po

Employees’ Involuntary Non-Use of ICT Influenced by Power Differences: A Case Study with the Grounded Theory Approach

Power differences affect implementation of information and communication technology (ICT) in a way that creates differences in ICT use. Involuntary non-use of new ICT at work occurs when employees want to use the new technology, but are unable to due to factors beyond their control. Findings from an in-depth qualitative study show how involuntary non-use of new ICT can be attributed to power differences between occupational groups in the same organization. The findings suggest that experience is a moderating variable and that closeness to formal power holders as well as closeness to the new technology increases the probability for expert control of the ICT-organization processes. These power differences favor ICT experts over ICT novices and result in a high-quality learning environment for the ICT experts characterized by autonomy, inclusion, and adequate work processes and technological solutions. The ICT novices try to navigate in a learning-hostile work environment characterized by marginalization through expert control, isolation, and inadequate work processes and technological solutions. This led to involuntary non-use by the ICT novices, while the experts became more proficient in ICT use. These findings give managers facing a technological organizational change tools to understand important mechanisms for implementing the change in their own organization, and help them take the right actions to integrate new technology and new organization of work.




po

The Potential for Facebook Application in Undergraduate Learning: A Study of Jordanian Students

The purpose of this paper was to explore the current and potential use of Facebook for learning purposes by Jordanian university students. The paper attempted to compare such use with other uses of Facebook. Further, the paper investigated Jordanian university students’ attitudes towards using Facebook as a formal academic tool, through the use of course-specific Facebook groups. To that end, quantitative data were collected from a sample of 451 students from three Jordanian public universities. Findings indicated that the vast majority of Jordanian students had Facebook accounts, which echoes its popularity amongst Jordanian youth compared to other types of online social networking sites. While both “social activities” and “entertainment” were the primary motivators for Jordanian students to create and use Facebook accounts, a growing number of them were using Facebook for academic purposes too. Further, Jordanian students had a positive attitude toward the use of “Facebook groups” as an educational tool for specific courses, and under specific conditions. Based on its findings, the paper provides suggestions for Jordanian higher institutions to invest in the application of Facebook as a formal academic tool.




po

Intention to Use and Satisfaction of e-Learning for Training in the Corporate Context

Together, the fields of education and information technology have identified the need for an online solution to training. The introduction of e-learning has optimised the learning process, allowing organisations to realise the many advantages that e-learning offers. The importance of user involvement in the success of e-learning makes it imperative that the forces driving intention to use e-learning and satisfaction thereof be determined. The purpose of this paper is to investigate the relationships between the metrics influencing intention to use and the satisfaction of using e-learning in companies. The results of a survey distributed amongst a South African software development company’s customer base revealed that the 94 respondents have positive enjoyment and self-efficacy levels, and low computer anxiety levels. Correlation analysis revealed significant relationships between enjoyment and self-efficacy and between enjoyment and satisfaction. Companies should therefore ensure that users enjoy using e-learning as it can directly influence satisfaction and self-efficacy.




po

Factors Affecting the Adoption and Usage of ICTs within Polish Households

Information and communication technologies (ICTs) encompassing computer and network hardware and software, and so on, as well as various services and applications associated with them, are assuming a growing presence within the modern homestead and have an indelible impact on the professional and everyday life of people. This research aims to explore factors influencing the successful adoption and usage of ICTs within Polish households. Based on prior literature and practical experiences, a framework of success factors is provided. The required data was collected from a survey questionnaire administered to a sample of Polish households to examine this framework and identifies which factors are of greatest importance for the adoption and usage of ICTs within households in Poland. Based on 751 questionnaires the paper indicates that the adoption of ICTs within households is mainly influenced by the economic status of households and cost of ICTs, perceived economic benefits from the usage of ICTs, technological availability and security of ICTs, ICT competences and awareness, as well as satisfaction with the adoption of ICTs. Furthermore, gender, education, and place of residence do not reflect significant differences on the factors. Yet, there are significant differences among the factors that could be attributed to age. Both, policy makers and ICT providers can benefit from the findings with regard to bridging the gap of ICT adoption and use in the Polish households.




po

The Effect of Perceived Expected Satisfaction with Electronic Health Records Availability on Expected Satisfaction with Electronic Health Records Portability in a Multi-Stakeholder Environment

A central premise for the creation of Electronic Health Records (EHR) is ensuring the portability of patient health records across various clinical, insurance, and regulatory entities. From portability standards such as International Classification of Diseases (ICD) to data sharing across institutions, a lack of portability of health data can jeopardize optimal care and reduce meaningful use. This research empirically investigates the relationship between health records availability and portability. Using data collected from 168 medical providers and patients, we confirm the positive relationship between user perceptions of expected satisfaction with EHR availability and the expected satisfaction with portability. Our findings contribute to more informed practice by understanding how ensuring the availability of patient data by virtue of enhanced data sharing standards, device independence, and better EHR data integration can subsequently drive perceptions of portability across a multitude of stakeholders.




po

A Conceptual Model for the Creation of a Process-Oriented Knowledge Map (POK-Map) and Implementation in an Electric Power Distribution Company

Helping a company organize and capture the knowledge used by its employees and business processes is a daunting task. In this work we examine several proposed methodologies and synthesize them into a new methodology that we demonstrate through a case study of an electric power distribution company. This is a practical research study. First, the research approach for creating the knowledge map is process-oriented and the processes are considered as the main elements of the model. This research was done in four stages: literature review, model editing, model validation and case study. The Delphi method was used for the research model validation. Some of the important outputs of this research were mapping knowledge flows, determining the level of knowledge assets, expert-area knowledge map, preparing knowledge meta-model, and updating the knowledge map according to the company’s processes. Besides identifying, auditing and visualizing tacit and explicit knowledge, this knowledge mapping enables us to analyze the knowledge areas’ situation and subsequently help us to improve the processes and overall performance. So, a process map does knowledge mapping in a clear and accurate frame. Once the knowledge is used in processes, it creates value.




po

The Application of a Knowledge Management Framework to Automotive Original Component Manufacturers

Aim/Purpose: This paper aims to present an example of the application of a Knowledge Man-agement (KM) framework to automotive original component manufacturers (OEMs). The objective is to explore KM according to the four pillars of a selected KM framework. Background: This research demonstrates how a framework, namely the George Washington University’s Four Pillar Framework, can be used to determine the KM status of the automotive OEM industry, where knowledge is complex and can influence the complexity of the KM system (KMS) used. Methodology: An empirical study was undertaken using a questionnaire to gather quantitative data. There were 38 respondents from the National Association of Automotive Component and Allied Manufacturers (NAACAM) and suppliers from three major automotive OEMs. The respondents were required to be familiar with the company’s KMS. Contribution: Currently there is a limited body of research available on the KM implementation frameworks for the automotive industry. This study presents a novel approach to the use of a KM framework to reveal the status of KM in automotive OEMs. At the time of writing, the relationship between the four pillars and the complexity of KMS had not yet been determined. Findings: The results indicate that there is a need to improve KM in the automotive OEM industry. According to the relationships investigated, the four pillars, namely leadership, organization, technology and learning, are considered important for KM, regardless of the level of KMS complexity, Recommendations for Practitioners: Automotive OEMs need to ensure that the KM aspects are established and should be periodically evaluated by using a KM framework such as the George Washington University’s Four Pillar Framework to identify KM weaknesses. Recommendation for Researchers: The establishment and upkeep of a successful KM environment is challenging due to the complexity involved with various influencing aspects. To ensure that all aspects are considered in KM environments, comprehensive KM frameworks, such as the George Washington University’s Four Pillar Framework, need to be applied. Impact on Society: The status of KM management and accessibility of knowledge in organizations needs to be periodically examined, in order to improve supplier and OEM knowledge sharing. Future Research: Although the framework used provides a process for KM status determination, this study could be extended by investigating a methodology that includes KMS best practice and tools. This study could be repeated at a national and international level to provide an indication of KM practice within the entire automotive industry.




po

Typology on Leadership toward Creativity in Virtual Work

Aim/Purpose: This study aims to develop a descriptive typology to better identify leadership toward creativity in virtual work in different types of companies. Background: The study empirically explores how leadership toward creativity occurs in virtual work and uses the theoretical lenses of creativity-conducive leadership and heterarchy to generate a typology. Methodology : A multiple qualitative case study design, interpretivist approach, and abductive analysis are applied. Data is collected by interviewing 21 leaders and employees face-to-face in four companies in the ICT sector and one business advisor company. Contribution: The empirical evidence of this study enriches the understanding of leadership toward creativity in virtual work and contributes to the limited empirical knowledge on leadership that stimulates a virtual workforce to achieve creativity. Findings: The four different types of companies in the typology utilize various transitions toward leadership creativity in virtual work. The trend in leadership in the existing virtually networked business environment is toward the “collective mind” company, which is characterized by shared values, meaningful work, collective intelligence, conscious reflection, transparency, coaching, empowering leadership by example, effective multichannel interaction, and assertiveness. The findings empirically support applying a heterarchy perspective to lead a virtual workforce toward creativity and promote leaders who are genuinely interested in people, their development, collaboration, and technology. Recommendations for Practitioners: The typology helps professionals realize the need to develop leadership, communication, interaction, learning, and growth to foster creative interaction and improve productivity and competitiveness. Recommendation for Researchers: This study enables researchers to more rigorously and creatively conceptualize the conditions and relationships in leadership that facilitate creativity in virtual work. Impact on Society : The findings highlight humanistic values for developing leadership. The study strengthens the view that collective creativity in virtual work cannot emerge without virtual and physical interaction in appropriate spaces and caring for each other. Future Research: Future studies may focus on other fields, industries, networks, roles of materialities, and employees in fostering creativity and on theory development. Longitudinal studies are advisable.




