pr The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
pr Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
pr SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes. Full Article
pr A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells. Full Article
pr The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
pr An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
pr Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences. Full Article
pr Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
pr Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens. Full Article
pr The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis. Full Article
pr Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs. Full Article
pr Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article
pr Zinc promotes liquid-liquid phase separation of tau protein [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Tau is a microtubule-associated protein that plays a major role in Alzheimer's disease (AD) and other tauopathies. Recent reports indicate that, in the presence of crowding agents, tau can undergo liquid–liquid phase separation (LLPS), forming highly dynamic liquid droplets. Here, using recombinantly expressed proteins, turbidimetry, fluorescence microscopy imaging, and fluorescence recovery after photobleaching (FRAP) assays, we show that the divalent transition metal zinc strongly promotes this process, shifting the equilibrium phase boundary to lower protein or crowding agent concentrations. We observed no tau LLPS-promoting effect for any other divalent transition metal ions tested, including Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. We also demonstrate that multiple zinc-binding sites on tau are involved in the LLPS-promoting effect and provide insights into the mechanism of this process. Zinc concentration is highly elevated in AD brains, and this metal ion is believed to be an important player in the pathogenesis of this disease. Thus, the present findings bring a new dimension to understanding the relationship between zinc homeostasis and the pathogenic process in AD and related neurodegenerative disorders. Full Article
pr Structural basis of substrate recognition and catalysis by fucosyltransferase 8 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80–2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process. Full Article
pr The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species. Full Article
pr Templated folding of intrinsically disordered proteins [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding. Full Article
pr An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells. Full Article
pr Amylin Agonists: A Novel Approach in the Treatment of Diabetes By diabetes.diabetesjournals.org Published On :: 2004-12-01 Ole SchmitzDec 1, 2004; 53:S233-S238Section V: The Incretin Pathway Full Article
pr The Biology of Mitochondrial Uncoupling Proteins By diabetes.diabetesjournals.org Published On :: 2004-02-01 Sophie RoussetFeb 1, 2004; 53:S130-S135Section III: Mitochondria, Beta-Cell Function, and Type 2 Diabetes Full Article
pr AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer By diabetes.diabetesjournals.org Published On :: 2013-07-01 D. Grahame HardieJul 1, 2013; 62:2164-2172Perspectives in Diabetes Full Article
pr Muscle Weakness: A Progressive Late Complication in Diabetic Distal Symmetric Polyneuropathy By diabetes.diabetesjournals.org Published On :: 2006-03-01 Christer S. AndreassenMar 1, 2006; 55:806-812Complications Full Article
pr The Incretin Approach for Diabetes Treatment: Modulation of Islet Hormone Release by GLP-1 Agonism By diabetes.diabetesjournals.org Published On :: 2004-12-01 Jens Juul HolstDec 1, 2004; 53:S197-S204Section V: The Incretin Pathway Full Article
pr Predictors of Postpartum Diabetes in Women With Gestational Diabetes Mellitus By diabetes.diabetesjournals.org Published On :: 2006-03-01 Kristian LöbnerMar 1, 2006; 55:792-797Pathophysiology Full Article
pr A Bivariate Genome-Wide Approach to Metabolic Syndrome: STAMPEED Consortium By diabetes.diabetesjournals.org Published On :: 2011-04-01 Aldi T. KrajaApr 1, 2011; 60:1329-1339Genetics Full Article
pr Vitamin D Receptor Overexpression in {beta}-Cells Ameliorates Diabetes in Mice By diabetes.diabetesjournals.org Published On :: 2020-05-01 Meritxell MorróMay 1, 2020; 69:927-939Islet Studies Full Article
pr Effect of a High-Protein, Low-Carbohydrate Diet on Blood Glucose Control in People With Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2004-09-01 Mary C. GannonSep 1, 2004; 53:2375-2382Pathophysiology Full Article
pr Protecting the Heart in Obesity: Role of ACE2 and Its Partners By diabetes.diabetesjournals.org Published On :: 2016-01-01 Rhian M. TouyzJan 1, 2016; 65:19-21Commentaries Full Article
pr Five Stages of Evolving Beta-Cell Dysfunction During Progression to Diabetes By diabetes.diabetesjournals.org Published On :: 2004-12-01 Gordon C. WeirDec 1, 2004; 53:S16-S21Section I: Insulin Resistance-Beta-Cell Connection in Type 2 Diabetes Full Article
pr The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion By diabetes.diabetesjournals.org Published On :: 2002-12-01 Patrick E. MacDonaldDec 1, 2002; 51:S434-S442Section 5: Beta-Cell Stimulus-Secretion Coupling: Hormonal and Pharmacological Modulators Full Article
