1

Episode 35: 12 Years A Slave


  • 12 Years A Slave Review
  • What We Watched: Seduced and Abandoned, Bad Granpda, Grave Encounters, Carrie, Oliver Stone's Untold History of the United States, Adventure Time, Chopping Mall, Frenzy, The Halloween Tree, Sisters, Altered States, Sleepaway Camp, American Mary, Friday the 13th IV: The Final Chapter, Cannibal Holocaust, Prince of Darkness & The Fog. 




1

Let's Emerge From COVID-19 with Stronger Health Systems

26 March 2020

Robert Yates

Director, Global Health Programme; Executive Director, Centre for Universal Health
Heads of state should grasp the opportunity to become universal health heroes to strengthen global health security

2020-03-26-Health-Protest

A "Big Insurance: Sick of It" rally in New York City. Photo by Mario Tama/Getty Images.

As the COVID-19 pandemic presents the greatest threat to human health in over a century, people turn to their states to resolve the crisis and protect their health, their livelihoods and their future well-being.

How leaders perform and respond to the pandemic is likely to define their premiership - and this therefore presents a tremendous opportunity to write themselves into the history books as a great leader, rescuing their people from a crisis. Just as Winston Churchill did in World War Two.

Following Churchill’s advice to “never let a good crisis go to waste”, if leaders take decisive action now, they may emerge from the COVID-19 crisis as a national hero. What leaders must do quickly is to mitigate the crisis in a way which has a demonstrable impact on people’s lives.

Given the massive shock caused by the pandemic to economies across the world, it is not surprising that heads of state and treasury ministers have implemented enormous economic stimulus packages to protect businesses and jobs – this was to be expected and has been welcome.

National heroes can be made

But, in essence, this remains primarily a health crisis. And one obvious area for leaders to act rapidly is strengthening their nation’s health system to stop the spread of the virus and successfully treat those who have fallen sick. It is perhaps here that leaders have the most to gain - or lose - and where national heroes can be made.

This is particularly the case in countries with weak and inequitable health systems, where the poor and vulnerable often fail to access the services they need. One major practical action that leaders can implement immediately is to launch truly universal, publicly-financed health reforms to cover their entire population – not only for COVID-19 services but for all services.

This would cost around 1-2% GDP in the short-term but is perfectly affordable in the current economic climate, given some of the massive fiscal stimuluses already being planned (for example, the UK is spending 15% GDP to tackle COVID-19).

Within one to two years, this financing would enable governments to implement radical supply side reforms including scaling up health workforces, increasing the supply of essential medicines, diagnostics and vaccines and building new infrastructure. It would also enable them to remove health service user fees which currently exclude hundreds of millions of people worldwide from essential healthcare. Worldwide these policies have proven to be effective, efficient, equitable and extremely popular.

And there is plenty of precedent for such a move. Universal health reform is exactly what political leaders did in the UK, France and Japan as post-conflict states emerging from World War Two. It is also the policy President Kagame launched in the aftermath of the genocide in Rwanda, as did Prime Minister Thaksin in Thailand after the Asian Financial Crisis in 2002, and the Chinese leadership did following the SARS crisis, also in 2003.

In China’s case, reform involved re-socialising the health financing system using around 2% GDP in tax financing to increase health insurance coverage from a low level of one-third right up to 96% of the population.

All these universal health coverage (UHC) reforms delivered massive health and economic benefits to the people - just what is needed now to tackle COVID-19 - and tremendous political benefits to the leaders that implemented them.

When considering the current COVID-19 crisis, this strategy would be particularly relevant for countries underperforming on health coverage and whose health systems are more likely to be overwhelmed if flooded with a surge of patients, such as India, Pakistan, Bangladesh, Myanmar, Indonesia and most of sub-Saharan Africa, where many governments spend less than 1% of their GDP on health and most people have to buy services over the counter.

But also the two OECD countries without a universal health system – the United States and Ireland – are seeing the threat of COVID-19 already fuelling the debate about the need to create national, publicly-financed health system. And the presidents of South Africa, Kenya and Indonesia have already committed their governments to eventually reach full population coverage anyway, and so may use this crisis to accelerate their own universal reforms. 

Although difficult to predict which leaders are likely to grasp the opportunity, if some of these countries now fast-track nationwide UHC, at least something good will be coming from the crisis, something which will benefit their people forever. And ensuring everyone accesses the services they need, including public health and preventive services, also provides the best protection against any future outbreaks becoming epidemics.

Every night large audiences are tuning in to press briefings fronted by their heads of state hungry for the latest update on the crisis and to get reassurance that their government’s strategy will bring the salvation they desperately need. To truly improve health security for people across the world, becoming UHC heroes could be the best strategic decision political leaders ever make.




1

Beyond Lockdown: Africa’s Options for Responding to COVID-19

21 April 2020

Ben Shepherd

Consulting Fellow, Africa Programme

Nina van der Mark

Research Analyst, Global Health Programme
The continent’s enormous diversity means that there will be no one African experience of COVID-19, nor a uniform governmental response. But there are some common challenges across the continent, and a chance to get the response right.

2020-04-22-Africa-COVID-Dakar

Dakar after the Interior Ministry announced compulsory wearing of masks in public and private services, shops and transport, under penalty of sanctions. Photo by SEYLLOU/AFP via Getty Images.

African policymakers face a dilemma when it comes to COVID-19. The first hope is to prevent the virus from gaining a foothold at all, and many African states have significant experience of managing infectious disease outbreaks. The establishment of the Africa Centre for Disease Control highlights the hugely increased focus on public health in recent years.