po

Reasons for Poor Acceptance of Web-Based Learning using an LMS and VLE in Ghana

Aim/Purpose: This study investigates the factors that affect the post implementation success of a web-based learning management system at the University of Professional Studies, Accra (UPSA). Background: UPSA implemented an LMS to blend Web-based learning environment with the traditional methods of education to enable working students to acquire education. Methodology: An explanatory sequential mixed method was adopted, under the pragmatic paradigm, to investigate the level of acceptance of web-based learning by students. The effects of perceived usefulness, perceived ease of use, and other social factors were investigated. In all, 4500 final and third-year undergraduate students of UPSA made up the population. A sample size of 870 was used for this study. Contribution: This paper contributes to the body of knowledge by identifying the factors that hinder post-implementation of LMS at the tertiary level in Ghana and adds to the general literature available. Findings: The level of acceptance of LMS seems very low due to poor IT infrastructure, inadequate training, and the relevance of the system to quality lecture delivery. However, students’ intention to use LMS and the usefulness of LMS were perceived to be high, especially among students in higher levels. Recommendations for Practitioners: The authors recommend that IT infrastructure, especially reliable and fast internet connectivity, and adequate training should be provided. Recommendation for Researchers: Further research should be done to confirm if the provision of a more reliable internet system will boost students’ internet proficiency, which in turn will improve their utilisation of the LMS. Impact on Society: Help create awareness of schooling while pursuing a career and also improve interactions between students and lecturers. It will also improve enrolment and possibly reduce the cost of education in the long-run. Future Research: Researchers can look at the possibility of implementing total virtual learning systems at the tertiary level in Ghana.




po

Transforming Communications in the Workplace: The Impact of UC on Perceived Productivity in a Multi-national Corporation

Aim/Purpose: Unified Communications (UC) is touted as a technology that will transform business communication. While positive claims abound, the factors of UC attributable to its success have yet to be identified. By examining how users perceive UC impacts productivity, this study aids organizations in making better decisions regarding investments in and usage of communications technologies. Background: Unified Communications integrates disparate communications and information sharing applications into a single platform. The promise of UC is that it will revolutionize the workplace by providing a more synchronized fit between the way people communicate and the technology they use. Methodology: Through case study research conducted within a large multinational corporation (the Hewlett Packard Company), this study investigated the impact of UC on productivity. Interview narratives were examined using an open coding technique to capture individual perceptions of productivity. Further, to assess the role UC plays in facilitating relationship building and its connection to productivity, participant responses were mapped to the key factors of technology that influence relationships within an organization as identified by Dillon and Montano (2005). Contribution: This research contributes to studies on the impact of UC on productivity in the workplace. Findings UC was found to increase personal productivity, remove communication barriers, and create a more positive work environment. Recommendations for Practitioners : The findings of this study will aid organizations in making investment decisions as they evolve their business communications strategy. Impact on Society: Unified Communications will play an increasingly important role as people adapt to the evolving digital world through which they communicate and collaborate. Future Research: Little research exists that examines the impact of UC within an organization. Additional research investigating the use of UC in a variety of business sectors is needed.




po

Data Visualization in Support of Executive Decision Making

Aim/Purpose: This journal paper seeks to understand historical aspects of data management, leading to the current data issues faced by organizational executives in relation to big data and how best to present the information to circumvent big data challenges for executive strategic decision making. Background: This journal paper seeks to understand what executives value in data visualization, based on the literature published from prior data studies. Methodology: The qualitative methodology was used to understand the sentiments of executives and data analysts using semi-structured interview techniques. Contribution: The preliminary findings can provide practical knowledge for data visualization designers, but can also provide academics with knowledge to reflect on and use, specifically in relation to information systems (IS) that integrate human experience with technology in more valuable and productive ways. Findings: Preliminary results from interviews with executives and data analysts point to the relevance of understanding and effectively presenting the data source and the data journey, using the right data visualization technology to fit the nature of the data, creating an intuitive platform which enables collaboration and newness, the data presenter’s ability to convey the data message and the alignment of the visualization to core the objectives as key criteria to be applied for successful data visualizations Recommendations for Practitioners: Practitioners, specifically data analysts, should consider the results highlighted in the findings and adopt such recommendations when presenting data visualizations. These include data and premise understanding, ensuring alignment to the executive’s objective, possessing the ability to convey messages succinctly and clearly to the audience, having knowledge of the domain to answer questions effectively, and using the right technology to convey the message. Recommendation for Researchers: The importance of human cognitive and sensory processes and its impact in IS development is paramount. More focus can be placed on the psychological factors of technology acceptance. The current TAM model, used to describe use, identifies perceived usefulness and perceived ease-of-use as the primary considerations in technology adoption. However, factors that have been identified that impact on use do not express the importance of cognitive processes in technology adoption. Future Research: Future research requires further focus on intangible and psychological factors that could affect technology adoption and use, as well as understanding data visualization effectiveness in corporate environments, not only predominantly within the Health sector. Lessons from Health sector studies in data visualization should be used as a platform.




po

A Cognitive Knowledge-based Framework for Social and Metacognitive Support in Mobile Learning

Aim/Purpose: This work aims to present a knowledge modeling technique that supports the representation of the student learning process and that is capable of providing a means for self-assessment and evaluating newly acquired knowledge. The objective is to propose a means to address the pedagogical challenges in m-learning by aiding students’ metacognition through a model of a student with the target domain and pedagogy. Background: This research proposes a framework for social and meta-cognitive support to tackle the challenges raised. Two algorithms are introduced: the meta-cognition algorithm for representing the student’s learning process, which is capable of providing a means for self-assessment, and the social group mapping algorithm for classifying students according to social groups. Methodology : Based on the characteristics of knowledge in an m-learning system, the cognitive knowledge base is proposed for knowledge elicitation and representation. The proposed technique allows a proper categorization of students to support collaborative learning in a social platform by utilizing the strength of m-learning in a social context. The social group mapping and metacognition algorithms are presented. Contribution: The proposed model is envisaged to serve as a guide for developers in implementing suitable m-learning applications. Furthermore, educationists and instructors can devise new pedagogical practices based on the possibilities provided by the proposed m-learning framework. Findings: The effectiveness of any knowledge management system is grounded in the technique used in representing the knowledge. The CKB proposed manipulates knowledge as a dynamic concept network, similar to human knowledge processing, thus, providing a rich semantic capability, which provides various relationships between concepts. Recommendations for Practitioners: Educationist and instructors need to develop new pedagogical practices in line with m-learning. Recommendation for Researchers: The design and implementation of an effective m-learning application are challenging due to the reliance on both pedagogical and technological elements. To tackle this challenge, frameworks which describe the conceptual interaction between the various components of pedagogy and technology need to be proposed. Impact on Society: The creation of an educational platform that provides instant access to relevant knowledge. Future Research: In the future, the proposed framework will be evaluated against some set of criteria for its effectiveness in acquiring and presenting knowledge in a real-life scenario. By analyzing real student interaction in m-learning, the algorithms will be tested to show their applicability in eliciting student metacognition and support for social interactivity.




po

Factors Affecting Re-usage Intentions of Virtual Communities Supporting Cosmetic Products

Aim/Purpose: This study uses a cosmetic virtual community (VC) as the research context and the UTAUT model as the theoretical structure aim to explore factors affecting the re-usage intentions of VC members. Background: The Internet use rate of VC was up to 50%, thereby implying that VC gained the attention of Internet users. Therefore, operating a VC will be an effective way to communicate with customers. However, to maintain an existing member is more efficient than creating a new one. As such, understanding determinants of VC members’ re-use intentions becomes important for firms. Methodology: Through an online survey, 276 valid responses were gathered. The collected data were examined by performing confirmatory factor analysis, structural equation modelling procedures, as well as the moderator analysis. Contribution: This study shows the importance in the context of online cosmetics-related VC, which was rarely explored before. We provide issues for future research, despite the accumulated academic literature related to UTAUT and VC. Findings: Results show that only performance expectancy and social influence significantly affecting re-usage intentions and only gender has moderating effects on the path from performance expectancy to VC re-use intention and from trust to VC re-use intention. Recommendations for Practitioners : This study found that users emphasized performance expectancy most of all. A cosmetic product-related VC should introduce products abundantly, offer useful information, and help people accomplish tasks quickly and productively. Recommendation for Researchers: Future researchers may use our findings to conduct further positivist research in the area of social influence using different subjects and research contexts.




po

Understanding Internal Information Systems Security Policy Violations as Paradoxes

Aim/Purpose: Violations of Information Systems (IS) security policies continue to generate great anxiety amongst many organizations that use information systems, partly because these violations are carried out by internal employees. This article addresses IS security policy violations in organizational settings, and conceptualizes and problematizes IS security violations by employees of organizations from a paradox perspective. Background: The paradox is that internal employees are increasingly being perceived as more of a threat to the security of organizational systems than outsiders. The notion of paradox is exemplified in four organizational contexts of belonging paradox, learning paradox, organizing paradox and performing paradox. Methodology : A qualitative conceptual framework exemplifying how IS security violations occur as paradoxes in context to these four areas is presented at the end of this article. Contribution: The article contributes to IS security management practice and suggests how IS security managers should be positioned to understand violations in light of this paradox perspective. Findings: The employee generally in the process of carrying out ordinary activities using computing technology exemplifies unique tensions (or paradoxes in belonging, learning, organizing and performing) and these tensions would generally tend to lead to policy violations when an imbalance occurs. Recommendations for Practitioners: IS security managers must be sensitive to employees tensions. Future Research: A quantitative study, where statistical analysis could be applied to generalize findings, could be useful.




