pr

Access thousands of newspapers and magazines with PressReader

Want to access thousands of newspapers and magazines wherever you are?




pr

Crime Prevention at Home




pr

Mosquito Control Program




pr

Branching random walks with uncountably many extinction probability vectors

Daniela Bertacchi, Fabio Zucca.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 426--438.

Abstract:
Given a branching random walk on a set $X$, we study its extinction probability vectors $mathbf{q}(cdot,A)$. Their components are the probability that the process goes extinct in a fixed $Asubseteq X$, when starting from a vertex $xin X$. The set of extinction probability vectors (obtained letting $A$ vary among all subsets of $X$) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set $A$ is different from the one of extinction in another set $B$. In many cases there are only two possible extinction probability vectors and so far, in more complicated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with uncountably many distinct extinction probability vectors.




pr

Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring

Raj Kamal Maurya, Yogesh Mani Tripathi.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.

Abstract:
We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes.




pr

Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data

Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.

Abstract:
The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed.




pr

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.




pr

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal

Zhengwei Liu, Qi Li, Fukang Zhu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.

Abstract:
To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.




pr

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah, Yuancheng Si.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.

Abstract:
Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed.




pr

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasiou, Robert E. Gaunt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.

Abstract:
We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.




pr

A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences

Natalia Shenkman.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.

Abstract:
While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities.




pr

Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach

Durba Bhattacharya, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.

Abstract:
Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI.




pr

A joint mean-correlation modeling approach for longitudinal zero-inflated count data

Weiping Zhang, Jiangli Wang, Fang Qian, Yu Chen.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 35--50.

Abstract:
Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach.




pr

Subjective Bayesian testing using calibrated prior probabilities

Dan J. Spitzner.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.

Abstract:
This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology.




pr

Bayesian approach for the zero-modified Poisson–Lindley regression model

Wesley Bertoli, Katiane S. Conceição, Marinho G. Andrade, Francisco Louzada.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 826--860.

Abstract:
The primary goal of this paper is to introduce the zero-modified Poisson–Lindley regression model as an alternative to model overdispersed count data exhibiting inflation or deflation of zeros in the presence of covariates. The zero-modification is incorporated by considering that a zero-truncated process produces positive observations and consequently, the proposed model can be fitted without any previous information about the zero-modification present in a given dataset. A fully Bayesian approach based on the g-prior method has been considered for inference concerns. An intensive Monte Carlo simulation study has been conducted to evaluate the performance of the developed methodology and the maximum likelihood estimators. The proposed model was considered for the analysis of a real dataset on the number of bids received by $126$ U.S. firms between 1978–1985, and the impact of choosing different prior distributions for the regression coefficients has been studied. A sensitivity analysis to detect influential points has been performed based on the Kullback–Leibler divergence. A general comparison with some well-known regression models for discrete data has been presented.




pr

Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach

Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.

Abstract:
Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy.




pr

Spatiotemporal point processes: regression, model specifications and future directions

Dani Gamerman.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 686--705.

Abstract:
Point processes are one of the most commonly encountered observation processes in Spatial Statistics. Model-based inference for them depends on the likelihood function. In the most standard setting of Poisson processes, the likelihood depends on the intensity function, and can not be computed analytically. A number of approximating techniques have been proposed to handle this difficulty. In this paper, we review recent work on exact solutions that solve this problem without resorting to approximations. The presentation concentrates more heavily on discrete time but also considers continuous time. The solutions are based on model specifications that impose smoothness constraints on the intensity function. We also review approaches to include a regression component and different ways to accommodate it while accounting for additional heterogeneity. Applications are provided to illustrate the results. Finally, we discuss possible extensions to account for discontinuities and/or jumps in the intensity function.




pr

Preface

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 685--685.




pr

L-Logistic regression models: Prior sensitivity analysis, robustness to outliers and applications

Rosineide F. da Paz, Narayanaswamy Balakrishnan, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 455--479.