But capacities to track, test and isolate vary wildly, notably between neighbours with porous and poorly controlled borders and, in most cases, sustained national-level disease control is difficult. Initial clusters of COVID-19 cases are already established in many places, but a lack of testing capacity makes it hard to know the full extent of transmission.

It is not obvious what African states should do as a response. Lack of information about COVID-19 means the proportion of asymptomatic or mild cases is not known, still less the ways in which this is influenced by human geography and demographics.

Africa is an overwhelmingly young continent with a median age under 20. But it also faces chronic malnutrition, which may weaken immune responses, and infectious diseases such as malaria, TB and HIV are widespread which could worsen the impact of COVID-19, particularly if treatment for these diseases is interrupted.

Complex and unknown

Ultimately, how all these factors interact with COVID-19 is complex and remains largely unknown. Africa may escape with a relatively light toll. Or it could be hit harder than anywhere else.

What is clear, however, is that cost of simply following the rest of the world into lockdown could be high. Africa is relatively rural but has higher populations living in informal settlements than anywhere in the world. Many live in cramped and overcrowded accommodation without clean water or reliable electricity, making handwashing a challenge and working from home impossible.

And the benefits appear limited. The goal of lockdowns in most places is not to eliminate the virus but to accept the economic and social costs as a price worth paying in order to ‘flatten the curve’ of infection and protect healthcare systems from being overwhelmed. But this logic does not hold when many of Africa’s healthcare systems are barely coping with pre-coronavirus levels of disease.

Africa suffers in comparison to much of the rest of the world in terms of access to quality and affordable healthcare, critical care beds and specialist personnel. For example, in 2017, Nigeria had just 120 ICU beds for a country of 200 million, equating to 0.07 per 100,000 inhabitants compared to 12.5 per 100,000 in Italy and 3.6 per 100,000 in China.

The pandemic’s ruinous economic impacts could also be more acute for Africa than anywhere else. The continent is highly vulnerable to potential drops in output and relies heavily on demand from China and Europe. Many states are already facing sharply falling natural resource revenues, and investment, tourism and remittances will suffer - all on top of a high existing debt burden.

Analysis by the World Bank shows that Africa will likely face its first recession in 25 years, with the continental economy contracting by up to 5.1% in 2020. Africa will have scant financial ammunition to use in the fight against COVID-19 with currencies weakening, food prices rising, local agri-food supply chains disrupted and food imports likely to decrease as well. A food security emergency appears a strong possibility.

So, although several states have imposed national lockdowns and others closed major urban centres, lockdowns are difficult to manage and sustain, especially in places where the daily hustle of the informal sector or subsistence agriculture are the only means of survival and where the state has neither the trust of the population nor the capacity to replace lost earnings or meet basic needs.

Of course, this is not simply a binary choice between lockdown or no lockdown - a range of intermediate options exist, such as some restriction on movement, curfews, shutting places of worship, banning only large gatherings, or closing pubs, schools and borders.

A significant number of African states have so far taken this middle path. This will not prevent the virus from spreading nor, in all probability, be enough to ensure adequate healthcare for all Africans infected with COVID-19. But it may help slow the spread and buy invaluable time for African states and partners to prepare.

How this time is used is therefore of paramount importance. Popular trust in the state is low in many African countries so strategies must empower communities, not alienate them. Africa’s experience of previous epidemics and long traditions of collective resilience and community-based crisis response - which persist in many places – are significant strengths.

The right messages must be carried by the right messengers, and policies - including cash transfers and food distribution - implemented sensitively. If not, or if responses become militarized, public consent is unlikely to be sustained for long.




1

The Hurdles to Developing a COVID-19 Vaccine: Why International Cooperation is Needed

23 April 2020

Professor David Salisbury CB

Associate Fellow, Global Health Programme

Dr Champa Patel

Director, Asia-Pacific Programme
While the world pins its hopes on vaccines to prevent COVID-19, there are scientific, regulatory and market hurdles to overcome. Furthermore, with geopolitical tensions and nationalistic approaches, there is a high risk that the most vulnerable will not get the life-saving interventions they need.

2020-04-23-Covid-Vaccine.jpg

A biologist works on the virus inactivation process in Belo Horizonte, Brazil on 24 March 2020. The Brazilian Ministry of Health convened The Technological Vaccine Center to conduct research on COVID-19 in order to diagnose, test and develop a vaccine. Photo: Getty Images.

On 10 January 2020, Chinese scientists released the sequence of the COVID-19 genome on the internet. This provided the starting gun for scientists around the world to start developing vaccines or therapies. With at least 80 different vaccines in development, many governments are pinning their hopes on a quick solution. However, there are many hurdles to overcome. 

Vaccine development

Firstly, vaccine development is normally a very long process to ensure vaccines are safe and effective before they are used. 

Safety is not a given: a recent dengue vaccine caused heightened disease in vaccinated children when they later were exposed to dengue, while Respiratory Syncytial Virus vaccine caused the same problem. Nor is effectiveness a given. Candidate vaccines that use novel techniques where minute fragments of the viruses’ genetic code are either injected directly into humans or incorporated into a vaccine (as is being pursued, or could be pursued for COVID-19) have higher risks of failure simply because they haven’t worked before. For some vaccines, we know what levels of immunity post-vaccination are likely to be protective. This is not the case for coronavirus. 

Clinical trials will have to be done for efficacy. This is not optional – regulators will need to know extensive testing has taken place before licencing any vaccine. Even if animal tests are done in parallel with early human tests, the remainder of the process is still lengthy. 

