is

Bis(4-hy­droxy-N,N-di-n-propyl­tryptammonium) fumarate tetra­hydrate

The title compound (systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]bis­(propan-2-yl)aza­nium} but-2-enedioate tetra­hydrate), 2C16H25N2O+·C4H2O42−·4H2O, has a singly protonated DPT cation, one half of a fumarate dianion (completed by a crystallographic centre of symmetry) and two water mol­ecules of crystallization in the asymmetric unit. A series of N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network in the solid state.




is

Sodium [N,N'-ethyl­enebis(d-penicillaminato)]indate(III) tetra­hydrate

The asymmetric unit of the title compound {systematic name: sodium [2-({2-[(1-carboxyl­ato-2-methyl-2-sulfanidylprop­yl)amino]­eth­yl}amino)-3-methyl-3-sulf­an­idyl­butano­ato-κ4S,N,N',S']indate(III) tetra­hydrate}, Na[In(C12H20N2O4S2)]·4H2O, contains four indate(III) complex anions {[In(d-ebp)]−; d-H4ebp = N,N'-ethyelenebis(d-penicillamine)], four sodium(I) cations and sixteen water mol­ecules. The indate(III) anions and sodium cations are alternately connected through coordination bonds between Na+ ions and the carboxyl­ate groups of the complex anions, forming an infinite sixfold right-handed helix along the c-axis direction. In the crystal, the helices are linked by O—H⋯O hydrogen bonds between water mol­ecules bound to Na+ ions and carboxyl­ate groups. The crystal studied was twinned via a twofold axis about [001].




is

[Oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium) octa­molybdate dihydrate

The title compound, (C8H22N2O)2[Mo8O26]·H2O, (cis-H2L)2[β-Mo8O26]·H2O, where L = (bis­[2-N,N-di­methyl­amino)­eth­yl] ether), was synthesized from bis­[2-(di­methyl­amino)­eth­yl] ether and MoO3 under solvothermal conditions and characterized by multinuclear NMR and single-crystal X-ray diffraction techniques. The structure displays two [oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium), or [cis-H2L]2+, cations, a central [β-Mo8O26]4− anionic cluster consisting of eight distorted MoO6 octa­hedra, and two water mol­ecules in their deuterated form. The central anion lies across an inversion center. The [cis-H2L]2+ cations are hydrogen bonded to the central [β-Mo8O26]4− cluster via bridging water mol­ecules. In the crystal, O—H⋯O hydrogen bonds link the components into chains along [010]. Weak C—H⋯O hydrogen bonds link these chains into a three-dimensional network.




is

μ2-Methanol-κ2O:O-bis­[(1,10-phenanthroline-κ2N,N')bis­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O'-copper(II)]

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.




is

Tetra­kis(2,3,5,6-tetra­fluoro­benzene­thiol­ato-κS)(tri­phenyl­phosphane-κP)osmium(IV): a monoclinic polymorph

The structure of the title compound, [Os(C6HF4S)4{P(C6H5)3}], has been previously reported [Arroyo et al. (1994). J. Chem. Soc. Dalton Trans. pp. 1819–1824], in the space group Poverline{1}. We have now obtained a monoclinic polymorph for this compound, crystallized from ethanol, while the previous form was obtained from a hexa­ne/chloro­form mixture. The mol­ecular structure is based on a trigonal–bipyramidal OsIV coordination geometry, close to that observed previously in the triclinic form.




is

Di-μ3-chlorido-tetra-μ2-chlorido-di­chloridotetra­kis­(N,N-di­ethyl­ethane-1,2-di­amine-κ2N,N')tetra­cadmium(II)

In the title compound, [Cd4Cl8(C6H16N2)4], the Cd2+ cations and Cl− anions form M4Cl8 clusters with six of the Cl− ions bridging Cd2+ cations and two being pendant. Each Cd2+ cation has distorted octa­hedral coordination completed by four Cl− ions and two N atoms of the asymmetrical bidentate amino ligand. The cluster consists of pairs of face-sharing hexa­hedra linked by a shared edge.




is

1,1,3,3-Tetra­ethyl-5-nitro­isoindoline

The title compound, C16H24N2O2, previously obtained as a yellow oil, exhibits a rather low melting point close to room temperature 297–298 K). In the mol­ecule, the isoindoline ring system is approximately planar and coplanar to the nitro group, forming a dihedral angle of 5.63 (15)°. In the crystal, only weak N—H⋯O and C—H⋯π inter­actions are observed, linking mol­ecules into chains parallel to the [101] direction.