Abstract:
Tadikamalla and Johnson [ Biometrika 69 (1982) 461–465] developed the $L_{B}$ distribution to variables with bounded support by considering a transformation of the standard Logistic distribution. In this manuscript, a convenient parametrization of this distribution is proposed in order to develop regression models. This distribution, referred to here as L-Logistic distribution, provides great flexibility and includes the uniform distribution as a particular case. Several properties of this distribution are studied, and a Bayesian approach is adopted for the parameter estimation. Simulation studies, considering prior sensitivity analysis, recovery of parameters and comparison of algorithms, and robustness to outliers are all discussed showing that the results are insensitive to the choice of priors, efficiency of the algorithm MCMC adopted, and robustness of the model when compared with the beta distribution. Applications to estimate the vulnerability to poverty and to explain the anxiety are performed. The results to applications show that the L-Logistic regression models provide a better fit than the corresponding beta regression models.




pr

Hierarchical modelling of power law processes for the analysis of repairable systems with different truncation times: An empirical Bayes approach

Rodrigo Citton P. dos Reis, Enrico A. Colosimo, Gustavo L. Gilardoni.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 374--396.

Abstract:
In the data analysis from multiple repairable systems, it is usual to observe both different truncation times and heterogeneity among the systems. Among other reasons, the latter is caused by different manufacturing lines and maintenance teams of the systems. In this paper, a hierarchical model is proposed for the statistical analysis of multiple repairable systems under different truncation times. A reparameterization of the power law process is proposed in order to obtain a quasi-conjugate bayesian analysis. An empirical Bayes approach is used to estimate model hyperparameters. The uncertainty in the estimate of these quantities are corrected by using a parametric bootstrap approach. The results are illustrated in a real data set of failure times of power transformers from an electric company in Brazil.




pr

A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases

Kushal K. Dey, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.

Abstract:
Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered.




pr

The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes

Yong-Chao Zhang, Na Zhang.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.

Abstract:
We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence.




pr

Public-private partnerships in Canada : law, policy and value for money

Murphy, Timothy J. (Timothy John), author.
9780433457985 (Cloth)




pr

Can $p$-values be meaningfully interpreted without random sampling?

Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker, Antje Jantsch.

Source: Statistics Surveys, Volume 14, 71--91.

Abstract:
Besides the inferential errors that abound in the interpretation of $p$-values, the probabilistic pre-conditions (i.e. random sampling or equivalent) for using them at all are not often met by observational studies in the social sciences. This paper systematizes different sampling designs and discusses the restrictive requirements of data collection that are the indispensable prerequisite for using $p$-values.




pr

Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists

John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko.

Source: Statistics Surveys, Volume 13, 150--180.

Abstract:
Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study.




pr

An approximate likelihood perspective on ABC methods

George Karabatsos, Fabrizio Leisen.

Source: Statistics Surveys, Volume 12, 66--104.

Abstract:
We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined.




pr

A design-sensitive approach to fitting regression models with complex survey data

Phillip S. Kott.

Source: Statistics Surveys, Volume 12, 1--17.

Abstract:
Fitting complex survey data to regression equations is explored under a design-sensitive model-based framework. A robust version of the standard model assumes that the expected value of the difference between the dependent variable and its model-based prediction is zero no matter what the values of the explanatory variables. The extended model assumes only that the difference is uncorrelated with the covariates. Little is assumed about the error structure of this difference under either model other than independence across primary sampling units. The standard model often fails in practice, but the extended model very rarely does. Under this framework some of the methods developed in the conventional design-based, pseudo-maximum-likelihood framework, such as fitting weighted estimating equations and sandwich mean-squared-error estimation, are retained but their interpretations change. Few of the ideas here are new to the refereed literature. The goal instead is to collect those ideas and put them into a unified conceptual framework.




pr

A comparison of spatial predictors when datasets could be very large

Jonathan R. Bradley, Noel Cressie, Tao Shi.