There is also great interest in the use of passive immunization, whereby antibodies to SARS-CoV-2 (collected from people who have recovered from infection or laboratory-created) are given to people who are currently ill. Antivirals may prove to be a quicker route than vaccine development, as the testing requirements would be shorter, manufacturing may be easier and only ill people would need to be treated, as opposed to all at-risk individuals being vaccinated.

Vaccine manufacturing

Developers, especially small biotechs, will have to make partnerships with large vaccine manufacturers in order to bring products to market. One notorious bottleneck in vaccine development is getting from proof-of-principle to commercial development: about 95 per cent of vaccines fail at this step. Another bottleneck is at the end of production. The final stages of vaccine production involve detailed testing to ensure that the vaccine meets the necessary criteria and there are always constraints on access to the technologies necessary to finalize the product. Only large vaccine manufacturers have these capacities. There is a graveyard of failed vaccine candidates that have not managed to pass through this development and manufacturing process.

Another consideration is adverse or unintended consequences. Highly specialized scientists may have to defer their work on other new vaccines to work on COVID-19 products and production of existing products may have to be set aside, raising the possibility of shortages of other essential vaccines. 

Cost is another challenge. Vaccines for industrialized markets can be very lucrative for pharmaceutical companies, but many countries have price caps on vaccines. Important lessons have been learned from the 2009 H1N1 flu pandemic when industrialized countries took all the vaccines first. Supplies were made available to lower-income countries at a lower price but this was much later in the evolution of the pandemic. For the recent Ebola outbreaks, vaccines were made available at low or no cost. 

Geopolitics may also play a role. Should countries that manufacture a vaccine share it widely with other countries or prioritize their own populations first? It has been reported that President Trump attempted to purchase CureVac, a German company with a candidate vaccine.  There are certainly precedents for countries prioritizing their own populations. With H1N1 flu in 2009, the Australian Government required a vaccine company to meet the needs of the Australian population first. 

Vaccine distribution

Global leadership and a coordinated and coherent response will be needed to ensure that any vaccine is distributed equitably. There have been recent calls for a G20 on health, but existing global bodies such as the Coalition for Epidemic Preparedness Innovations (CEPI) and GAVI are working on vaccines and worldwide access to them. Any new bodies should seek to boost funding for these entities so they can ensure products reach the most disadvantaged. 

While countries that cannot afford vaccines may be priced out of markets, access for poor, vulnerable or marginalized peoples, whether in developed or developing countries, is of concern. Developing countries are at particular risk from the impacts of COVID-19. People living in conflict-affected and fragile states – whether they are refugees or asylum seekers, internally displaced or stateless, or in detention facilities – are at especially high risk of devastating impacts. 

Mature economies will also face challenges. Equitable access to COVID-19 vaccine will be challenging where inequalities and unequal access to essential services have been compromised within some political systems. 

The need for global leadership 

There is an urgent need for international coordination on COVID-19 vaccines. While the WHO provides technical support and UNICEF acts as a procurement agency, responding to coronavirus needs clarity of global leadership that arches over national interests and is capable of mobilizing resources at a time when economies are facing painful recessions. We see vaccines as a salvation but remain ill-equipped to accelerate their development.

While everyone hopes for rapid availability of safe, effective and affordable vaccines that will be produced in sufficient quantities to meet everyone’s needs, realistically, we face huge hurdles. 




1

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




1

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]








1

The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics]

Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.




1

Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification [RNA]

pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression.




1

It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly [RNA]

The ribosome biogenesis factor Las1 is an essential endoribonuclease that is well-conserved across eukaryotes and a newly established member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain-containing nuclease family. HEPN nucleases participate in diverse RNA cleavage pathways and share a short HEPN nuclease motif (RφXXXH) important for RNA cleavage. Most HEPN nucleases participate in stress-activated RNA cleavage pathways; Las1 plays a fundamental role in processing pre-rRNA. Underscoring the significance of Las1 function in the cell, mutations in the human LAS1L (LAS1-like) gene have been associated with neurological dysfunction. Two juxtaposed HEPN nuclease motifs create Las1's composite nuclease active site, but the roles of the individual HEPN motif residues are poorly defined. Here using a combination of in vivo experiments in Saccharomyces cerevisiae and in vitro assays, we show that both HEPN nuclease motifs are required for Las1 nuclease activity and fidelity. Through in-depth sequence analysis and systematic mutagenesis, we determined the consensus HEPN motif in the Las1 subfamily and uncovered its canonical and specialized elements. Using reconstituted Las1 HEPN-HEPN' chimeras, we defined the molecular requirements for RNA cleavage. Intriguingly, both copies of the Las1 HEPN motif were important for nuclease function, revealing that both HEPN motifs participate in coordinating the RNA within the Las1 active site. We also established that conformational flexibility of the two HEPN domains is important for proper nuclease function. The results of our work reveal critical information about how dual HEPN domains come together to drive Las1-mediated RNA cleavage.





1

Terapia inédita reverte leucemia incurável em bebê de 1 ano

Tratamento genético foi testado em Layla Richards que estava desenganada pelos médicos. Especialistas ressaltam que os resultados são iniciais e podem não ocorrer em outros pacientes.

The post Terapia inédita reverte leucemia incurável em bebê de 1 ano appeared first on Saúde Próspera.



  • Dicas de Saúde

1

Visão embaçada e distorcida nem sempre é miopia: fique atento aos sinais do ceratocone

Aos primeiros sinais de visão embaçada, as hipóteses mais frequentes sempre são miopia, astigmatismo, hipermetropia. Mas esses sintomas podem indicar outra doença ocular chamada ceratocone - uma deformidade progressiva da córnea, que assume o formato...

The post Visão embaçada e distorcida nem sempre é miopia: fique atento aos sinais do ceratocone appeared first on Saúde Próspera.



