liters/mm” in the second paragraph of the “Vibrational spectroscopy of samples” section under “Experimental Procedures.” The correct phrase should be “150 l/mm.” Full Article
pr X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition. Full Article
pr Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs. Full Article
pr An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
pr Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities. Full Article
pr Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article
pr Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway. Full Article
pr Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity. Full Article
pr Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification [RNA] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression. Full Article
pr Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis. Full Article
pr The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
pr CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects [DNA and Chromosomes] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs. Full Article
pr Correction: Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. [Additions and Corrections] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 VOLUME 295 (2020) PAGES 1898–1914Yichen Zhong's name was misspelled. The correct spelling is shown above. Full Article
pr Withdrawal: miR-21-mediated radioresistance occurs via promoting repair of DNA double strand breaks. [Withdrawals/Retractions] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 VOLUME 292 (2017) PAGES 3531–3540This article has been withdrawn by Shuofeng Hu, Xiaomin Ying, Xiangming Zhang, and Ya Wang. Baocheng Hu, Xiang Wang, Ping Wang, Jian Wang, and Hongyan Wang could not be reached. In Fig. 1C, the DAPI and merged images for the no IR control were switched. The DNA-PKcs and actin immunoblots on the left appear to have been spliced. In Fig. 4C, the DNA-PKcs immunoblot appears to have been spliced. In Fig. 4D, lanes 1 and 5; lanes 2, 6, and 8; and lanes 3 and 7 of the DNA-PKcs immunoblot are the same. In the p-DNA-PKcs immunoblot, lanes 1 and 8, lanes 2 and 6, and lanes 3 and 7 are the same. In the CRY2 immunoblot, lanes 5 and 7 are the same. In the CDC25A immunoblot, lanes 3 and 8 are the same. In the GSK3B immunoblot, lanes 1 and 5 and lanes 3 and 7 are the same. Also in the GSK3B immunoblot, the upper GSK3B bands in lanes 6 and 8 are the same. Lanes 4 and 8 of the cyclin D1 immunoblot are the same. In Fig. 5A, the CDC25A immunoblot appears to have been spliced. Also in Fig. 5A, lanes 2–4 and lanes 6–8 of the CDC25A immunoblot are the same. Lanes 4–6 and 7–9 of the actin immunoblot are the same. In Fig. 5C, lane 1 of the CDC25A immunoblot was reused in lane 5, and lanes 3 and 4 were reused in lanes 7 and 8. In the... Full Article
pr Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1... Full Article
pr NF-{kappa}B mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled. Full Article
pr Mechanistic insights explain the transforming potential of the T507K substitution in the protein-tyrosine phosphatase SHP2 [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The protein-tyrosine phosphatase SHP2 is an allosteric enzyme critical for cellular events downstream of growth factor receptors. Mutations in the SHP2 gene have been linked to many different types of human diseases, including developmental disorders, leukemia, and solid tumors. Unlike most SHP2-activating mutations, the T507K substitution in SHP2 is unique in that it exhibits oncogenic Ras-like transforming activity. However, the biochemical basis of how the SHP2/T507K variant elicits transformation remains unclear. By combining kinetic and biophysical methods, X-ray crystallography, and molecular modeling, as well as using cell biology approaches, here we uncovered that the T507K substitution alters both SHP2 substrate specificity and its allosteric regulatory mechanism. We found that although SHP2/T507K exists in the closed, autoinhibited conformation similar to the WT enzyme, the interactions between its N-SH2 and protein-tyrosine phosphatase domains are weakened such that SHP2/T507K possesses a higher affinity for the scaffolding protein Grb2-associated binding protein 1 (Gab1). We also discovered that the T507K substitution alters the structure of the SHP2 active site, resulting in a change in SHP2 substrate preference for Sprouty1, a known negative regulator of Ras signaling and a potential tumor suppressor. Our results suggest that SHP2/T507K's shift in substrate specificity coupled with its preferential association of SHP2/T507K with Gab1 enable the mutant SHP2 to more efficiently dephosphorylate Sprouty1 at pTyr-53. This dephosphorylation hyperactivates Ras signaling, which is likely responsible for SHP2/T507K's Ras-like transforming activity. Full Article
pr Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance. Full Article
pr Kruppel-like factor 3 (KLF3) suppresses NF-{kappa}B-driven inflammation in mice [Immunology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation. Full Article
pr The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus [Protein Synthesis and Degradation] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity. Full Article
pr Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks [DNA and Chromosomes] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA–binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB. Full Article
pr COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
pr Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3 [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin–Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor–like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies. Full Article
pr DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension. Full Article
pr The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment. Full Article
pr The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
pr Zinc promotes liquid-liquid phase separation of tau protein [Protein Structure and Folding] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Tau is a microtubule-associated protein that plays a major role in Alzheimer's disease (AD) and other tauopathies. Recent reports indicate that, in the presence of crowding agents, tau can undergo liquid–liquid phase separation (LLPS), forming highly dynamic liquid droplets. Here, using recombinantly expressed proteins, turbidimetry, fluorescence microscopy imaging, and fluorescence recovery after photobleaching (FRAP) assays, we show that the divalent transition metal zinc strongly promotes this process, shifting the equilibrium phase boundary to lower protein or crowding agent concentrations. We observed no tau LLPS-promoting effect for any other divalent transition metal ions tested, including Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. We also demonstrate that multiple zinc-binding sites on tau are involved in the LLPS-promoting effect and provide insights into the mechanism of this process. Zinc concentration is highly elevated in AD brains, and this metal ion is believed to be an important player in the pathogenesis of this disease. Thus, the present findings bring a new dimension to understanding the relationship between zinc homeostasis and the pathogenic process in AD and related neurodegenerative disorders. Full Article
pr Profiles of kindergartens posted online By www.info.gov.hk Published On :: Wed, 09 Oct 2019 15:09:58 Full Article