is

6,6'-[(3,3'-Di-tert-butyl-5,5'-dimeth­oxy-1,1'-biphenyl-2,2'-di­yl)bis(oxy)]bis­(dibenzo[d,f][1,3,2]dioxaphosphepine) benzene monosolvate

The crystal structure of the benzene monosolvate of the well known organic diphosphite ligand BIPHEPHOS, C46H44O8P2·C6H6, is reported for the first time. Single crystals of BIPHEPHOS were obtained from a benzene solution after layering with n-heptane at room temperature. One specific property of this type of diphosphite structure is the twisting of the biphenyl units. In the crystal, C—H⋯π contacts and π–π stacking inter­actions [centroid-to-centroid distance = 3.8941 (15) Å] are observed.




is

Poly[1-ethyl-3-methyl­imidazolium [tri-μ-iso­thio­cyanato-manganate(II)]]

The title compound, {(C9H11N2)[Mn(NCS)3]}n, has been obtained as a side product of the salt metathesis reaction of 1-ethyl-3-methyl­imidazolium bromide, (EMIm)Br, and K2[Mn(NCS)4]. The structure consists of discrete 1-ethyl-3-methyl­imidazolium cations and an anionic two-dimensional network of manganese(II)-based complex anions, inter­connected by thio­cyanate ions. Every Mn2+ ion is coordinated by three S atoms of three NCS− ions and three N atoms of further three NCS− ions in a meridional octa­hedral fashion.




is

5,5'-(1-Phenyl­ethane-1,1-di­yl)bis­(1H-pyrrole-2-carboxaldehyde)

In the title compound, C18H16N2O2, the dihedral angle between the pyrrole rings is 79.47 (9)°, with the N—H groups approximately orthogonal (H—N⋯N—H pseudo torsion angle = −106°). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [11overline{1}] chains. A C—H⋯O inter­action is also observed.




is

2-[4,5-Bis(4-bromo­phen­yl)-1-(4-tert-but­ylphen­yl)-1H-imidazol-2-yl]-4,6-di­chloro­phenol

In the title compound, C31H24Br2Cl2N2O, the dihedral angles subtended by the tert-butyl-phenyl, 4,6-di­chloro­phenol and 4-bromo­phenyl (×2) rings are 70.7 (3), 8.1 (3), 28.1 (3) and 84.2 (3)°, respectively. The orientations of the pendant rings may be related to intra­molecular O—H⋯N and C—H⋯π inter­actions. One of the tert-butyl methyl groups is disordered over two sets of sites in a 0.54 (3):0.46 (3) ratio. In the crystal, a weak C—H⋯π inter­action generates inversion dimers.




is

Bis{2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate

In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octa­hedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water mol­ecules, forming a water–nitrate cyclic tetra­meric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated mol­ecule, the fluoro­phenyl rings of one ligand are stacked with the central ring of the other ligand via π–π inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å.




is

Bis(1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane)tetra­iso­thio­cyanato­cobalt(II)

The title compound, [Co(C18H37N2)2(NCS)4], consists of a cobalt(II) ion positioned on the origin of the triclinic unit cell. It is coordinated by the N atoms of two trans-oriented 1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane (DABCO+) cations, which carry n-dodecyl chains at the non-coordinating N atoms. The distorted octa­hedral coordination environment of the CoII ion is completed through four N atoms of iso­thio­cyanate ions, which are arranged within the equatorial plane. Non-classical hydrogen bonding of the types C—H⋯N and C—H⋯S between the filamentous mol­ecules lead to the formation of layers parallel to (001).




is

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].




is

Bis(4-phenyl-2-sulfanyl­idene-2,3-di­hydro-1,3-thia­zol-3-ido-κ2S2,N)(4-phenyl-1,3-thia­zole-2-thiol­ato-κS2)bis­muth

The title compound, [Bi(C9H6NS2)3], was prepared by reacting BiCl3 and 2-mercapto-4-phenyl­thia­zole (LH) at room temperature in a stoichiometric ratio of 1:4. The mol­ecular structure reveals a slightly distorted square-pyramidal environment around the BiIII atom. Two of the three monoanionic ligands L− coordinate in an N,S-bidentate mode, while one shows a monodentate mode through an S atom. There are no significant inter­molecular inter­actions present in the crystal.




is

Benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate)

The structure of the title salt, C6H10N22+·2C7H7O3S−, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds.




is

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.




is

Hydro­nium bis­(tri­fluoro­methane­sulfon­yl)amide–18-crown-6 (1/1)

