co Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitrobenzoic acid By scripts.iucr.org Published On :: 2019-10-22 In the title 1:1 cocrystal, C7H4ClNO4·C6H6N2O, nicotinamide (NIC) and 2-chloro-5-nitrobenzoic acid (CNBA) cocrystallize with one molecule each of NIC and CNBA in the asymmetric unit. In this structure, CNBA and NIC form hydrogen bonds through O—H⋯N, N—H⋯O and C—H⋯O interactions along with N—H⋯O dimer hydrogen bonds of NIC. Further additional weak π–π interactions stabilize the molecular assembly of this cocrystal. Full Article text
co Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
co Crystal structures of two dimeric nickel diphenylacetate complexes By scripts.iucr.org Published On :: 2019-10-29 In the crystal structures of the title compounds, namely μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(diphenylacetato-κO)bis(pyridine-κN)nickel(II)], [Ni2(C14H11O2)4(C5H5N)4(H2O)] (1) and μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(2,2'-bipyridine-κ2N,N')(diphenylacetato-κO)nickel(II)]–acetonitrile–diphenylacetic acid (1/2.5/1), [Ni2(C14H11O2)4(C10H8N2)2(H2O)]·2.5CH3CN·C14H12O2 (2), the complex units are stabilized by a variety of intra- and intermolecular hydrogen bonds, as well as C—H⋯π and π–π contacts between the aromatic systems of the pyridine, dipyridyl and diphenylacetate ligands. Despite the fact that the diphenylacetate ligand is sterically bulky, this does not interfere with the formation of the described aqua-bridged dimeric core, even with a 2,2'-bipyridine ligand, which has a strong chelating effect. Full Article text
co Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-dicarboxylic acid and DEF is N,N-diethylformamide) By scripts.iucr.org Published On :: 2019-10-29 A zinc metal–organic framework, namely poly[bis(N,N-diethylformamide)(μ4-naphthalene-2,6-dicarboxylato)(μ2-naphthalene-2,6-dicarboxylato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-dicarboxylic acid and zinc(II) acetate as the metal source in N,N-diethylformamide containing small amounts of formic acid. Full Article text
co Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate By scripts.iucr.org Published On :: 2019-10-29 2-(4-Nitrophenyl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray diffraction analysis. The molecules are linked by inversion into centrosymmetric dimers via weak intermolecular C—H⋯O interactions, forming R22(10) ring motifs, and further strengthened by weak π–π interactions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Full Article text
co Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate By scripts.iucr.org Published On :: 2019-10-29 In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions. Full Article text
co Crystal structure of catena-poly[[[(2-ethoxypyrazine-κN)copper(I)]-di-μ2-cyanido] [copper(I)-μ2-cyanido]] By scripts.iucr.org Published On :: 2019-10-31 In the asymmetric unit of the title coordination compound, {[Cu(CN)(C4H3OC2H5N2)][Cu(CN)]}n, there are two Cu atoms with different coordination environments. One CuI ion is coordinated in a triangular coordination geometry by the N atom of the 2-ethoxypyrazine molecule and by two bridging cyanide ligands, equally disordered over two sites exchanging C and N atoms, thus forming polymeric chains parallel to the c axis. The other Cu atom is connected to two bridging cyanide groups disordered over two sites with an occupancy of 0.5 for each C and N atom, and forming an almost linear polymeric chain parallel to the b axis. In the crystal, the two types of chain, which are orthogonal to each other, are connected by cuprophilic Cu⋯Cu interactions [2.7958 (13) Å], forming two-dimensional metal–organic coordination layers parallel to the bc plane. The coordination framework is further stabilized by weak long-range (electrostatic type) C—H⋯π interactions between cyano groups and 2-ethoxypyrazine rings. Full Article text
co An iridium complex with an unsupported Ir—Zn bond: diiodido(η5-pentamethylcyclopentadienyl)bis(trimethylphosphane)iridiumzinc(Ir—Zn) benzene hemisolvate By scripts.iucr.org Published On :: 2019-11-05 The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamantyl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1). Full Article text
co Crystal structures of two coordination isomers of copper(II) 4-sulfobenzoic acid hexahydrate and two mixed silver/potassium 4-sulfobenzoic acid salts By scripts.iucr.org Published On :: 2019-10-31 A reaction of copper(II) carbonate and potassium 4-sulfobenzoic acid in water acidified with hydrochloric acid yielded two crystalline products. Tetraaquabis(4-carboxybenzenesulfonato)copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water molecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octahedron. The carboxylate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water molecules, the carboxylic acid group and the sulfonate group. Hexaaquacopper(II) 4-carboxybenzenesulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octahedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxylate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfobenzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carboxybenzenesulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxylate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carboxybenzenesulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water molecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxylate groups do not interact with the cations directly, but do participate in hydrogen bonds with the coordinated water molecules. (IV) is isostructural with pure potassium 4-sulfobenzoic acid dihydrate. Full Article text
co Crystal structure and Hirshfeld surface analysis of poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network By scripts.iucr.org Published On :: 2019-11-08 The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis. Full Article text
co (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
co Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10, By scripts.iucr.org Published On :: 2019-11-26 The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octahedral coordination environment. The complex molecule crystallizes with two tetrahydrofuran solvent molecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent molecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data. Full Article text
co Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bipyridine ligand By scripts.iucr.org Published On :: 2019-11-12 In the title compound, (2,2'-bipyridine-κ2N,N')bis(2-methoxyethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2'-bipyridine ligand and two S atoms from two 2-methoxyethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetrahedral coordination geometry. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intramolecular C—H⋯S hydrogen bonds are also observed. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%). Full Article text
co The varied structures of cobalt(II)–pyridine (py)–sulfate: [Co(SO4)(py)4]n, [Co2(SO4)2(py)6]n, and [Co3(SO4)3(py)11]n By scripts.iucr.org Published On :: 2019-11-19 The solid-state structures of two cobalt–pyridine–sulfate compounds, namely catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O'], [Co(SO4)(C5H5N)4]n, (1), and catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O:O',O''-[bis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O,O':O'']n, [Co2(SO4)2(C5H5N)6]n, (2), are reported. Compound (1) displays a polymeric structure, with infinite chains of CoII cations adopting octahedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (2) is also polymeric with infinite chains of CoII cations. The first Co center has an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The second Co center has an octahedral N2O4 coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (2) was refined as a two-component inversion twin. Full Article text
co Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-dimethylimidazo[1,2-a]pyridin-3-yl)-2-(1,3-dithiolan-2-ylidene)ethanone monohydrate By scripts.iucr.org Published On :: 2019-11-29 In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-dithiolane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-dithiolane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intramolecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid molecules are associated in R22(14) dimeric units by weak C—H⋯O interactions. O—H⋯O hydrogen bonds link the water molecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of intermolecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water molecules are the main driving force in the crystal packing formation. Full Article text
co Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hydroxy-3-phenylpropanoate By scripts.iucr.org Published On :: 2019-11-26 In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H⋯O and C—H⋯π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively. Full Article text
co N,N'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H⋯O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H⋯O(carbonyl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H⋯N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H⋯O(water) and methylene-C—H⋯π(pyridyl) interactions, give rise to a layer parallel to (10overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H⋯O(carbonyl) and pyridyl-C—H⋯C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal. Full Article text
co Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate] By scripts.iucr.org Published On :: 2020-01-01 The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-dithiolane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one acetonitrile molecule and interconnected through two bridging 1,3-dithiolane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexafluoridophosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supramolecular framework. The crystal studied was refined as a two-component twin. Full Article text
co Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn) By scripts.iucr.org Published On :: 2020-01-01 The complexes bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetylacetonates [M(acac)2(H2O)2] with N,N,N',N'-tetramethylethylenediamine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octahedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 1–3 are different and thus the crystal structures are not isotypic. Full Article text
co Crystal and molecular structures of a binuclear mixed ligand complex of silver(I) with thiocyanate and 1H-1,2,4-triazole-5(4H)-thione By scripts.iucr.org Published On :: 2020-01-01 The complete molecule of the binuclear title complex, bis[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis{(thiocyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thiocyanate ligand, resulting in a distorted AgS4 tetrahedral coordination geometry. An intramolecular N—H⋯S(thiocyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazolyl) and N—H⋯N(thiocyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thiocyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] interactions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface. Full Article text
co Crystal structure, Hirshfeld surface analysis and computational study of bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) and of the copper(II) analogue By scripts.iucr.org Published On :: 2020-01-01 The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H⋯O(coordinated), chlorobenzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H⋯π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II). Full Article text
co Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate By scripts.iucr.org Published On :: 2020-01-01 In the title compound, diaquabis(ethylenediamine-κ2N,N')copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%). Full Article text
co The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H⋯N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H⋯O(carbonyl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces. Full Article text
co Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]hydrazinecarbothioamide By scripts.iucr.org Published On :: 2020-01-01 The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thiosemicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thiosemicarbazone], which maintains the chirality of the methylated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two molecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thiosemicarbazone isomer and the second the (1S)- isomer. In the crystal, the molecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S interactions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S interactions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) interactions. Full Article text
co Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
co 3,3-Bis(2-hydroxyethyl)-1-(4-nitrobenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-07 In the title compound, C12H15N3O5S, a trisubstituted thiourea derivative, the central CN2S chromophore is almost planar (r.m.s. deviation = 0.018 Å) and the pendant hydroxyethyl groups lie to either side of this plane. While to a first approximation the thione-S and carbonyl-O atoms lie to the same side of the molecule, the S—C—N—C torsion angle of −47.8 (2)° indicates a considerable twist. As one of the hydroxyethyl groups is orientated towards the thioamide residue, an intramolecular N—H⋯O hydrogen bond is formed which leads to an S(7) loop. A further twist in the molecule is indicated by the dihedral angle of 65.87 (7)° between the planes through the CN2S chromophore and the 4-nitrobenzene ring. There is a close match between the experimental and gas-phase, geometry-optimized (DFT) molecular structures. In the crystal, O—H⋯O and O—H⋯S hydrogen bonds give rise to supramolecular layers propagating in the ab plane. The connections between layers to consolidate the three-dimensional architecture are of the type C—H⋯O, C—H⋯S and nitro-O⋯π. The nature of the supramolecular association has been further analysed by a study of the calculated Hirshfeld surfaces, non-covalent interaction plots and computational chemistry, all of which point to the significant influence and energy of stabilization provided by the conventional hydrogen bonds. Full Article text
co Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6 By scripts.iucr.org Published On :: 2020-01-10 Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydrothermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetrahedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model. Full Article text
co (N,N-Diallyldithiocarbamato-κ2S,S')triphenyltin(IV) and bis(N,N-diallyldithiocarbamato-κ2S,S')diphenyltin(IV): crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-10 The crystal and molecular structures of the title organotin dithiocarbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the dithiocarbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry intermediate between square-pyramidal and trigonal–bipyramidal. In (II), two independent molecules comprise the asymmetric unit, which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The dithiocarbamate ligands in (II) coordinate in an asymmetric mode but the Sn—S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octahedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional intermolecular contacts in the crystals of (I) and (II) are of the type phenyl-C—H⋯π(phenyl) and vinylidene-C—H⋯π(phenyl), respectively, with each leading to a supramolecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual molecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of interaction suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C—H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces. Full Article text
co Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde By scripts.iucr.org Published On :: 2020-01-21 The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intramolecular O—H⋯O hydrogen bond involving the adjacent hydroxy and nitro groups forms an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π interactions, forming a three-dimensional supramolecular structure. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid state. The molecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis. Full Article text
co The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex By scripts.iucr.org Published On :: 2020-01-17 A copper(II) dimer with the deprotonated anion of 2-bromonicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromonicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxylate O atoms in the basal plane and the water molecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromonicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster molecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetrameric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the intermolecular contacts in the structure of 1. Full Article text
co Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
co Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2 By scripts.iucr.org Published On :: 2020-02-06 The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure. Full Article text
co The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis By scripts.iucr.org Published On :: 2020-02-18 The whole molecule of the cadmium(II) complex, diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (L), is generated by a twofold rotation symmetry; the twofold axis bisects the cadmium atom and the nitrogen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial dichloromethane solvate. In the crystal of I, the complex molecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex molecules are linked by a series of C—H⋯π interactions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds. Full Article text
co Conversion of diarylchalcones into 4,5-dihydropyrazole-1-carbothioamides: molecular and supramolecular structures of two precursors and three products By scripts.iucr.org Published On :: 2020-02-14 Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-dihydropyrazole-1-carbothioamides using a cyclocondensation reaction with thiosemicarbazide. The chalcones 1-(4-chlorophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their molecules are linked into sheets by two independent C—H⋯π(arene) interactions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chlorophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16ClN3OS, (IV), (RS)-3-(4-bromophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16BrN3OS, (V), and (RS)-3-(4-methoxyphenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-ynyloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their molecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The molecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds. Full Article text