  • Dicas de Saúde

1

Candidíase – Conheça as causas, sintomas e tratamentos

O que é Candidíase? Candidíase, é uma infecção sistêmica causada pelo fungos da Candida albicans. A Candida albicans é um tipo de fungo (levedura) que vive em harmonia no organismo,…

The post Candidíase – Conheça as causas, sintomas e tratamentos appeared first on Saúde Próspera.



  • Dicas de Saúde

1

What happens to a fund that is listed pursuant to a product specific rule filing once the fund is eligible to operate under Rule 6c-11 and elects to list on Nasdaq under Rule 5704?

Publication Date: Apr 10 2020 The SEC will withdraw the existing approval order and the fund will become subject to the requirements of Rule 6c-11 and Nasdaq Rule 5704....




1

Do all the funds operating under an existing exemptive order have to transition to operating under Rule 6c-11 and Nasdaq Rule 5704 at the same time?

Publication Date: Apr 10 2020 Yes. According to the SEC, once an ETF becomes eligible to operate under Rule 6c-11 and elects to list on Nasdaq under Nasdaq Rule 5704, the existing order related to that fund (and all other funds under that exemptive order) will be rescinded. Once a fund is listed under Nasdaq Rule 5704, it will not be able to relist under Nasdaq Rule 5705(b) (Index Fund Shares) or Nasdaq Rule 5735 (Managed Fund Shares) unless a new exemptive relief order is obtained from the SEC....




1

What happens if an ETF is no longer compliant with Rule 6c-11?

Publication Date: Apr 10 2020 On or before December 22, 2020, all ETFs that meet the definition of "Exchange Traded Fund" in Nasdaq Rule 5704(a)(1)(A) will need to be compliant with Rule 6c-11. If it is determined that an ETF no longer complies with Rule 6c-11 and therefore no longer complies Nasdaq Rule 5704, Nasdaq will generally issue a letter of deficiency. The ETF will generally be given 45 days to submit a plan to regain compliance. If the plan is accepted, Nasdaq Staff can grant an...




1

How can a company rely on the COVID-19 exception to shareholder approval requirements?

Publication Date: May 4 2020 On May 1, 2020, Nasdaq adopted Rule 5636T, operative through, and including, June 30, 2020, to provide listed companies with a temporary exception from certain shareholder approval requirements. A Company must submit an application to Nasdaq’s Listing Qualifications Department demonstrating that the transaction satisfies the requirements in Rule 5636T and must provide the Notification Form: Listing of Additional Shares (“LAS Form”) required by...




1

Virtual Roundtable: The Economic Implications of COVID-19 on Asia

Research Event

2 April 2020 - 11:00am to 12:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Vasuki Shastry, Associate Fellow, Asia-Pacific Programme
Ravi Velloor, Associate Editor, The Straits Times
Chair: Yu Jie, Senior Research Fellow on China, Asia-Pacific Programme, Chatham House

The COVID-19 pandemic is likely to have a damaging economic impact on Asia, potentially the most serious since the financial crisis two decades ago. While early estimates suggest that a recession is inevitable, differing countries in Asia are generally deploying modest fiscal and monetary measures. This is true even in China, compared with the ‘whatever it takes’ approach pursued by Europe and America. 

How effective will these measures be in reviving growth and in easing the pain, particularly on the poor in developing countries in Asia? Is Asia witnessing a sudden but temporary halt in economic activity rather than a prolonged slowdown? At this virtual roundtable, the speakers will consider the likelihood of a recovery for trade in the region and will explore what lessons can be learned from countries like Singapore, who seem to be successfully managing the health and economic aspects of COVID-19. 

This event is online only. After registering, you will receive a follow-up confirmation email with details of how to join the webinar.

Event attributes

Chatham House Rule

Lucy Ridout

Programme Administrator, Asia-Pacific Programme
+44 (0) 207 314 2761




1

Webinar: Make or Break: China and the Geopolitical Impacts of COVID-19

Research Event

28 April 2020 - 12:00pm to 12:45pm

Event participants

Yu Jie, Senior Research Fellow on China, Asia-Pacific Programme, Chatham House
Kerry Brown, Associate Fellow, Asia-Pacific Programme, Chatham House; Professor of Chinese Studies and Director of Lau China Institute, King’s College London

The COVID-19 crisis has accelerated geopolitical tensions that, in part, have arisen from US-China tensions. At a time when the world needs strong and collective leadership to fight the coronavirus, both countries have been locked in a battle of words characterized by escalating hostility, polarizing narratives, blame and misinformation. Caught in the crossfire, many people of Chinese descent across differing countries have reported an increase in xenophobic attacks.

Middle powers such as the UK and Australia have swerved between recognition of the global collaboration needed to solve this pandemic and calls for China to be held ‘accountable’ for its initial response. Others such, as France and Japan, have been trying to foster international cooperation. 

Against this context, speakers will discuss China’s response to the crisis, including the initial delay and Beijing’s later containment strategies. How do we best assess the delay amidst all the heated rhetoric? What was the response of people within China to the measures? Does COVID-19 mark a point of no return for US-China relations? How might this impact on relations between US allies and China? And what kind of China will emerge from this current crisis?