pr Latent Autoimmune Diabetes in Adults: Definition, Prevalence, {beta}-Cell Function, and Treatment By diabetes.diabetesjournals.org Published On :: 2005-12-01 Gunnar StenströmDec 1, 2005; 54:S68-S72Section II: Type 1-Related Forms of Diabetes Full Article
pr Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis By diabetes.diabetesjournals.org Published On :: 2017-02-01 Jay S. SkylerFeb 1, 2017; 66:241-255Perspectives in Diabetes Full Article
pr Correction: Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 VOLUME 285 (2010) PAGES 13742–13747In Fig. 1E, passage 10, the splicing of a non-adjacent lane from the same immunoblot was not marked. This error has now been corrected and does not affect the results or conclusions of this work.jbc;295/16/5533/F1F1F1Figure 1E. Full Article
pr Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C. Full Article
pr Correction: Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 VOLUME 294 (2019) PAGES 2555–2568Due to publisher error, “150 l/mm” was changed to “150 liters/mm” in the second paragraph of the “Vibrational spectroscopy of samples” section under “Experimental Procedures.” The correct phrase should be “150 l/mm.” Full Article
pr Correction: Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 VOLUME 295 (2020) PAGES 1898–1914Yichen Zhong's name was misspelled. The correct spelling is shown above. Full Article
pr Correction: Histone demethylase KDM6B promotes epithelial-mesenchymal transition. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 VOLUME 287 (2012) PAGES 44508–44517In Fig. 1A, the wrong image for the control group was presented. The authors inadvertently cropped the control images in Fig. 1, A and E, from the same raw image. Fig. 1A has now been corrected and does not affect the results or conclusions of the work. The authors sincerely apologize for their mistake during figure preparation and for any inconvenience this may have caused readers.jbc;295/19/6781/F1F1F1Figure 1A. Full Article
pr Giants eager to see Bart during spring camp By mlb.mlb.com Published On :: Sat, 9 Feb 2019 15:25:14 EDT It's been less than a year since the Giants selected Joey Bart with the second overall pick in the 2018 MLB Draft, but the 22-year-old catcher is already generating plenty of excitement within the organization. Full Article
pr Predicting the Giants' Opening Day roster By mlb.mlb.com Published On :: Mon, 11 Feb 2019 11:08:17 EDT With Spring Training set to kick off Tuesday, it feels like an opportune time to put together a way-too-early look at who might be with the Giants when they begin their regular season against the Padres on March 28. Full Article
pr Uniform patch to mark 150 years of pro baseball By mlb.mlb.com Published On :: Tue, 12 Feb 2019 10:09:05 EDT All 30 Major League teams will wear special "MLB 150" patches on their uniforms for the entire 2019 season in honor of the 150th anniversary of the 1869 Cincinnati Red Stockings, the first openly all-salaried professional baseball team. Full Article
pr Giants open spring camp as work in progress By mlb.mlb.com Published On :: Tue, 12 Feb 2019 13:32:49 EDT One year after making a pair of high-profile acquisitions in Andrew McCutchen and Evan Longoria, the Giants have experienced a far slower and quieter winter, leaving the club with quite a few question marks as pitchers and catchers reported to Scottsdale, Ariz., for the start of Spring Training on Tuesday. Full Article
pr Prospects who should vie for a roster spot By mlb.mlb.com Published On :: Thu, 14 Feb 2019 19:36:11 EDT The 30 prospects below all are getting very long looks this spring with an eye toward breaking camp with the parent club. Even if they start the year in the Minors, they all should get the chance to contribute at some point in the very near future. Full Article
pr Parra's addition provides veteran OF presence By mlb.mlb.com Published On :: Thu, 14 Feb 2019 18:05:40 EDT The Giants have expressed a desire to add multiple veteran outfielders throughout the offseason, and they made their first notable acquisition earlier this week after signing Gerardo Parra to a Minor League contract. Full Article
pr Giants' Top 30 Prospects list By m.mlb.com Published On :: Mon, 27 Feb 2017 17:40:32 EDT Who do the Giants have in the pipeline? Get scouting reports, video, stats, projected ETAs and more for San Francisco's Top 30 Prospects on MLB Pipeline's Prospect Watch. Full Article
pr The Giants' Spring Training battle to watch By mlb.mlb.com Published On :: Mon, 18 Feb 2019 18:20:16 EDT The next five weeks will see lots of shuffling on Major League rosters. Here are the most intriguing positional battles on each of the 30 MLB clubs. Full Article
pr Transparency and independence in the vetting and recommendation of vaccine products By feeds.bmj.com Published On :: Friday, May 8, 2020 - 10:40 Full Article
pr General practices achieve 95% of QOF points By feeds.bmj.com Published On :: Friday, October 28, 2016 - 15:46 Full Article
pr How changes to drug prohibition could be good for the UK—an essay by Molly Meacher and Nick Clegg By feeds.bmj.com Published On :: Monday, November 14, 2016 - 23:30 Full Article
pr Supervised physiotherapy for mild or moderate ankle sprain By feeds.bmj.com Published On :: Wednesday, November 16, 2016 - 23:31 Full Article
pr Thiazide diuretics seem to protect against fracture By feeds.bmj.com Published On :: Tuesday, November 22, 2016 - 11:26 Full Article
pr First case of Zika virus spread through sexual contact is detected in UK By feeds.bmj.com Published On :: Thursday, December 1, 2016 - 15:45 Full Article