po

PRATO: An Automated Taxonomy-Based Reviewer-Proposal Assignment System

Aim/Purpose: This paper reports our implementation of a prototype system, namely PRATO (Proposals Reviewers Automated Taxonomy-based Organization), for automatic assignment of proposals to reviewers based on categorized tracks and partial matching of reviewers’ profiles of research interests against proposal keywords. Background: The process of assigning reviewers to proposals tends to be a complicated task as it involves inspecting the matching between a given proposal and a reviewer based on different criteria. The situation becomes worse if one tries to automate this process, especially if a reviewer partially matches the domain of the paper at hand. Hence, a new controlled approach is required to facilitate the matching process. Methodology: Proposals and reviewers are organized into categorized tracks as defined by a tree of hierarchical research domains which correspond to the university’s colleges and departments. In addition, reviewers create their profiles of research interests (keywords) at the time of registration. Initial assignment is based on the matching of categorized sub-tracks of proposal and reviewer. Where the proposal and a reviewer fall under different categories (sub-tracks), assignment is done based on partial matching of proposal content against re-viewers’ research interests. Jaccard similarity coefficient scores are calculated of proposal keywords and reviewers’ profiles of research interest, and the reviewer with highest score is chosen. The system was used to automate the process of proposal-reviewer assignment at the Umm Al-Qura University during the 2017-2018 funding cycle. The list of proposal-reviewer assignments generated by the system was sent to human experts for voting and subsequently to make final assignments accordingly. With expert votes and final decisions as evaluation criteria, data system-expert agreements (in terms of “accept” or “reject”) were collected and analyzed by tallying frequencies and calculating rejection/acceptance ratios to assess the system’s performance. Contribution: This work helped the Deanship of Scientific Research (DSR), a funding agency at Umm Al-Qura University, in managing the process of reviewing proposals submitted for funding. We believe the work can also benefit any organizations or conferences to automate the assignment of papers to the most appropriate reviewers. Findings: Our developed prototype, PRATO, showed a considerable impact on the entire process of reviewing proposals at DSR. It automated the assignment of proposals to reviewers and resulted in 56.7% correct assignments overall. This indicates that PRATO performed considerably well at this early stage of its development. Recommendations for Practitioners: It is important for funding agencies and publishers to automate reviewing process to obtain better reviewing quality in a timely manner. Recommendation for Researchers: This work highlighted a new methodology to tackle the proposal-reviewer assignment task in an automated manner. More evaluation might be needed with consideration of different categories, especially for partially matched candidates. Impact on Society: The new methodology and knowledge about factors influencing the implementation of automated proposal-reviewing systems will help funding agencies and publishers to improve the quality of their internal processes. Future Research: In the future, we plan to examine PRATO’s performance on different classification schemes where specialty areas can be represented in graphs rather than trees. With graph representation, the scope for reviewer selection can be widened to include more general fields of specialty. Moreover, we will try to record the reasons for rejection to identify accurately whether the rejection was due to improper assignment or other reasons.




po

The Adoption of CRM Initiative among Palestinian Enterprises: A Proposed Framework

Aim/Purpose: This study aimed to examine the relationships among compatibility, relative advantage, complexity, IT Infrastructure, security, top Management Support, financial Support, information Policies, employee engagement, customer pressure, competitive pressure, information integrity, information sharing, attitude toward adopting technology factors, and CRM adoption Background: Customer relationship management (CRM) refers to the use of the process, information, technology, and people for the management of the interactions between the organization and its customers. Therefore, there is a need for SMEs to implement CRM practices in their businesses for competitive advantage. However, in developing nations, the adoption rate of such practices remains low. This low rate may be attributed to the lack of important factors that guide CRM adoption, and as such, the present study attempts to investigate the factors affecting CRM adoption in Palestinian SMEs. This paper used the Diffusion of Innovation Theory (DOI), Resource-Based View (RBV), and Technology, Organization, and Environment Framework (TOE) framework to identify the determinant factors from the technological, organizational, environmental, and information culture perspectives. Methodology: This study uses a quantitative approach to investigate the relationships between the variables. A questionnaire was designed to collect data from 420 SMEs in Palestine. 331respondents completed and returned the survey. The Partial Least Square-Structural Equation Model (PLS-SEM) approach was used to assess both the measurement and structural models. Contribution: This study contributes to both theory and practitioners by providing insights into factors that affect CRM adoption in Palestinian SMEs, which did not explore before. Future research suggestions are also provided. Findings: The results of the study prove that the adoption of CRM depends on compatibility (CMP), security (SEC), top management support (TMS), information policies (INP), financial resources (FR), employee engagement (EEN), competitive pressure (COP), customers pressure (CUP), attitude toward adopting technology (ATA), information integrity (INI), and information sharing (INS). Surprisingly, complexity (CMX), IT infrastructure (ITI), and relative advantage (RLA) do not play any role in CRM adoption in Palestine. Recommendations for Practitioners: This study provides practitioners with the important factors for CRM adoption upon its successful implementation in the context of Palestinian SMEs. Recommendation for Researchers: Our findings may be used to conduct further studies about compatibility, security, top management support, information policies, financial resources, employee engagement, competitive pressure, customers pressure, attitude toward adopting technology, information integrity, information sharing factors, and CRM adoption by using different countries, procedure, and context. Impact on Society: The proposed framework provides insights for SMEs which have significant effects for research and practice to help facilitate the adoption of CRM Future Research: The findings may also be compared to other studies conducted in different contexts and provide deeper insights into the influence of the examined contexts on the employees’ intention toward CRM adoption in banking and universities. It would be fruitful to test whether the results hold true in developed and developing countries.




po

Prosumers’ Engagement in Business Process Innovation – The Case of Poland and the UK

Aim/Purpose: The main purpose of this paper is to identify prosumers’ engagement in business process innovation through knowledge sharing. Background: In the increasingly competitive knowledge-based economy, companies must seek innovative methods of doing business, quickly react to consumer demand, and provide superior value to consumers. Simultaneously, contemporary consumers, named “prosumers”, want to be active co-creators of value and satisfy their consumption needs through collaboration with companies for co-creation, co-design, co-production, co-promotion, co-pricing, co-distribution, co-consumption, and co-maintenance. Consequently, consumer involvement in development and improvement of products and business process must be widely analyzed in various contexts. Methodology: The research is a questionnaire survey study of 388 prosumers in Poland and 76 in the UK. Contribution The contribution of this research is twofold. First, it identifies how prosumers can be engaged in business processes through knowledge sharing. Second, it investigates the differences between Poland- and UK-based prosumers in engagement in business process. Findings: The study found that prosumers are engaged in knowledge sharing at each stage of the business process innovation framework. However, there are differences in the types of processes that draw on prosumers’ engagement. Prosumers in Poland are found to engage mostly in the business process of developing and managing products, whereas prosumers in the UK engage mostly in the business process of managing customer services. Recommendations for Practitioners: This study provides practitioners with guidelines for engaging prosumers and their knowledge sharing to improve process innovation. Companies gain new insight from these findings about prosumers’ knowledge sharing for process innovation, which may help them make better decisions about which projects and activities they can engage with prosumers for future knowledge sharing and creating prospective innovations. Recommendations for Researchers: Researchers may use this methodology and do similar analysis with different samples in Poland, the UK, and other countries, for many additional comparisons between different groups and countries. Moreover, a different methodology may be used for identifying prosumers’ engagement and knowledge sharing for processes improvement. Future Research: This study examined prosumers’ engagement from the prosumers’ standpoint. Therefore prosumers’ engagement from the company perspective should be explored in future research.




po

A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms

Aim/Purpose: The aim of this study was to analyze various performance metrics and approaches to their classification. The main goal of the study was to develop a new typology that will help to advance knowledge of metrics and facilitate their use in machine learning regression algorithms Background: Performance metrics (error measures) are vital components of the evaluation frameworks in various fields. A performance metric can be defined as a logical and mathematical construct designed to measure how close are the actual results from what has been expected or predicted. A vast variety of performance metrics have been described in academic literature. The most commonly mentioned metrics in research studies are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics properties needs to be systematized to simplify the design and use of the metrics. Methodology: A qualitative study was conducted to achieve the objectives of identifying related peer-reviewed research studies, literature reviews, critical thinking and inductive reasoning. Contribution: The main contribution of this paper is in ordering knowledge of performance metrics and enhancing understanding of their structure and properties by proposing a new typology, generic primary metrics mathematical formula and a visualization chart Findings: Based on the analysis of the structure of numerous performance metrics, we proposed a framework of metrics which includes four (4) categories: primary metrics, extended metrics, composite metrics, and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that determine the structure and properties of primary metrics: method of determining point distance, method of normalization, method of aggregation of point distances over a data set. For each component, implementation options have been identified. The suggested new typology has been shown to cover a total of over 40 commonly used primary metrics Recommendations for Practitioners: Presented findings can be used to facilitate teaching performance metrics to university students and expedite metrics selection and implementation processes for practitioners Recommendation for Researchers: By using the proposed typology, researchers can streamline development of new metrics with predetermined properties Impact on Society: The outcomes of this study could be used for improving evaluation results in machine learning regression, forecasting and prognostics with direct or indirect positive impacts on innovation and productivity in a societal sense Future Research: Future research is needed to examine the properties of the extended metrics, composite metrics, and hybrid sets of metrics. Empirical study of the metrics is needed using R Studio or Azure Machine Learning Studio, to find associations between the properties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics and business or research requirements




po

The Effect of Rational Based Beliefs and Awareness on Employee Compliance with Information Security Procedures: A Case Study of a Financial Corporation in Israel