Lucy Ridout

Programme Administrator, Asia-Pacific Programme
+44 (0) 207 314 2761




1

Virtual Roundtable: Evaluating Outcomes in Fragile Contexts: Adapting Research Methods in the Time of COVID-19

Invitation Only Research Event

5 May 2020 - 12:00pm to 1:00pm

Event participants

Rebecca Wolfe, Lecturer, Harris School for Public Policy and Associate, Pearson Institute for the Study and Resolution of Global Conflicts, University of Chicago
Tom Gillhespy, Principal Consultant, Itad
Shodmon Hojibekov, Chief Executive Officer, Aga Khan Agency for Habitat (Afghanistan)
Chair: Champa Patel, Director, Asia-Pacific Programme, Chatham House

This virtual roundtable has been co-convened by Chatham House and the Aga Khan Foundation.  

While conducting research in fragile and conflict-affected contexts has always presented challenges, the outbreak of COVID-19 creates additional challenges including travel restrictions, ethical challenges, and disruptions to usual modes of working. This virtual roundtable will explore how organizations can adapt their research and monitoring and evaluation models in response to the coronavirus pandemic. This event aims to discuss the research methods being used to mitigate the impact of the COVID-19 crisis; the important role of technology; and ways to engage policy and decision-makers during this time.

 

Event attributes

Chatham House Rule

Lucy Ridout

Programme Administrator, Asia-Pacific Programme
+44 (0) 207 314 2761




1

Going with the Floes - Part 1

Sea ice is one of the least understood components of our climate. Naturally its abundance or scarcity is a telling sign of climate change, but sea ice is also an important actor in change as well, insulating the ocean and reflecting sunlight. A branch of mathematics called percolation theory helps explain how salt water travels through sea ice, a process that is crucial both to the amount of sea ice present and to the microscopic communities that sustain polar ecosystems. By taking samples, doing on-site experiments, and then incorporating the data into models of porous materials, mathematicians are working to understand sea ice and help refine climate predictions. Using probability, numerical analysis, and partial differential equations, researchers have recently shown that the permeability of sea ice is similar to that of some sedimentary rocks in the earth.s crust, even though the substances are otherwise dissimilar. One major difference between the two is the drastic changes in permeability of sea ice, from total blockage to clear passage, that occur over a range of just a few degrees. This difference can have a major effect on measurements by satellite, which provide information on the extent and thickness of sea ice. Results about sea ice will not only make satellite measurements more reliable, but they can also be applied to descriptions of lung and bone porosity, and to understanding ice on other planets. Image: Pancake ice in Antarctica, courtesy of Ken Golden. For More Information: "Thermal evolution of permeability and microstructure in sea ice," K. M. Golden, et al., Geophysical Research Letters, August 28, 2007.




1

Improving Stents - Part 1

Stents are expandable tubes that are inserted into blocked or damaged blood vessels. They offer a practical way to treat coronary artery disease, repairing vessels and keeping them open so that blood can flow freely. When stents work, they are a great alternative to radical surgery, but they can deteriorate or become dislodged. Mathematical models of blood vessels and stents are helping to determine better shapes and materials for the tubes. These models are so accurate that the FDA is considering requiring mathematical modeling in the design of stents before any further testing is done, to reduce the need for expensive experimentation. Precise modeling of the entire human vascular system is far beyond the reach of current computational power, so researchers focus their detailed models on small subsections, which are coupled with simpler models of the rest of the system. The Navier-Stokes equations are used to represent the flow of blood and its interaction with vessel walls. A mathematical proof was the central part of recent research that led to the abandonment of one type of stent and the design of better ones. The goal now is to create better computational fluid-vessel models and stent models to improve the treatment and prediction of coronary artery disease the major cause of heart attacks. For More Information: Design of Optimal Endoprostheses Using Mathematical Modeling, Canic, Krajcer, and Lapin, Endovascular Today, May 2006.




1

Restoring Genius - Discovering lost works of Archimedes - Part 1

Archimedes was one of the most brilliant people ever, on a par with Einstein and Newton. Yet very little of what he wrote still exists because of the passage of time, and because many copies of his works were erased and the cleaned pages were used again. One of those written-over works (called a palimpsest) has resurfaced, and advanced digital imaging techniques using statistics and linear algebra have revealed his previously unknown discoveries in combinatorics and calculus. This leads to a question that would stump even Archimedes: How much further would mathematics and science have progressed had these discoveries not been erased? One of the most dramatic revelations of Archimedes. work was done using X-ray fluorescence. A painting, forged in the 1940s by one of the book.s former owners, obscured the original text, but X-rays penetrated the painting and highlighted the iron in the ancient ink, revealing a page of Archimedes. treatise The Method of Mechanical Theorems. The entire process of uncovering this and his other ideas is made possible by modern mathematics and physics, which are built on his discoveries and techniques. This completion of a circle of progress is entirely appropriate since one of Archimedes. accomplishments that wasn.t lost is his approximation of pi. For More Information: The Archimedes Codex, Reviel Netz and William Noel, 2007.




1

Predicting Climate - Part 1

What.s in store for our climate and us? It.s an extraordinarily complex question whose answer requires physics, chemistry, earth science, and mathematics (among other subjects) along with massive computing power. Mathematicians use partial differential equations to model the movement of the atmosphere; dynamical systems to describe the feedback between land, ocean, air, and ice; and statistics to quantify the uncertainty of current projections. Although there is some discrepancy among different climate forecasts, researchers all agree on the tremendous need for people to join this effort and create new approaches to help understand our climate. It.s impossible to predict the weather even two weeks in advance, because almost identical sets of temperature, pressure, etc. can in just a few days result in drastically different weather. So how can anyone make a prediction about long-term climate? The answer is that climate is an average of weather conditions. In the same way that good predictions about the average height of 100 people can be made without knowing the height of any one person, forecasts of climate years into the future are feasible without being able to predict the conditions on a particular day. The challenge now is to gather more data and use subjects such as fluid dynamics and numerical methods to extend today.s 20-year projections forward to the next 100 years. For More Information: Mathematics of Climate Change: A New Discipline for an Uncertain Century, Dana Mackenzie, 2007.