The structure of the title compound, H3O+·C2F6NO4S2−·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2−], which is an ionic liquid with a melting point of 341–343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol­ecules, two hydro­nium ions and two bis­(tri­fluoro­methane­sulfon­yl)amide anions; each 18-crown-6 mol­ecule complexes with a hydro­nium ion. In one 18-crown-6 mol­ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro­nium ion is complexed with the ordered 18-crown-6 mol­ecule via O—H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)–2.19 (7) Å, and the other hydro­nium ion with the disordered crown mol­ecule with distances of 1.85 (6)–2.36 (6) Å. The hydro­nium ions are also linked to the anions via O—H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).




is

2,2'-[Methyl­enebis(sulfanedi­yl)]bis­(pyridine 1-oxide)

The title compound, C11H10N2O2S2, crystallizes with one complete mol­ecule in the asymmetric unit. In the crystal, weak hydrogen bonding is observed between the N-oxide moieties and several C—H units.




is

5-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. The dihedral angles between the mean plane of the quinoxaline unit and the thienyl rings are 35.16 (5)° and 24.94 (3)°.




is

6-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. One thienyl ring is nearly coplanar with the quinoxaline unit [dihedral angle = 3.29 (9)°], the other makes an angle of 83.96 (4)°.




is

1,4-Bis­(4-meth­oxy­phen­yl)naphthalene

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them.




is

1,3-Bis(2-oxoprop­yl)thymine

In the title compound [systematic name: 5-methyl-1,3-bis­(2-oxoprop­yl)pyrimidine-2,4(1H,3H)-dione], C11H14N2O4, the two 2-oxopropyl groups are nearly perpendicular to the planar thymine unit. One methyl group of oxopropyl substituent is disordered. In the crystal, C—H⋯O inter­actions help to connect the mol­ecules into (001) layers.




is

Bis(N-adamantyl-N'-ethyl­imidazolium) tetra­bromido­manganate(II)

The title compound, (C15H23N2)2[MnBr4], comprises two N-adamantyl-N'-ethyl­imidazolium cations and one tetra­hedral [MnBr4]2− anion. Next to Coulombic inter­actions, weak hydrogen bonds of the type C—H⋯Br consolidate the crystal packing, building up a three-dimensional network.




is

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­olvate

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.




is

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis­(4,6-disulfanidyl-4,6-disulfanyl­idene-1,2,3,5,4,6-tetra­thia­diphosphinane-κ3S2,S4,S6)nickel

The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thio­phosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic space group P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the asymmetric unit. Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.




is

2,5-Bis[(E)-2-phenyl­ethen­yl]-3,6-bis­(pyridin-2-yl)pyrazine

The mol­ecule of the title compound, C30H22N4, exhibits inversion symmetry adopting the shape of a St Andrew's Cross. It shows dihedral angles between adjacent aryl units of around 50° whereas torsion angles of ca 10° are found along the aryl­ene vinyl­ene path.




is

Diaquatetra­kis(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II)

The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetra­kis­(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-meth­oxy­benzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water mol­ecule. Inter­molecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds inter­linking adjacent layers.




is

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




is

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




is

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




is

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




is

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




is

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




is

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




is

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




is

Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenyl­enebis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) and 4,4'-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.




is

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.




is

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.




is

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




is

Crystal structure of di-μ-chlorido-bis­[di­chlorido(l-histidinium-κO)cadmium(II)]

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.




is

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.




is

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




is

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




is

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




is

Crystal structure of butane-1,4-diyl bis­(furan-2-carboxyl­ate)

The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butyl­ene 2,5-furandi­carboxyl­ate), consists of one half-mol­ecule, the whole all-trans mol­ecule being generated by an inversion centre. In the crystal, the mol­ecules are inter­connected via C—H⋯O inter­actions, forming a mol­ecular sheet parallel to (10overline{2}). The mol­ecular sheets are further linked by C—H⋯π inter­actions.




is

Crystal structure of bis(μ-{2-[(5-bromo-2-oxido­benzyl­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2'-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4O,N,N',O

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.




is

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




is

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.




is

Crystal structure of 5-(4-tert-but­oxy­phen­yl)-3-(4-n-octyloxyphen­yl)-4,5-di­hydro­isoxazole

The mol­ecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cyclo­addition of 4-n-octyl­phenyl­nitrile oxide and 4-tert-but­oxy­styrene, the latter compound being a very useful inter­mediate to the synthesis of liquid-crystalline materials. In the mol­ecule, the benzene rings of the n-octyloxyphenyl and tert-but­oxy­phenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen inter­actions into chains running parallel to the b axis.