Aim/Purpose: This paper examines the behavior of financial firm employees with regard to information security procedures instituted within their organization. Furthermore, the effect of information security awareness and its importance within a firm is explored. Background: The study focuses on employees’ attitude toward compliance with information security policies (ISP), combined with various norms and personal abilities. Methodology: A self-reported questionnaire was distributed among 202 employees of a large financial Corporation Contribution: As far as we know, this is the first paper to thoroughly explore employees’ awareness of information system procedures, among financial organizations in Israel, and also the first to develop operative recommendations for these organizations aimed at increasing ISP compliance behavior. The main contribution of this study is that it investigates compliance with information security practices among employees of a defined financial corporation operating under rigid regulatory governance, confidentiality and privacy of data, and stringent requirements for compliance with information security procedures. Findings: Our results indicate that employees’ attitudes, normative beliefs and personal capabilities to comply with firm’s ISP, have positive effects on the firm’s ISP compliance. Also, employees’ general awareness of IS, as well as awareness to ISP within the firm, positively affect employees’ ISP compliance. Recommendations for Practitioners: This study can help information security managers identify the motivating factors for employee behavior to maintain information security procedures, properly channel information security resources, and manage appropriate information security behavior. Recommendation for Researchers: Researchers can see that corporate rewards and sanctions have significant effects on employee security behavior, but other motivational factors also reinforce the ISP’s compliance behavior. Distinguishing between types of corporations and organizations is essential to understanding employee compliance with information security procedures. Impact on Society: This study offers another level of understanding of employee behavior with regard to information security in organizations and comprises a significant contribution to the growing knowledge in this area. The research results form an important basis for IS policymakers, culture designers, managers, and those directly responsible for IS in the organization. Future Research: Future work should sample employees from another type of corporation from other fields and should apply qualitative analysis to explore other aspects of behavioral patterns related to the subject matter.




po

A Decision Support System and Warehouse Operations Design for Pricing Products and Minimizing Product Returns in a Food Plant

Aim/Purpose: The first goal is to develop a decision support system for pricing and production amounts for a firm facing high levels of product returns. The second goal is to improve the management of the product returns process. Background: This study was conducted at a food importer and manufacturer in Israel facing a very high rate of product returns, much of which is eventually discarded. The firm’s products are commonly considered to be a low-cost generic alternative and are therefore popular among low-income families. Methodology: A decision support module was added to the plant’s business information system. The module is based on a supply chain pricing model and uses the sales data to infer future demand’s distribution. Ergonomic models were used to improve the design of the returns warehouse and the handling of the returns. Contribution: The decision support system allows to improve the plant’s pricing and quantity planning. Consequently, it reduced the size of product returns. The new design of the returns process is expected to improve worker’s productivity, reduces losses and results in safer outcomes. This study also demonstrates a successful integration and of a theoretical economical model into an information system. Findings: The results show the promise of incorporating pricing supply chain models into informing systems to achieve a practical business task. We were able to construct actual demand distributions from the data and offer actual pricing recommendations that reduce the number of returns while increasing potential profits. We were able to identify key deficiencies in the returns operations and added a module to the decisions support system that improves the returns management and links it with the sales and pricing modules. Finally, we produced a better warehouse design that supports efficient and ergonomic product returns handling. Recommendations for Practitioners: This work can be replicated for different suppliers, manufacturers and retailers that suffer from product returns. They will benefit from the reduction in returns, as well as the decrease in the losses associated with these returns. Recommendation for Researchers: It is worthwhile to research whether decision support systems can be applied to other aspects of the organizations’ operations. Impact on Society: Product returns is a lose-lose situation for producers, retailers and customers. Moreover, mismanagement of these returns is harmful for the environment and may result in the case of foods, in health hazards. Reducing returns and improving the handling improves sustainability and is beneficial for society. Future Research: The decision support system’s underlying pricing model assumes a specific business setting. This can be extended using other pricing models and applying them in a similar fashion to the current application.




po

The Effect of Visual Appeal, Social Interaction, Enjoyment, and Competition on Mobile Esports Acceptance by Urban Citizens

Aim/Purpose: This study investigated a model of mobile esports acceptance among urban citizens based on an extended Technology Acceptance Model (TAM). Background: Currently, esports are increasingly popular and in demand by the public. Supported by the widespread development of mobile devices, it has become an interactive market trend to play games in a new model, mobile esports. Methodology: This study collected data from 400 respondents and analyzed it using partial least squares-structural equation modeling (PLS-SEM). Contribution: This study addresses two research gaps. The first gap is limited esports information systems studies, particularly in mobile esports acceptance studies. The second gap is limited exploration of external variables in online gaming acceptance studies. Thus, this study proposed a TAM extended model by integrating the TAM native variables with other external variables such as visual appeal, enjoyment, social interaction, and competition to explore mobile esports acceptance by urban citizens. Findings: Nine hypotheses were accepted, and four were rejected. The visual appeal did not affect the acceptance. Meanwhile, social interaction and enjoyment significantly affected both perceived ease of use and usefulness. However, perceived ease of use surprisingly had an insignificant effect on attitude toward using mobile esports. Moreover, competition significantly affected the acceptance, particularly on perceived usefulness. Recommendations for Practitioners: Fresh and innovative features, such as new game items or themes, should be frequently introduced to enhance players’ continued enjoyment. Moreover, mobile esports providers should offer a solid platform to excite players’ interactions to increase the likelihood that users feel content. On the other hand, the national sports ministry/agency or responsible authorities should organize many esports competitions, big or small, to search for new talents. Recommendation for Researchers: Visual appeal in this study did not influence the perceived ease of use or usefulness. However, it could affect enjoyment. Thus, it would be worth revisiting the relationship between visual appeal and enjoyment. At the same time, perceived ease of use is a strong driver for the continued use of most online games, but not in this study. It could indicate significant differences between mobile esports and typical online games, one of which is the different purposes. Users might play online games for recreational intention, but players would use mobile esports to compete, win, or even get monetary rewards. Therefore, although users might find mobile esports challenging and hard to use, they tend to keep playing it. Thus, monetary rewards could be considered a determinant of the continuation of use. Impact on Society: Nowadays, users are being paid for playing games. It also would be an excel-lent job if they become professional esports athletes. This study investigated factors that could affect the continued use of mobile esports. Like other jobs, playing games professionally in the long term could make the players tedious and tired. Therefore, responsible parties, like mobile esports providers or governments, could use the recommendations of this study to promote positive behavior among the players. They will not feel like working and still con-sider playing mobile esports a hobby if they happily do the job. In the long run, the players could also make a nation’s society proud if they can be a champion in prestigious competitions. Future Research: A larger sample size will be needed to generalize the results, such as for a nation. It is also preferable if the sample is randomized systematically. Future works should also investigate whether the same results are acquired in other mobile esports. Furthermore, to extend our knowledge and deepen our understanding of the variables that influence mobile esports adoption, the subsequent research could look at other mobile esports acceptability based on characteristics of system functionality and moderator effects. Finally, longitudinal data-collecting approaches are suggested for future studies since behavior can change over time.




po

Automatic Generation of Temporal Data Provenance From Biodiversity Information Systems

Aim/Purpose: Although the significance of data provenance has been recognized in a variety of sectors, there is currently no standardized technique or approach for gathering data provenance. The present automated technique mostly employs workflow-based strategies. Unfortunately, the majority of current information systems do not embrace the strategy, particularly biodiversity information systems in which data is acquired by a variety of persons using a wide range of equipment, tools, and protocols. Background: This article presents an automated technique for producing temporal data provenance that is independent of biodiversity information systems. The approach is dependent on the changes in contextual information of data items. By mapping the modifications to a schema, a standardized representation of data provenance may be created. Consequently, temporal information may be automatically inferred. Methodology: The research methodology consists of three main activities: database event detection, event-schema mapping, and temporal information inference. First, a list of events will be detected from databases. After that, the detected events will be mapped to an ontology, so a common representation of data provenance will be obtained. Based on the derived data provenance, rule-based reasoning will be automatically used to infer temporal information. Consequently, a temporal provenance will be produced. Contribution: This paper provides a new method for generating data provenance automatically without interfering with the existing biodiversity information system. In addition to this, it does not mandate that any information system adheres to any particular form. Ontology and the rule-based system as the core components of the solution have been confirmed to be highly valuable in biodiversity science. Findings: Detaching the solution from any biodiversity information system provides scalability in the implementation. Based on the evaluation of a typical biodiversity information system for species traits of plants, a high number of temporal information can be generated to the highest degree possible. Using rules to encode different types of knowledge provides high flexibility to generate temporal information, enabling different temporal-based analyses and reasoning. Recommendations for Practitioners: The strategy is based on the contextual information of data items, yet most information systems simply save the most recent ones. As a result, in order for the solution to function properly, database snapshots must be stored on a frequent basis. Furthermore, a more practical technique for recording changes in contextual information would be preferable. Recommendation for Researchers: The capability to uniformly represent events using a schema has paved the way for automatic inference of temporal information. Therefore, a richer representation of temporal information should be investigated further. Also, this work demonstrates that rule-based inference provides flexibility to encode different types of knowledge from experts. Consequently, a variety of temporal-based data analyses and reasoning can be performed. Therefore, it will be better to investigate multiple domain-oriented knowledge using the solution. Impact on Society: Using a typical information system to store and manage biodiversity data has not prohibited us from generating data provenance. Since there is no restriction on the type of information system, our solution has a high potential to be widely adopted. Future Research: The data analysis of this work was limited to species traits data. However, there are other types of biodiversity data, including genetic composition, species population, and community composition. In the future, this work will be expanded to cover all those types of biodiversity data. The ultimate goal is to have a standard methodology or strategy for collecting provenance from any biodiversity data regardless of how the data was stored or managed.




po

The Effect of Perceived Support on Repatriate Knowledge Transfer in MNCs: The Mediating Role of Repatriate Adjustment