1

Resisting the Spread of Disease - Part 1

One of the most useful tools in analyzing the spread of disease is a system of evolutionary equations that reflects the dynamics among three distinct categories of a population: those susceptible (S) to a disease, those infected (I) with it, and those recovered (R) from it. This SIR model is applicable to a range of diseases, from smallpox to the flu. To predict the impact of a particular disease it is crucial to determine certain parameters associated with it, such as the average number of people that a typical infected person will infect. Researchers estimate these parameters by applying statistical methods to gathered data, which aren.t complete because, for example, some cases aren.t reported. Armed with reliable models, mathematicians help public health officials battle the complex, rapidly changing world of modern disease. Today.s models are more sophisticated than those of even a few years ago. They incorporate information such as contact periods that vary with age (young people have contact with one another for a longer period of time than do adults from different households), instead of assuming equal contact periods for everyone. The capacity to treat variability makes it possible to predict the effectiveness of targeted vaccination strategies to combat the flu, for instance. Some models now use graph theory and matrices to represent networks of social interactions, which are important in understanding how far and how fast a given disease will spread. For More Information: Mathematical Models in Population Biology and Epidemiology, Fred Brauer and Carlos Castillo-Chavez.




1

Getting at the Truth - Part 1

Mathematics has helped investigators in several major cases of human rights abuses and election fraud. Among them: The 2009 election in Iran. A mathematical result known as Benford's Law states that the leading digits of truly random numbers aren't distributed uniformly, as might be expected. Instead, smaller digits, such as 1's, appear much more frequently than larger digits, such as 9's. Benford's Law and other statistical tests have been applied to the 2009 election and suggest strongly that the final totals are suspicious. Ethnic cleansing. When Slobodan Milosevic went on trial, it was his contention that the mass exodus of ethnic Albanians from Kosovo was due to NATO bombings and the activities of the Albanian Kosovo Liberation Army rather than anything he had ordered. A team collected data on the flow of refugees to test those hypotheses and was able to refute Milosevic's claim in its entirety. Guatemalan disappearances. Here, statistics is being used to extract information from over 80 million National Police archive pages related to about 200,000 deaths and disappearances. Sampling techniques give investigators an accurate representation of the records without them having to read every page. Families are getting long-sought after proof of what happened to their relatives, and investigators are uncovering patterns and motives behind the abductions and murders. Tragically, the people have disappeared. But because of this analysis, the facts won't. For More Information: Killings and Refugee Flow in Kosovo, March-June 1999, Ball et al., 2002.




1

Knowing Rogues - Part 1

It doesn't take a perfect storm to generate a rogue wave-an open-ocean wave much steeper and more massive than its neighbors that appears with little or no warning. Sometimes winds and currents collide causing waves to combine nonlinearly and produce these towering walls of water. Mathematicians and other researchers are collecting data from rogue waves and modeling them with partial differential equations to understand how and why they form. A deeper understanding of both their origins and their frequency will result in safer shipping and offshore platform operations. Since rogue waves are rare and short lived (fortunately), studying them is not easy. So some researchers are experimenting with light to create rogue waves in a different medium. Results of these experiments are consistent with sailors' claims that rogues, like other unusual events, are more frequent than what is predicted by standard models. The standard models had assumed a bell-shaped distribution for wave heights, and anticipated a rogue wave about once every 10,000 years. This purported extreme unlikelihood led designers and builders to not account for their potential catastrophic effects. Today's recognition of rogues as rare, but realistic, possibilities could save the shipping industry billions of dollars and hundreds of lives. For More Information: "Dashing Rogues", Sid Perkins, Science News, November 18, 2006.




1

Assigning Seats - Part 1

As difficult as it is to do the census, the ensuing process of determining the number of congressional seats for each state can be even harder. The basic premise, that the proportion of each state's delegation in the House should match its proportion of the U.S. population, is simple enough. The difficulty arises when deciding what to do with the fractions that inevitably arise (e.g., New York can't have 28.7 seats). Over the past 200 years, several methods of apportioning seats have been used. Many sound good but can lead to paradoxes, such as an increase in the total number of House seats actually resulting in a reduction of a state's delegation. The method used since the 1940s, whose leading proponent was a mathematician, is one that avoids such paradoxes. A natural question is Why 435 seats? Nothing in the Constitution mandates this number, although there is a prohibition against having more than one seat per 30,000 people. One model, based on the need for legislators to communicate with their constituents and with each other, uses algebra and calculus to show that the ideal assembly size is the cube root of the population it represents. Remarkably, the size of the House mirrored this rule until the early 1900s. To obey the rule now would require an increase to 670, which would presumably both better represent the population and increase the chances that the audience in the seats for those late speeches would outnumber the speaker. For More Information: "E pluribus confusion", Barry Cipra, American Scientist, July-August 2010.




1

Putting Another Cork in It - Part 1

A triple cork is a spinning jump in which the snowboarder is parallel to the ground three times while in the air. Such a jump had never been performed in a competition before 2011, which prompted ESPN.s Sport Science program to ask math professor Tim Chartier if it could be done under certain conditions. Originally doubtful, he and a recent math major graduate used differential equations, vector analysis, and calculus to discover that yes, a triple cork was indeed possible. A few days later, boarder Torstein Horgmo landed a successful triple cork at the X-Games (which presumably are named for everyone.s favorite variable). Snowboarding is not the only sport in which modern athletes and coaches seek answers from mathematics. Swimming and bobsledding research involves computational fluid dynamics to analyze fluid flow so as to decrease drag. Soccer and basketball analysts employ graph and network theory to chart passes and quantify team performance. And coaches in the NFL apply statistics and game theory to focus on the expected value of a play instead of sticking with the traditional Square root of 9 yards and a cloud of dust.