co Crystal structures and comparisons of huntite aluminum borates REAl3(BO3)4 (RE = Tb, Dy and Ho) By scripts.iucr.org Published On :: 2020-02-14 Three huntite-type aluminoborates of stoichiometry REAl3(BO3)4 (RE = Tb, Dy and Ho), namely, terbium/dysprosium/holmium trialuminium tetrakis(borate), were synthesized by slow cooling within a K2Mo3O10 flux with spontaneous crystallization. The crystal structures were determined using single-crystal X-ray diffraction (SC-XRD) data. The synthesized borates are isostructural to the huntite [CaMg3(CO3)4] structure and crystallized within the trigonal R32 space group. The structural parameters were compared to literature data of other huntite REAl3(BO3)4 crystals within the R32 space group. All three borates fit well into the trends calculated from the literature data. The unit-cell parameters and volumes increase linearly with larger RE cations whereas the densities decrease. All of the crystals studied were refined as inversion twins. Full Article text
co Phosphorescent mono- and diiridium(III) complexes cyclometalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants By scripts.iucr.org Published On :: 2020-02-18 The crystal structures of tris[9,9-dihexyl-2-(5-methoxypyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis{bis[2-(5-fluoropyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis{bis[9,9-dihexyl-2-(5-methoxypyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis[3,5-bis(trifluoromethyl)phenyl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chlorobenzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octahedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host molecules and solvents of crystallization. Full Article text
co Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex By scripts.iucr.org Published On :: 2020-02-14 The title pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π interactions [intercentroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supramolecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in acetonitrile leads to the formation of the binuclear complex, [μ-(3-{hydroxy[(quinolin-8-yl)imino]methyl}pyrazin-2-yl)[(quinolin-8-yl)imino]methanolato]bis[diacetonitrilecopper(II)] tris(perchlorate) acetonitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two acetonitrile molecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional structure. Full Article text
co Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
co Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal By scripts.iucr.org Published On :: 2020-02-18 A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethylenic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π interactions whose percentage contribution was quantified by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and molecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set. Full Article text
co A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
co Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes By scripts.iucr.org Published On :: 2020-02-25 Two new co-crystals, tetraiodoethylene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetraiodoethylene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetraiodoethylene and azaphenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent molecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar azaphenanthrenes lend themselves to π–π stacking and C—H⋯π interactions, leading to a diversity of supramolecular three-dimensional structural motifs being formed by these interactions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature. Full Article text
co Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-02-18 In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures. Full Article text
co Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
co Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophe By scripts.iucr.org Published On :: 2020-03-03 The title crystal structure is assembled from the superposition of two molecular structures, (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π interactions, leading to a compact three-dimensional supramolecular assembly. Full Article text
co Crystal structure and photoluminescent properties of bis(4'-chloro-2,2':6',2''-terpyridyl)cobalt(II) dichloride tetrahydrate By scripts.iucr.org Published On :: 2020-03-05 In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octahedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O interactions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum. Full Article text
co A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-03-10 The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed. Full Article text
co Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methylsulfanyl)phenyl]acetamide By scripts.iucr.org Published On :: 2020-03-31 In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the molecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. π–π interactions between inversion-related molecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum. Full Article text
co The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
co Different packing motifs in the crystal structures of three molecular salts containing the 2-amino-5-carboxyanilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O By scripts.iucr.org Published On :: 2020-03-13 The syntheses and crystal structures of three molecular salts of protonated 3,4-diaminobenzoic acid, viz. 2-amino-5-carboxyanilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carboxyanilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carboxyanilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carboxy group) in each case. In the crystal of (I), carboxylic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Intermolecular interactions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water molecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water molecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the intermolecular interactions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio. Full Article text
co Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e By scripts.iucr.org Published On :: 2020-03-13 The two new pyrazineophanes, 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supramolecular frameworks. There are additional C—H⋯S contacts present in the supramolecular framework of II. Full Article text