Aim/Purpose: The present study examines the effect of perceived organisational and co-worker support on the adjustment of repatriates and its impact on their intention to transfer knowledge in multinational companies (MNCs). It also examines the relationship between perceived organisational support, co-worker support, and knowledge transfer through the mediating role of repatriate adjustment. Background: The ability of acquiring and utilising international knowledge is one of the core competitive advantages of MNCs. This knowledge is transferred by MNCs across their subsidiaries efficiently through repatriates, which will result in superior performance when compared to their local competitors. But in MNCs the expatriation process has been given more emphasis than the repatriation process; therefore, there is limited knowledge about repatriation knowledge transfer. Practically, the knowledge transferred by repatriates is not managed properly by the MNCs. Methodology: The proposed model was supported by Uncertainty Reduction Theory, Organisational Socialisation Theory, Organisational Support Theory, and Socialisation Resource Theory. The data were gathered from 246 repatriates working in Indian MNCs in the manufacturing and information technology sectors who had been on an international assignment for at least one year. The data obtained were analysed using Structural Equation Modeling (SEM) using AMOS 21 software. Contribution: The present study expands prior research on repatriate knowledge transfer by empirically investigating the mediating role of repatriate adjustment between perceived support and repatriate knowledge transfer in MNCs. The present study also highlights that organisational and co-worker support during repatriation is beneficial for repatriate knowledge transfer. It is important that MNCs initiate support practices during repatriation to motivate repatriates to transfer international knowledge. Findings: The results revealed that both perceived organisational and co-worker support had a significant role in predicting repatriate adjustment in MNCs. Furthermore, the results also revealed that perceived organisational and co-worker support increases repatriate knowledge transfer through repatriate adjustment in MNCs. Recommendations for Practitioners: This study indicates the role of management in motivating repatriates to transfer their knowledge to the organisation. The management of MNCs develop HR policies and strategies leading to high perceived organisational support, co-worker support, and repatriate adjustment. They need to pay particular attention to the factors that affect the repatriates’ intention to share knowledge with others in the organisation. Recommendation for Researchers: Researchers can use the validated measurement instrument which could be essential for the advancement of future empirical research on repatriate knowledge transfer. Impact on Society: The present study will assist MNCs in managing their repatriates during the repatriation process by developing an appropriate repatriation support system. This will help the repatriates to better adjust to their repatriation process which will motivate them to transfer the acquired knowledge. Future Research: Future research can adopt a longitudinal style to test the different levels of the adjustment process which will help in better understanding the repatriate adjustment process. Additionally, this model can be tested with the repatriates of other countries and in diverse cultures to confirm its external validity. Furthermore, future research can be done with the repatriates who go on an international assignment through their own initiative (self-initiated expatriates).




po

A Novel Telecom Customer Churn Analysis System Based on RFM Model and Feature Importance Ranking

Aim/Purpose: In this paper, we present an RFM model-based telecom customer churn system for better predicting and analyzing customer churn. Background: In the highly competitive telecom industry, customer churn is an important research topic in customer relationship management (CRM) for telecom companies that want to improve customer retention. Many researchers focus on a telecom customer churn analysis system to find out the customer churn factors for improving prediction accuracy. Methodology: The telecom customer churn analysis system consists of three main parts: customer segmentation, churn prediction, and churn factor identification. To segment the original dataset, we use the RFM model and K-means algorithm with an elbow method. We then use RFM-based feature construction for customer churn prediction, and the XGBoost algorithm with SHAP method to obtain a feature importance ranking. We chose an open-source customer churn dataset that contains 7,043 instances and 21 features. Contribution: We present a novel system for churn analysis in telecom companies, which encompasses customer churn prediction, customer segmentation, and churn factor analysis to enhance business strategies and services. In this system, we leverage customer segmentation techniques for feature construction, which enables the new features to improve the model performance significantly. Our experiments demonstrate that the proposed system outperforms current advanced customer churn prediction methods in the same dataset, with a higher prediction accuracy. The results further demonstrate that this churn analysis system can help telecom companies mine customer value from the features in a dataset, identify the primary factors contributing to customer churn, and propose suitable solution strategies. Findings: Simulation results show that the K-means algorithm gets better results when the original dataset is divided into four groups, so the K value is selected as 4. The XGBoost algorithm achieves 79.3% and 81.05% accuracy on the original dataset and new data with RFM, respectively. Additionally, each cluster has a unique feature importance ranking, allowing for specialized strategies to be provided to each cluster. Overall, our system can help telecom companies implement effective CRM and marketing strategies to reduce customer churn. Recommendations for Practitioners: More accurate churn prediction reduces misjudgment of customer churn. The acquisition of customer churn factors makes the company more convenient to analyze the reasons for churn and formulate relevant conservation strategies. Recommendation for Researchers: The research achieves 81.05% accuracy for customer churn prediction with the Xgboost and RFM algorithms. We believe that more enhancements algorithms can be attempted for data preprocessing for better prediction. Impact on Society: This study proposes a more accurate and competitive customer churn system to help telecom companies conserve the local markets and reduce capital outflows. Future Research: The research is also applicable to other fields, such as education, banking, and so forth. We will make more new attempts based on this system.




po

Determinants of the Intention to Use Big Data Analytics in Banks and Insurance Companies: The Moderating Role of Managerial Support

Aim/Purpose: The aim of this research paper is to suggest a comprehensive model that incorporates the technology acceptance model with the task-technology fit model, information quality, security, trust, and managerial support to investigate the intended usage of big data analytics (BDA) in banks and insurance companies. Background: The emergence of the concept of “big data,” prompted by the widespread use of connected devices and social media, has been pointed out by many professionals and financial institutions in particular, which makes it necessary to assess the determinants that have an impact on behavioral intention to use big data analytics in banks and insurance companies. Methodology: The integrated model was empirically assessed using self-administered questionnaires from 181 prospective big data analytics users in Moroccan banks and insurance firms and examined using partial least square (PLS) structural equation modeling. The results cover sample characteristics, an analysis of the validity and reliability of measurement models’ variables, an evaluation of the proposed hypotheses, and a discussion of the findings. Contribution: The paper makes a noteworthy contribution to the BDA adoption literature within the finance sector. It stands out by ingeniously amalgamating the Technology Acceptance Model (TAM) with Task-Technology Fit (TTF) while underscoring the critical significance of information quality, trust, and managerial support, due to their profound relevance and importance in the finance domain. Thus showing BDA has potential applications beyond the finance sector. Findings: The findings showed that TTF and trust’s impact on the intention to use is considerable. Information quality positively impacted perceived usefulness and ease of use, which in turn affected the intention to use. Moreover, managerial support moderates the correlation between perceived usefulness and the intention to use, whereas security did not affect the intention to use and managerial support did not moderate the influence of perceived ease of use. Recommendations for Practitioners: The results suggest that financial institutions can improve their adoption decisions for big data analytics (BDA) by understanding how users perceive it. Users are predisposed to use BDA if they presume it fits well with their tasks and is easy to use. The research also emphasizes the importance of relevant information quality, managerial support, and collaboration across departments to fully leverage the potential of BDA. Recommendation for Researchers: Further study may be done on other business sectors to confirm its generalizability and the same research design can be employed to assess BDA adoption in organizations that are in the advanced stage of big data utilization. Impact on Society: The study’s findings can enable stakeholders of financial institutions that are at the primary stage of big data exploitation to understand how users perceive BDA technologies and the way their perception can influence their intention toward their use. Future Research: Future research is expected to conduct a comparison of the moderating effect of managerial support on users with technical expertise versus those without; in addition, international studies across developed countries are required to build a solid understanding of users’ perceptions towards BDA.




po

Unraveling the Key Factors of Successful ERP Post Implementation in the Indonesian Construction Context

Aim/Purpose: This study aims to evaluate the success of ERP post-implementation and the factors that affect the overall success of the ERP system by integrating the Task Technology Fit (TTF) model into the Information System Success Model (ISSM). Background: Not all ERP implementations provide the expected benefits, as post-implementation challenges can include inflexible ERP systems and ongoing costs. Therefore, it is necessary to evaluate the success after ERP implementation, and this research integrates the Task Technology Fit (TTF) model into the Information System Success Model (ISSM). Methodology: For data analysis and the proposed model, the authors used SmartPLS 3 by applying the PLS-SEM test and one-tailed bootstrapping. The researchers distributed questionnaires online to 115 ERP users at a construction company in Indonesia and successfully got responses from 95 ERP users. Contribution: The results obtained will be helpful and essential for future researchers and Information System practitioners – considering the high failure rate in the use of ERP in a company, as well as the inability of organizations and companies to exploit the benefits and potential that ERP can provide fully. Findings: The results show that Perceived Usefulness, User Satisfaction, and Task-Technology Fit positively affect the Organizational Impact of ERP implementation. Recommendations for Practitioners: The findings can help policymakers and CEOs of businesses in Indonesia’s construction sector create better business strategies and use limited resources more effectively and efficiently to provide a considerably higher probability of ERP deployment. The findings of this study were also beneficial for ERP vendors and consultants. The construction of the industry has specific characteristics that ERP vendors should consider. Construction is a highly fragmented sector, with specialized segments demanding specialist technologies. Several projects also influence it. They can use them to identify and establish several alternative strategies to deal with challenges and obstacles that can arise during the installation of ERP in a firm. Vendors and consultants can supply solutions, architecture, or customization support by the standard operating criteria, implement the ERP system and train critical users. The ERP system vendors and consultants can also collaborate with experts from the construction sector to develop customized alternatives for construction companies. That would be the most outstanding solution for implementing ERP in this industry. Recommendation for Researchers: Future researchers can use this combined model to study ERP post-implementation success on organizational impact with ERP systems in other company information systems fields, especially the construction sector. Future integration of different models can be used to improve the proposed model. Integration with models that assess the level of Information System acceptance, such as Technology Acceptance Model 3 (TAM3) or Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), can be used in future research to deepen the exploration of factors that influence ERP post-implementation success in an organization. Impact on Society: This study can guide companies, particularly in the construction sector, to maintain ERP performance, conduct training for new users, and regularly survey user satisfaction to ensure the ERP system’s reliability, security, and performance are maintained and measurable. Future Research: It is increasing the sample size with a larger population at other loci (private and state-owned) that use ERP to see the factors influencing ERP post-implementation success and using mixed methods to produce a better understanding. With varied modes, it is possible to get better results by adding unique factors to the research, and future integration of other models can be used to improve the proposed model.




po

The Role of Corporate Social Responsibility in Business Performance: The Moderation Influence of Blockchain Technology