1

Sounding the Alarm - Part 1

Nothing can prevent a tsunami from happening they are enormously powerful events of nature. But in many cases networks of seismic detectors, sea-level monitors and deep ocean buoys can allow authorities to provide adequate warning to those at risk. Mathematical models constructed from partial differential equations use the generated data to determine estimates of the speed and magnitude of a tsunami and its arrival time on coastlines. These models may predict whether a trough or a crest will be the first to arrive on shore. In only about half the cases (not all) does the trough arrive first, making the water level recede dramatically before the onslaught of the crest. Mathematics also helps in the placement of detectors and monitors. Researchers use geometry and population data to find the best locations for the sensors that will alert the maximum number of people. Once equipment is in place, warning centers collect and process data from many seismic stations to determine if an earthquake is the type that will generate a dangerous tsunami. All that work must wait until an event occurs because it is currently very hard to predict earthquakes. People on coasts far from an earthquake-generated tsunami may have hours to take action, but for those closer it.s a matter of minutes. The crest of a tsunami wave can travel at 450 miles per hour in open water, so fast algorithms for solving partial differential equations are essential. For More Information: Surface Water Waves and Tsunamis, Walter Craig, Journal of Dynamics and Differential Equations, Vol. 18, no. 3 (2006), pp. 525-549.




1

Sustaining the Supply Chain - Part 1

It.s often a challenge to get from Point A to Point B in normal circumstances, but after a disaster it can be almost impossible to transport food, water, and clothing from the usual supply points to the people in desperate need. A new mathematical model employs probability and nonlinear programming to design supply chains that have the best chance of functioning after a disaster. For each region or country, the model generates a robust chain of supply and delivery points that can respond to the combination of disruptions in the network and increased needs of the population. Math also helps medical agencies operate more efficiently during emergencies, such as an infectious outbreak. Fluid dynamics and combinatorial optimization are applied to facility layout and epidemiological models to allocate resources and improve operations while minimizing total infection within dispensing facilities. This helps ensure fast, effective administering of vaccines and other medicines. Furthermore, solution times are fast enough that officials can input up-to-the-minute data specific to their situation and make any necessary redistribution of supplies or staff in real time. For More Information: Supply Chain Network Economics: Dynamics of Prices, Flows, and Profits, Anna Nagurney, 2006.




1

Keeping the beat - Part 1

The heart.s function of pumping blood may seem fairly simple but the underlying mechanisms and electrical impulses that maintain a healthy rhythm are extremely complex. Many areas of mathematics, including differential equations, dynamical systems, and topology help model the electrical behavior of cardiac cells, the connections between those cells and the heart.s overall geometry. Researchers aim to gain a better understanding of the normal operation of the heart, as well as learn how to diagnose the onset of abnormalities and correct them. Of the many things that can go wrong with a heart.s rhythm, some measure of unpredictability is (surprisingly) not one of them. A healthy heartbeat is actually quite chaotic not regular at all. Furthermore, beat patterns become less chaotic as people age and heart function diminishes. In fact, one researcher recommends that patients presented with a new medication should ask their doctors, "What is this drug going to do to my fractal dimensionality?" For More Information: Taking Mathematics to Heart: Mathematical Challenges in Cardiac Electrophysiology, John W. Cain, Notices of the AMS, April 2011, pp. 542-549.




1

Harnessing Wind Power - Part 1

Mathematics contributes in many ways to the process of converting wind power into usable energy. Large-scale weather models are used to find suitable locations for wind farms, while more narrowly focused models incorporating interactions arising from factors such as wake effects and turbulence specify how to situate individual turbines within a farm. In addition, computational fluid dynamics describes air flow and drag around turbines. This helps determine the optimal shapes for the blades, both structurally and aerodynamically, to extract as much energy as possible, and keep noise levels and costs down. Mathematics also helps answer two fundamental questions about wind turbines. First, why three blades? Turbines with fewer blades extract less energy and are noisier (because the blades must turn faster). Those with more than three blades would capture more energy but only about three percent more, which doesn.t justify the increased cost. Second, what percentage of wind energy can a turbine extract? Calculus and laws of conservation provide the justification for Betz Law, which states that no wind turbine can capture more than 60% of the energy in the wind. Modern turbines generally gather 40-50%. So the answer to someone who touts a turbine that can capture 65% of wind energy is "All Betz" are off. For More Information: Wind Energy Explained: Theory, Design and Application, Manwell, McGowan, and Rogers, 2010.




1

Keeping Things in Focus - Part 1

Some of the simplest and most well-known curves parabolas and ellipses, which can be traced back to ancient Greece are also among the most useful. Parabolas have a reflective property that is employed in many of today.s solar power technologies. Mirrors with a parabolic shape reflect all entering light to a single point called the focus, where the solar power is converted into usable energy. Ellipses, which have two foci, have a similar reflecting property that is exploited in a medical procedure called lithotripsy. Patients with kidney stones and gallstones are positioned in a tank shaped like half an ellipse so that the stones are at one focus. Acoustic waves sent from the other focus concentrate all their energy on the stones, pulverizing them without surgery. Math can sometimes throw you a curve, but that.s not necessarily a bad thing. Parabolas and ellipses are curves called conic sections. Another curve in this category is the hyperbola, which may have the most profound application of all the nature of the universe. In plane geometry, points that are a given distance from a fixed point form a circle. In space, points that are a given spacetime distance from a fixed point form one branch of a hyperbola. This is not an arbitrary mandate but instead a natural conclusion from the equations that result when the principle of relativity is reconciled with our notions of distance and causality. And although a great deal of time has elapsed since the discovery of conic sections, they continue to reap benefits today. For More Information: Practical Conic Sections: The Geometric Properties of Ellipses, Parabolas and Hyperbolas, J. W. Downs, 2010.