Source: Statistics Surveys, Volume 10, 100--131.

Abstract:
In this article, we review and compare a number of methods of spatial prediction, where each method is viewed as an algorithm that processes spatial data. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, fixed rank kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $mathrm{CO}_{2}$ data from NASA’s AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data.




pr

A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection

Clément Marteau, Theofanis Sapatinas.

Source: Statistics Surveys, Volume 9, 253--297.

Abstract:
We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches.




pr

Errata: A survey of Bayesian predictive methods for model assessment, selection and comparison

Aki Vehtari, Janne Ojanen.

Source: Statistics Surveys, Volume 8, , 1--1.

Abstract:
Errata for “A survey of Bayesian predictive methods for model assessment, selection and comparison” by A. Vehtari and J. Ojanen, Statistics Surveys , 6 (2012), 142–228. doi:10.1214/12-SS102.




pr

A survey of Bayesian predictive methods for model assessment, selection and comparison

Aki Vehtari, Janne Ojanen

Source: Statist. Surv., Volume 6, 142--228.

Abstract:
To date, several methods exist in the statistical literature for model assessment, which purport themselves specifically as Bayesian predictive methods. The decision theoretic assumptions on which these methods are based are not always clearly stated in the original articles, however. The aim of this survey is to provide a unified review of Bayesian predictive model assessment and selection methods, and of methods closely related to them. We review the various assumptions that are made in this context and discuss the connections between different approaches, with an emphasis on how each method approximates the expected utility of using a Bayesian model for the purpose of predicting future data.




pr

The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy

Nancy Heckman

Source: Statist. Surv., Volume 6, 113--141.

Abstract:
The popular cubic smoothing spline estimate of a regression function arises as the minimizer of the penalized sum of squares $sum_{j}(Y_{j}-mu(t_{j}))^{2}+lambda int_{a}^{b}[mu''(t)]^{2},dt$, where the data are $t_{j},Y_{j}$, $j=1,ldots,n$. The minimization is taken over an infinite-dimensional function space, the space of all functions with square integrable second derivatives. But the calculations can be carried out in a finite-dimensional space. The reduction from minimizing over an infinite dimensional space to minimizing over a finite dimensional space occurs for more general objective functions: the data may be related to the function $mu$ in another way, the sum of squares may be replaced by a more suitable expression, or the penalty, $int_{a}^{b}[mu''(t)]^{2},dt$, might take a different form. This paper reviews the Reproducing Kernel Hilbert Space structure that provides a finite-dimensional solution for a general minimization problem. Particular attention is paid to the construction and study of the Reproducing Kernel Hilbert Space corresponding to a penalty based on a linear differential operator. In this case, one can often calculate the minimizer explicitly, using Green’s functions.




pr

Prediction in several conventional contexts

Bertrand Clarke, Jennifer Clarke

Source: Statist. Surv., Volume 6, 1--73.

Abstract:
We review predictive techniques from several traditional branches of statistics. Starting with prediction based on the normal model and on the empirical distribution function, we proceed to techniques for various forms of regression and classification. Then, we turn to time series, longitudinal data, and survival analysis. Our focus throughout is on the mechanics of prediction more than on the properties of predictors.




pr

Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy

Gregory J. Matthews, Ofer Harel

Source: Statist. Surv., Volume 5, 1--29.

Abstract:
There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure.

References:
Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.

Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.

Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.

Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.

Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.

Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.

Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.

Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.

Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.

Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.

Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.

Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.

Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.

Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.

Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.

Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.

De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.

DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.

DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.

Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.

Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.

Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.

Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.

Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217.

Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.

Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.

Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.

Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.

Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.

Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.

Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.

Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.

Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.

Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2

Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.

General Assembly of the United Nations, 1948. Universal declaration of human rights.

Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.

Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.

Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.

Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077.

Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.

Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.

Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.

Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.

Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.

Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.

Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.

Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.

Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.

Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.

Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.

Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.

Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.

Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196.

Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.

Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.

Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.

Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.

Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.

Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.

Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.

Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.

Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.

Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.

Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.

Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.

Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.

Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.

Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.

Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462.

Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.

Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.

Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.

Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.

Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.

Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.

Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.

Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.

Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.

Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.

Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.

Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].

Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.

Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.

Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.

Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.

Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588.

Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.

Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.

United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.

Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.

Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.

Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.

Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422.




pr

Primal and dual model representations in kernel-based learning

Johan A.K. Suykens, Carlos Alzate, Kristiaan Pelckmans

Source: Statist. Surv., Volume 4, 148--183.

Abstract:
This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.




pr

Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise

Sophie Achard, Jean-François Coeurjolly

Source: Statist. Surv., Volume 4, 117--147.

Abstract:
This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the R package dvfBm.




pr

A survey of cross-validation procedures for model selection

Sylvain Arlot, Alain Celisse

Source: Statist. Surv., Volume 4, 40--79.

Abstract:
Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its (apparent) universality. Many results exist on model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.




pr

Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules

Michael P. Fay, Michael A. Proschan

Source: Statist. Surv., Volume 4, 1--39.

Abstract:
In a mathematical approach to hypothesis tests, we start with a clearly defined set of hypotheses and choose the test with the best properties for those hypotheses. In practice, we often start with less precise hypotheses. For example, often a researcher wants to know which of two groups generally has the larger responses, and either a t-test or a Wilcoxon-Mann-Whitney (WMW) test could be acceptable. Although both t-tests and WMW tests are usually associated with quite different hypotheses, the decision rule and p-value from either test could be associated with many different sets of assumptions, which we call perspectives. It is useful to have many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value. Here we collect many such perspectives for the two-sample t-test, the WMW test and other related tests. We discuss validity and consistency under each perspective and discuss recommendations between the tests in light of these many different perspectives. Finally, we briefly discuss a decision rule for testing genetic neutrality where knowledge of the many perspectives is vital to the proper interpretation of the decision rule.




pr

Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED)

Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.




pr

Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED)

Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets.




pr

Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED)

The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened.




pr

A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED)

In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature.




pr

Excess registered deaths in England and Wales during the COVID-19 pandemic, March 2020 and April 2020. (arXiv:2004.11355v4 [stat.AP] UPDATED)

Official counts of COVID-19 deaths have been criticized for potentially including people who did not die of COVID-19 but merely died with COVID-19. I address that critique by fitting a generalized additive model to weekly counts of all registered deaths in England and Wales during the 2010s. The model produces baseline rates of death registrations expected in the absence of the COVID-19 pandemic, and comparing those baselines to recent counts of registered deaths exposes the emergence of excess deaths late in March 2020. Among adults aged 45+, about 38,700 excess deaths were registered in the 5 weeks comprising 21 March through 24 April (612 $pm$ 416 from 21$-$27 March, 5675 $pm$ 439 from 28 March through 3 April, then 9183 $pm$ 468, 12,712 $pm$ 589, and 10,511 $pm$ 567 in April's next 3 weeks). Both the Office for National Statistics's respective count of 26,891 death certificates which mention COVID-19, and the Department of Health and Social Care's hospital-focused count of 21,222 deaths, are appreciably less, implying that their counting methods have underestimated rather than overestimated the pandemic's true death toll. If underreporting rates have held steady, about 45,900 direct and indirect COVID-19 deaths might have been registered by April's end but not yet publicly reported in full.




pr

A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED)

Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations.




pr

Deep transfer learning for improving single-EEG arousal detection. (arXiv:2004.05111v2 [cs.CV] UPDATED)

Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.




pr

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




pr

A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED)

We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error.




pr

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




pr

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED)

We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$.

Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$.




pr

Plan2Vec: Unsupervised Representation Learning by Latent Plans. (arXiv:2005.03648v1 [cs.LG])

In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space.