Aim/Purpose: The major challenges for firms to initiate corporate social responsibility (CSR) arise from resource constraints, complexity, and uncertainty. Consuming considerable financial and human resources is the main difficulty for smaller firms or those operating in less profitable industries, and the lack of immediate outputs from CSR initiatives poses a challenge for firms in prioritizing and assessing their effectiveness. Background: To better integrate CSR management into overall business strategy and decision-making processes, Blockchain technology (BCT) could potentially offer a feasible and optimal alternative to CSR reports. Methodology: This study uses the fixed effects regression by way of the Least Squares Dummy Variable (LSDV) approach in STATA to analyze the direct effect of CSR management on business performance and the moderating effect of BCT adoption on this relationship with a panel data set of 5810 observations collected from the 874 listed companies in 2015 in Taiwan Stock Exchange through 2021. Contribution: This study contributes to the literature by shedding light on the organizational factors that influence BCT adoption. Findings: The findings show that firms with high levels of CSR management have better business performance. Additionally, the adoption of BCT strengthens the positive relationship between CSR management and business performance, but it cannot replace the fundamental principles of CSR. Finally, firm size does not significantly affect BCT adoption, indicating that companies of all sizes have an equal opportunity to adopt BCT, which can help to level the playing field in terms of resources available to different firms. Recommendations for Practitioners: This study suggests that firms managing CSR practices have better business performance, and the adoption of BCTs further enhances this positive relationship. However, BCT adoption does not have the same positive effect on business performance as CSR practices. Additionally, this research can help to inform public policy related to BCT adoption and diffusion. Recommendation for Researchers: By exploring the factors that influence BCT adoption, future researchers can provide insights into the key challenges and opportunities faced by organizations of different sizes and help to develop strategies for promoting the effective adoption of BCT. Impact on Society: Given the limitations of current CSR reporting, the understanding gained from BCT applications can provide companies with an alternative mechanism to foster progress in CSR implementation. Future Research: Firstly, while the fixed-effects model might have dampened the power of explanation because it only captures within-unit variation and ignores between-unit variation, the explanatory power is further limited due to only integrating two independent variables in this model. Because of limited data availability, this study only utilizes CSR_Report and firm_size as independent variables. Future studies can consider more key factors and may lead to different results. Additionally, panel data is collected from Taiwan and, therefore, may not be representative of the broader population. Future researchers integrating the Stock Exchange of different countries are recommended.




po

Ecommerce Fraud Incident Response: A Grounded Theory Study

Aim/Purpose: This research study aimed to explore ecommerce fraud practitioners’ experiences and develop a grounded theory framework to help define an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and types of incidents. Background: With a surge in global ecommerce, online transactions have become increasingly fraudulent, complex, and borderless. There are undefined ecommerce fraud roles, responsibilities, processes, and systems that limit and hinder cyber incident response to fraudulent activities. Methodology: A constructivist grounded theory approach was used to investigate and develop a theoretical foundation of ecommerce fraud incident response based on fraud practitioners’ experiences and job descriptions. The study sample consisted of 8 interviews with ecommerce fraud experts. Contribution: This research contributes to the body of knowledge by helping define a novel framework that outlines an ecommerce fraud incident response process, roles and responsibilities, systems, stakeholders, and incident types. Findings: An ecommerce fraud incident response framework was developed from fraud experts’ perspectives. The framework helps define processes, roles, responsibilities, systems, incidents, and stakeholders. The first finding defined the ecommerce fraud incident response process. The process includes planning, identification, analysis, response, and improvement. The second finding was that the fraud incident response model did not include the containment phase. The next finding was that common roles and responsibilities included fraud prevention analysis, tool development, reporting, leadership, and collaboration. The fourth finding described practitioners utilizing hybrid tools and systems for fraud prevention and detection. The fifth finding was the identification of internal and external stakeholders for communication, collaboration, and information sharing. The sixth finding is that research participants experienced different organizational alignments. The seventh key finding was stakeholders do not have a holistic view of the data and information to make some connections about fraudulent behavior. The last finding was participants experienced complex fraud incidents. Recommendations for Practitioners: It is recommended to adopt the ecommerce fraud response framework to help ecommerce fraud and security professionals develop an awareness of cyber fraud activities and/or help mitigate cyber fraud activities. Future Research: Future research could entail conducting a quantitative analysis by surveying the industry on the different components such as processes, systems, and responsibilities of the ecommerce fraud incident response framework. Other areas to explore and evaluate are maturity models and organizational alignment, collaboration, information sharing, and stakeholders. Lastly, further research can be pursued on the nuances of ecommerce fraud incidents using frameworks such as attack graph generation, crime scripts, and attack trees to develop ecommerce fraud response playbooks, plans, and metrics.




po

The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality

Aim/Purpose: The use of digital technology, such as an electronic records management system (ERMS), has prompted widespread changes across organizations. The organization needs to support its operations with an automation system to improve production performance. This study investigates ERMS’s potentiality to enhance organizational performance in the oil and gas industry. Background: Oil and gas organizations generate enormous electronic records that lead to difficulties in managing them without any system or digitalization procedure. The need to use a system to manage big data and records affects information security and creates several problems. This study supports decision-makers in oil and gas organizations to use ERMS to enhance organizational performance. Methodology: We used a quantitative method by integrating the typical partial least squares (SEM-PLS) approach, including measurement items, respondents’ demographics, sampling and collection of data, and data analysis. The SEM-PLS approach uses a measurement and structural model assessment to analyze data. Contribution: This study contributes significantly to theory and practice by providing advancements in identity theory in the context of big data management and electronic records management. This study is a foundation for further research on the role of ERMS in operations performance and Big Data Management (BDM). This research makes a theoretical contribution by studying a theory-driven framework that may serve as an essential lens to evaluate the role of ERMS in performance and increase its potentiality in the future. This research also evaluated the combined impacts of general technology acceptance theory elements and identity theory in the context of ERMS to support data management. Findings: This study provides an empirically tested model that helps organizations to adopt ERMS based on the influence of big data management. The current study’s findings looked at the concerns of oil and gas organizations about integrating new technologies to support organizational performance. The results demonstrated that individual characteristics of users in oil and gas organizations, in conjunction with administrative features, are robust predictors of ERMS. The results show that ERMS potentiality significantly influences the organizational performance of oil and gas organizations. The research results fit the big ideas about how big data management and ERMS affect respondents to adopt new technologies. Recommendations for Practitioners: This study contributes significantly to the theory and practice of ERMS potentiality and BDM by developing and validating a new framework for adopting ERMS to support the performance and production of oil and gas organizations. The current study adds a new framework to identity theory in the context of ERMS and BDM. It increases the perceived benefits of using ERMS in protecting the credibility and authenticity of electronic records in oil and gas organizations. Recommendation for Researchers: This study serves as a foundation for future research into the function and influence of big data management on ERMS that support the organizational performance. Researchers can examine the framework of this study in other nations in the future, and they will be able to analyze this research framework to compare various results in other countries and expand ERMS generalizability and efficacy. Impact on Society: ERMS and its impact on BDM is still a developing field, and readers of this article can assist in gaining a better understanding of the literature’s dissemination of ERMS adoption in the oil and gas industry. This study presents an experimentally validated model of ERMS adoption with the effect of BDM in the oil and gas industry. Future Research: In the future, researchers may be able to examine the impact of BDM and user technology fit as critical factors in adopting ERMS by using different theories or locations. Furthermore, researchers may include the moderating impact of demographical parameters such as age, gender, wealth, and experience into this study model to make it even more robust and comprehensive. In addition, future research may examine the significant direct correlations between human traits, organizational features, and individual perceptions of BDM that are directly related to ERMS potentiality and operational performance in the future.




po

Improving the Accuracy of Facial Micro-Expression Recognition: Spatio-Temporal Deep Learning with Enhanced Data Augmentation and Class Balancing

Aim/Purpose: This study presents a novel deep learning-based framework designed to enhance spontaneous micro-expression recognition by effectively increasing the amount and variety of data and balancing the class distribution to improve recognition accuracy. Background: Micro-expression recognition using deep learning requires large amounts of data. Micro-expression datasets are relatively small, and their class distribution is not balanced. Methodology: This study developed a framework using a deep learning-based model to recognize spontaneous micro-expressions on a person’s face. The framework also includes several technical stages, including image and data preprocessing. In data preprocessing, data augmentation is carried out to increase the amount and variety of data and class balancing to balance the distribution of sample classes in the dataset. Contribution: This study’s essential contribution lies in enhancing the accuracy of micro-expression recognition and overcoming the limited amount of data and imbalanced class distribution that typically leads to overfitting. Findings: The results indicate that the proposed framework, with its data preprocessing stages and deep learning model, significantly increases the accuracy of micro-expression recognition by overcoming dataset limitations and producing a balanced class distribution. This leads to improved micro-expression recognition accuracy using deep learning techniques. Recommendations for Practitioners: Practitioners can utilize the model produced by the proposed framework, which was developed to recognize spontaneous micro-expressions on a person’s face, by implementing it as an emotional analysis application based on facial micro-expressions. Recommendation for Researchers: Researchers involved in the development of a spontaneous micro-expression recognition framework for analyzing hidden emotions from a person’s face are playing an essential role in advancing this field and continue to search for more innovative deep learning-based solutions that continue to explore techniques to increase the amount and variety of data and find solutions to balancing the number of sample classes in various micro-expression datasets. They can further improvise to develop deep learning model architectures that are more suitable and relevant according to the needs of recognition tasks and the various characteristics of different datasets. Impact on Society: The proposed framework could significantly impact society by providing a reliable model for recognizing spontaneous micro-expressions in real-world applications, ranging from security systems and criminal investigations to healthcare and emotional analysis. Future Research: Developing a spontaneous micro-expression recognition framework based on spatial and temporal flow requires the learning model to classify optimal features. Our future work will focus more on exploring micro-expression features by developing various alternative learning models and increasing the weights of spatial and temporal features.




po

Learning to (Co)Evolve: A Conceptual Review and Typology of Network Design in Global Health Virtual Communities of Practice