1

Forecasting Crime Part 1

No one can predict who will commit a crime but in some cities math is helping detect areas where crimes have the greatest chance of occurring. Police then increase patrols in these "hot spots" in order to prevent crime. This innovative practice, called predictive policing, is based on large amounts of data collected from previous crimes, but it involves more than just maps and push pins. Predictive policing identifies hot spots by using algorithms similar to those used to predict aftershocks after major earthquakes. Just as aftershocks are more likely near a recent earthquake.s epicenter, so too are crimes, as criminals do indeed return to, or very close to, the scene of a crime. Cities employing this approach have seen crime rates drop and studies are underway to measure predictive policing.s part in that drop. One fact that has been determined concerns the nature of hot spots. Researchers using partial differential equations and bifurcation theory have discovered two types of hot spots, which respond quite differently to increased patrols. One type will shift to another area of the city while the other will disappear entirely. Unfortunately the two appear the same on the surface, so mathematicians and others are working to help police find ways to differentiate between the two so as to best allocate their resources.




1

Catching and Releasing: Part 1

There.s more mathematics involved in juggling than just trying to make sure that the number of balls (or chainsaws) that hits the ground stays at zero. Subjects such as combinatorics and abstract algebra help jugglers answer important questions, such as whether a particular juggling pattern can actually be juggled. For example, can balls be juggled so that the time period that each ball stays aloft alternates between five counts and one? The answer is Yes. Math also tells you that the number of balls needed for such a juggling pattern is the average of the counts, in this case three. Once a pattern is shown to be juggleable and the number of balls needed is known, equations of motion determine the speed with which each ball must be thrown and the maximum height it will attain. Obviously the harder a juggler throws, the faster and higher an object will go. Unfortunately hang time increases proportionally to the square root of the height, so the difficulty of keeping many objects in the air increases very quickly. Both math and juggling have been around for millennia yet questions still remain in both subjects. As two juggling mathematicians wrote, .A juggler, like a mathematician, is never finished: there is always another great unsolved problem.




1

Finding Friends: Part 1

Facebook has over 700 million users with almost 70 billion connections. The hard part isn.t people making friends; rather it.s Facebook.s computers storing and accessing relevant data, including information about friends of friends. The latter is important for recommendations to users (People You May Know). Much of this work involves computer science, but mathematics also plays a significant role. Subjects such as linear programming and graph theory help cut in half the time needed to determine a person.s friends of friends and reduce network traffic on Facebook.s machines by about two-thirds. What.s not to like? The probability of people being friends tends to decrease as the distance between them increases. This makes sense in the physical world, but it.s true in the digital world as well. Yet, despite this, the enormous network of Facebook users is an example of a small-world network. The average distance between Facebook users the number of friend-links to connect people is less than five. And even though the collection of users and their connections may look chaotic, the network actually has a good deal of structure. For example, it.s searchable. That is, two people who are, say, five friend-links away, could likely navigate from one person to the other by knowing only the friends at each point (but not knowing anyone.s friends of friends). For More Information: Networks, Crowds, and Markets: Reasoning about a Highly Connected World, David Easley and Jon Kleinberg, 2010.




1

Freeing Up Architecture: Part 1

Many of today.s most striking buildings are nontraditional freeform shapes. A new field of mathematics, discrete differential geometry, makes it possible to construct these complex shapes that begin as designers. digital creations. Since it.s impossible to fashion a large structure out of a single piece of glass or metal, the design is realized using smaller pieces that best fit the original smooth surface. Triangles would appear to be a natural choice to represent a shape, but it turns out that using quadrilaterals.which would seem to be more difficult.saves material and money and makes the structure easier to build. One of the primary goals of researchers is to create an efficient, streamlined process that integrates design and construction parameters so that early on architects can assess the feasibility of a given idea. Currently, implementing a plan involves extensive (and often expensive) interplay on computers between subdivision.breaking up the entire structure into manageable manufacturable pieces.and optimization.solving nonlinear equations in high-dimensional spaces to get as close as possible to the desired shape. Designers and engineers are seeking new mathematics to improve that process. Thus, in what might be characterized as a spiral with each field enriching the other, their needs will lead to new mathematics, which makes the shapes possible in the first place. For More Information: .Geometric computing for freeform architecture,. J. Wallner and H. Pottmann. Journal of Mathematics in Industry, Vol. 1, No. 4, 2011.




1

Working Up a Lather : Part 1

James Sethian and Frank Morgan talk about their research investigating bubbles.




1

Thinking Outside the Box Score - Math and basketball: Part 1

Muthu Alagappan explains how topology and analytics are bringing a new look to basketball.




1

Getting Inside Your Head - The brain's communication pathways: Part 1

Van Wedeen talks about the geometry of the brain's communication pathways.




1

Making an Attitude Adjustment: Part 1

Nazareth Bedrossian talks about using math to reposition the International Space Station.




1

Unifying Diverse Cities: Part 1

Despite the considerable variety among cities, researchers have identified common mathematical properties that hold around the world, regardless of a city.s population, location or even time.




1

Being Knotty: Part 1

Colin Adams talks about knot theory




1

Exploiting a Little-Known Force: Part 1

Lydia Bourouiba talks about surface tension and the transmission of disease