Aim/Purpose: This conceptual review analyzes the designs of global health virtual communities of practice (VCoPs) programming reported in the empirical literature and proposes a new typology of their functioning. The purpose of this review is to provide clarity on VCoP learning stages of (co)evolution and insight into VCoP (re)development efforts to best meet member, organization, and network needs against an ever-evolving landscape of complexity in global health. Background: Since the COVID-19 pandemic, the field of global health has seen an uptick in the use of VCoPs to support continuous learning and improve health outcomes. However, evidence of how different combinations of programmatic designs impact opportunities for learning and development is lacking, and how VCoPs evolve as learning networks has yet to be explored. Methodology: Following an extensive search for literature in six databases, thematic analysis was conducted on 13 articles meeting the inclusion criteria. This led to the development and discussion of a new typology of VCoP phases of learning (co)evolution. Contribution: Knowledge gained from this review and the new categorization of VCoPs can support the functioning and evaluation of global health training programs. It can also provide a foundation for future research on how VCoPs influence the culture of learning organizations and networks. Findings: Synthesis of findings resulted in the categorization of global health VCoPs into five stages (slightly evolving, somewhat revolving, moderately revolving, highly revolving, and coevolving) across four design domains (network development, general member engagement before/after sessions, general member engagement during sessions, and session leadership). All global health VCoPs reviewed showed signs of adaptation and recommended future evolution. Recommendations for Practitioners: VCoP practitioners should pay close attention to how the structured flexibility of partnerships, design, and relationship development/accountability may promote or hinder VcoP’s continued evolution. Practitioners should shift perspective from short to mid- and long-term VCoP planning. Recommendation for Researchers: The new typology can stimulate further research to strengthen the clarity of language and findings related to VCoP functioning. Impact on Society: VCoPs are utilized by academic institutions, the private sector, non-profit organizations, the government, and other entities to fill gaps in adult learning at scale. The contextual implementation of findings from this study may impact VCoP design and drive improvements in opportunities for learning, global health, and well-being. Future Research: Moving forward, future research could explore how VCoP evaluations relate to different stages of learning, consider evaluation stages across the totality of VCoP programming design, and explore how best to capture VCoP (long-term) impact attributed to health outcomes and the culture of learning organizations and networks.




po

Revolutionizing Autonomous Parking: GNN-Powered Slot Detection for Enhanced Efficiency

Aim/Purpose: Accurate detection of vacant parking spaces is crucial for autonomous parking. Deep learning, particularly Graph Neural Networks (GNNs), holds promise for addressing the challenges of diverse parking lot appearances and complex visual environments. Our GNN-based approach leverages the spatial layout of detected marking points in around-view images to learn robust feature representations that are resilient to occlusions and lighting variations. We demonstrate significant accuracy improvements on benchmark datasets compared to existing methods, showcasing the effectiveness of our GNN-based solution. Further research is needed to explore the scalability and generalizability of this approach in real-world scenarios and to consider the potential ethical implications of autonomous parking technologies. Background: GNNs offer a number of advantages over traditional parking spot detection methods. Unlike methods that treat objects as discrete entities, GNNs may leverage the inherent connections among parking markers (lines, dots) inside an image. This ability to exploit spatial connections leads to more accurate parking space detection, even in challenging scenarios with shifting illumination. Real-time applications are another area where GNNs exhibit promise, which is critical for autonomous vehicles. Their ability to intuitively understand linkages across marking sites may further simplify the process compared to traditional deep-learning approaches that need complex feature development. Furthermore, the proposed GNN model streamlines parking space recognition by potentially combining slot inference and marking point recognition in a single step. All things considered, GNNs present a viable method for obtaining stronger and more precise parking slot recognition, opening the door for autonomous car self-parking technology developments. Methodology: The proposed research introduces a novel, end-to-end trainable method for parking slot detection using bird’s-eye images and GNNs. The approach involves a two-stage process. First, a marking-point detector network is employed to identify potential parking markers, extracting features such as confidence scores and positions. After refining these detections, a marking-point encoder network extracts and embeds location and appearance information. The enhanced data is then loaded into a fully linked network, with each node representing a marker. An attentional GNN is then utilized to leverage the spatial relationships between neighbors, allowing for selective information aggregation and capturing intricate interactions. Finally, a dedicated entrance line discriminator network, trained on GNN outputs, classifies pairs of markers as potential entry lines based on learned node attributes. This multi-stage approach, evaluated on benchmark datasets, aims to achieve robust and accurate parking slot detection even in diverse and challenging environments. Contribution: The present study makes a significant contribution to the parking slot detection domain by introducing an attentional GNN-based approach that capitalizes on the spatial relationships between marking points for enhanced robustness. Additionally, the paper offers a fully trainable end-to-end model that eliminates the need for manual post-processing, thereby streamlining the process. Furthermore, the study reduces training costs by dispensing with the need for detailed annotations of marking point properties, thereby making it more accessible and cost-effective. Findings: The goal of this research is to present a unique approach to parking space recognition using GNNs and bird’s-eye photos. The study’s findings demonstrated significant improvements over earlier algorithms, with accuracy on par with the state-of-the-art DMPR-PS method. Moreover, the suggested method provides a fully trainable solution with less reliance on manually specified rules and more economical training needs. One crucial component of this approach is the GNN’s performance. By making use of the spatial correlations between marking locations, the GNN delivers greater accuracy and recall than a completely linked baseline. The GNN successfully learns discriminative features by separating paired marking points (creating parking spots) from unpaired ones, according to further analysis using cosine similarity. There are restrictions, though, especially where there are unclear markings. Successful parking slot identification in various circumstances proves the recommended method’s usefulness, with occasional failures in poor visibility conditions. Future work addresses these limitations and explores adapting the model to different image formats (e.g., side-view) and scenarios without relying on prior entry line information. An ablation study is conducted to investigate the impact of different backbone architectures on image feature extraction. The results reveal that VGG16 is optimal for balancing accuracy and real-time processing requirements. Recommendations for Practitioners: Developers of parking systems are encouraged to incorporate GNN-based techniques into their autonomous parking systems, as these methods exhibit enhanced accuracy and robustness when handling a wide range of parking scenarios. Furthermore, attention mechanisms within deep learning models can provide significant advantages for tasks that involve spatial relationships and contextual information in other vision-based applications. Recommendation for Researchers: Further research is necessary to assess the effectiveness of GNN-based methods in real-world situations. To obtain accurate results, it is important to employ large-scale datasets that include diverse lighting conditions, parking layouts, and vehicle types. Incorporating semantic information such as parking signs and lane markings into GNN models can enhance their ability to interpret and understand context. Moreover, it is crucial to address ethical concerns, including privacy, potential biases, and responsible deployment, in the development of autonomous parking technologies. Impact on Society: Optimized utilization of parking spaces can help cities manage parking resources efficiently, thereby reducing traffic congestion and fuel consumption. Automating parking processes can also enhance accessibility and provide safer and more convenient parking experiences, especially for individuals with disabilities. The development of dependable parking capabilities for autonomous vehicles can also contribute to smoother traffic flow, potentially reducing accidents and positively impacting society. Future Research: Developing and optimizing graph neural network-based models for real-time deployment in autonomous vehicles with limited resources is a critical objective. Investigating the integration of GNNs with other deep learning techniques for multi-modal parking slot detection, radar, and other sensors is essential for enhancing the understanding of the environment. Lastly, it is crucial to develop explainable AI methods to elucidate the decision-making processes of GNN models in parking slot detection, ensuring fairness, transparency, and responsible utilization of this technology.




po

A Smart Agricultural Knowledge Management Framework to Support Emergent Farmers in Developmental Settings

Aim/Purpose: This research aims to develop a smart agricultural knowledge management framework to empower emergent farmers and extension officers (advisors to farmers) in developing countries as part of a smart farming lab (SFL). The framework utilizes knowledge objects (KOs) to capture information and knowledge of different forms, including indigenous knowledge. It builds upon a foundation of established agricultural knowledge management (AKM) models and serves as the cornerstone for an envisioned SFL. This framework facilitates optimal decision support by fostering linkages between these KOs and relevant organizations, knowledge holders, and knowledge seekers within the SFL environment. Background: Emergent farmers and extension officers encounter numerous obstacles in their knowledge operations and decision-making. This includes limited access to agricultural information and difficulties in applying it effectively. Many lack reliable sources of support, and even when information is available, understanding and applying it to specific situations can be challenging. Additionally, extension offices struggle with operational decisions and knowledge management due to agricultural organizations operating isolated in silos, hindering their access to necessary knowledge. This research introduces an SFL with a proposed AKM process model aimed at transforming emergent farmers into smart, innovative entities by addressing these challenges. Methodology: This study is presented as a theory-concept paper and utilizes a literature review to evaluate and synthesize three distinct AKM models using several approaches. The results of the analysis are used to design a new AKM process model. Contribution: This research culminates in a new AKM process framework that incorporates the strengths of various existing AKM models and supports emergent farmers and extension officers to become smart, innovative entities. One main difference between the three models analyzed, and the one proposed in this research, is the deployment and use of knowledge assets in the form of KOs. The proposed framework also incorporates metadata and annotations to enhance knowledge discoverability and enable AI-powered applications to leverage captured knowledge effectively. In practical terms, it contributes by further motivating the use of KOs to enable the transfer and the capturing of organizational knowledge. Findings: A model for an SFL that incorporates the proposed agricultural knowledge management framework is presented. This model is part of a larger knowledge factory (KF). It includes feedback loops, KOs, and mechanisms to facilitate intelligent decision-making. The significance of fostering interconnected communities is emphasized through the creation of linkages. These communities consist of knowledge seekers and bearers, with information disseminated through social media and other communication integration platforms. Recommendations for Practitioners: Practitioners and other scholars should consider implementing the proposed AKM process model as part of a larger SFL to support emergent farmers and extension officers in making operational decisions and applying knowledge management strategies. Recommendation for Researchers: The AKM process model is only presented in conceptual form. Therefore, researchers can practically test and assess the new framework in an agricultural setting. They can also further explore the potential of social media integration platforms to connect knowledge seekers with knowledge holders. Impact on Society: The proposed AKM process model has the potential to support emergent farmers and extension officers in becoming smart, innovative entities, leading to improved agricultural practices and potentially contributing to food security. Future Research: This paper discusses the AKM process model in an agrarian setting, but it can also be applied in other domains, such as education and the healthcare sector. Future research can evaluate the model’s effectiveness and explore and further investigate the semantic web and social media integration.




po

Workers’ Knowledge Sharing and Its Relationship with Their Colleague’s Political Publicity in Social Media

Aim/Purpose: This paper intends to answer the question regarding the extent to which political postings with value differences/similarities will influence the level of implicit knowledge sharing (KS) among work colleagues in organizations. More specifically, the study assesses contributors’ responses to a workmate’s publicity about politics on social media platforms (SMP) and their eagerness to implement implicit KS to the co-worker. Background: Previously published articles have confirmed an association between publicity about politics and the reactions from workfellows in the organization. Moreover, prior work confirmed that workers’ social media postings about politics may create unfavorable responses, such as being disliked and distrusted by workfellows. This may obstruct the KS because interpersonal relations are among the KS’s essential components. Therefore, it is imperative to assess whether the workfellows’ relationship affected by political publicity would impede the KS in the office. Methodology: Data was gathered using the vignette technique and online survey. A total of 510 online and offline questionnaires were distributed to respondents in Indonesian Halal firms who have implemented knowledge-sharing practices and have been at work for no less than twelve months in the present role. Next, the 317 completed questionnaires were examined with partial least squares structural equation modeling (PLS-SEM). Contribution: Postings about politics on SMP can either facilitate or impede the level of KS in organizations, and this research topic is relatively scarce in the knowledge management discipline. While previously published articles have concentrated on public organizations, this research centers on private firms. Moreover, this work empirically examines private companies in Indonesia, which is also understudied in the existing literature. Findings: The outcomes confirm that perceived political value similarity (PPV) in a co-worker’s social-media publicity has a significant and indirect influence on contributors’ eagerness to perform implicit/tacit KS. Further, colleague likability and trustworthiness significantly influence the level of KS among respondents. As PPV significantly forms colleague likability, likability strongly and positively shapes trustworthiness. Recommendations for Practitioners: The study shows that political publicity significantly affects implicit knowledge sharing (KS). As a result, managers and leaders, particularly those in private firms, are strengthened to instruct their staff about the ramifications of publicity embedded in employees’ SMP postings, particularly about political topics, as it may result in either negative or positive perceptions amongst the staff towards the workmate who posts. Recommendation for Researchers: As this study focuses on examining KS behavior in a large context, i.e., Indonesia Halal firms that dominate the Indonesian economy, and the fact that much polarization research focuses on society at large and less on specific sectors of life, it is important and interesting for researchers to conduct similar studies in a specific workplace as political agreements and disagreements become so important and consequential in everyday lives. Impact on Society: This article makes the implication that a person’s personality can influence how they react to political posts on SMP. It is difficult for the exposers to know the personality of each viewer of publicity in daily life. Workers’ newfound knowledge can motivate them to use SMP responsibly and lessen the probability that they will disclose information that might make their co-workers feel or perceive anything unfavorably. Future Research: There is a need for further studies to examine if the results can be applied to different locations and organizations, as individuals’ behaviors may vary according to the cultures of society and firms. Furthermore, future research can take into account the individual characteristics of workers, such as hospitability, self-confidence, and psychological strength, which may be well-matched with future work models. Future research may potentially employ a qualitative technique to offer deeper insights into the same topic.




po

The Influence of Augmented Reality Face Filter Addiction on Online Social Anxiety: A Stimulus-Organism-Response Perspective

Aim/Purpose: This study aims to analyze the factors that influence user addiction to AR face filters in social network applications and their impact on the online social anxiety of users in Indonesia. Background: To date, social media users have started to use augmented reality (AR) face filters. However, AR face filters have the potential to create positive and negative effects for social media users. The study combines the Big Five Model (BFM), Sense of Virtual Community (SVOC), and Stimuli, Organism, and Response (SOR) frameworks. We adopted the SOR theory by involving the personality factors and SOVC factors as stimuli, addiction as an organism, and social anxiety as a response. BFM is the most significant theory related to personality. Methodology: We used a quantitative approach for this study by using an online survey. We conducted research on 903 Indonesian respondents who have used an AR face filter feature at least once. The respondents were grouped into three categories: overall, new users, and old users. In this study, group classification was carried out based on the development timeline of the AR face filter in the social network application. This grouping was carried out to facilitate data analysis as well as to determine and compare the different effects of the factors in each group. The data were analyzed using the covariance-based structural equation model through the AMOS 26 program. Contribution: This research fills the gap in previous research which did not discuss much about the impact of addiction in using AR face filters on online social anxiety of users of social network applications. Findings: The results of this study indicated neuroticism, membership, and immersion influence AR face filter addiction in all test groups. In addition, ARA has a significant effect on online social anxiety. Recommendations for Practitioners: The findings are expected to be valuable to social network service providers and AR creators in improving their services and to ensure policies related to the list of AR face filters that are appropriate for use by their users as a form of preventing addictive behavior of that feature. Recommendation for Researchers: This study suggested other researchers consider other negative impacts of AR face filters on aspects such as depression, life satisfaction, and academic performance. Impact on Society: AR face filter users may experience changes in their self-awareness in using face filters and avoid the latter’s negative impacts. Future Research: Future research might explore other impacts from AR face filter addiction behavior, such as depression, life satisfaction, and so on. Apart from that, future research might investigate the positive impact of AR face filters to gain a better understanding of the impact of AR face filters.




po

Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk

Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications.




po

Feature analytics of asthma severity levels for bioinformatics improvement using Gini importance

In the context of asthma severity prediction, this study delves into the feature importance of various symptoms and demographic attributes. Leveraging a comprehensive dataset encompassing symptom occurrences across varying severity levels, this investigation employs visualisation techniques, such as stacked bar plots, to illustrate the distribution of symptomatology within different severity categories. Additionally, correlation coefficient analysis is applied to quantify the relationships between individual attributes and severity levels. Moreover, the study harnesses the power of random forest and the Gini importance methodology, essential tools in feature importance analytics, to discern the most influential predictors in asthma severity prediction. The experimental results bring to light compelling associations between certain symptoms, notably 'runny-nose' and 'nasal-congestion', and specific severity levels, elucidating their potential significance as pivotal predictive indicators. Conversely, demographic factors, encompassing age groups and gender, exhibit comparatively weaker correlations with symptomatology. These findings underscore the pivotal role of individual symptoms in characterising asthma severity, reinforcing the potential for feature importance analysis to enhance predictive models in the realm of asthma management and bioinformatics.




po

Exploring business students' Perry cognitive development position and implications at teaching universities in the USA

In the context of US universities where student evaluations of teaching play an important role in the retention and promotion of faculty, it is important to understand what a student expects in the classroom. This study took the perspective of Perry's cognitive development scheme with the following research question: what is the Perry level of cognitive development of business students? An established survey was used at two different universities. It was found that the median was position 3, and that there was large variation in three dimensions. First is the variation across program levels. Second, there was variation across universities. This becomes an issue when instructors move to a different university and questions the possibility to transfer 'best practices'. Third, variation was found within a specific program level. This means that instructors are faced with students who, from a cognitive perspective, have different demands which are unlikely to be simultaneously met.




po

Commercial air transport in Africa: changing structure and development of country pairs

This study investigates cross-border commercial air passenger traffic in Africa, focusing on the development of the 15 busiest country pairs during the period 1989 to 2015. It explores dimensions not previously studied by using ICAO's 'Traffic by Flight Stage' (TFS) and data from the CEPII Gravity Dataset. The spatial results show on an uneven geographical distribution of country pairs with the centre of gravity to South, East and North-East Africa, with one long-distance corridor between Egypt and South Africa. Countries in North and West Africa have rather few linkages, except for Egypt. Central African countries are not represented among the 15 country pairs. Although the number of passengers and the rank among the countries have shifted, South Africa and Egypt stand out, as having most country pair connections. Factors such as changing economic, diplomatic and political relations have had an influence on changing country pair connections throughout the period. A number of variables were selected to investigate how they correlated with Africa's commercial passenger traffic. Of the seven variables selected, five did show on a correlation and two did partly so. In that view, Africa's air traffic follows rather typical patterns.




po

Data as a potential path for the automotive aftersales business to remain active through and after the decarbonisation

This study aims to identify and understand the perspectives of automotive aftersales stakeholders regarding current challenges posed by decarbonisation strategies. It examines potential responses that the automotive aftersales business could undertake to address these challenges. Semi-structured interviews were undertaken with automotive industry experts from Europe and Latin America. This paper focuses primarily on impacts of decarbonisation upon automotive aftersales and the potential role of data in that business. Results show that investment in technology will be a condition for businesses that want to remain active in the industry. Furthermore, experts agree that incumbent manufacturers are not filling the technology gap that the energy transition is creating in the automotive sector, a consequence of which will be the entrance of new players from other sectors. The current aftersales businesses will potentially lose bargaining control. Moreover, policy makers are seen as unreliable leaders of the transition agenda.




po

Developing Learning Objects for Secondary School Students: A Multi-Component Model




po

Learning Objects, Learning Object Repositories, and Learning Theory: Preliminary Best Practices for Online Courses




po

A New Learning Object Repository for Language Learning: Methods and Possible Outcomes




po

Using Podcasts as Audio Learning Objects




po

Contextual Inquiry: A Systemic Support for Student Engagement through Reflection




po

Learning Pod: A New Paradigm for Reusability of Learning Objects




po

A Systems Engineering Analysis Method for the Development of Reusable Computer-Supported Learning Systems




po

Perceptions of Roles and Responsibilities in Online Learning: A Case Study




po

Repository 2.0: Social Dynamics to Support Community Building in Learning Object Repositories




po

Building a Framework to Support Project-Based Collaborative Learning Experiences in an Asynchronous Learning Network