us Wintrust Financial Corporation Announces Cash Dividends By www.snl.com Published On :: Thu, 23 Apr 2020 20:23:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
us Wintrust Financial Corporation Announces Pricing of $250 Million Preferred Stock Offering By www.snl.com Published On :: Wed, 06 May 2020 22:37:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
us Academy funds three leading engineers to tackle major industry challenges By www.raeng.org.uk Published On :: Mon, 09 Mar 2020 10:29:19 +00:00 Full Article
us Academy responds to novel coronavirus and calls for ideas By www.raeng.org.uk Published On :: Thu, 26 Mar 2020 17:03:57 +00:00 Full Article
us Ad Makers Use Deepfakes to 'Refresh' Old Content By www.technewsworld.com Published On :: 2020-04-28T11:05:35-07:00 With measures to stem the spread of COVID-19 putting a chokehold on their filming capabilities, advertising agencies are enhancing old content with new tech, including deepfakes. Deepfakes typically blend one person's likeness, or parts thereof, with the image of another person. Ad agencies are so restricted in how they can generate content, they'll explore anything that can be computer-generated. Full Article
us Linux Foundation Leads Initiative for Better Digital Trust By www.technewsworld.com Published On :: 2020-05-05T12:03:46-07:00 The Linux Foundation will host ToIP, a cross-industry effort to ensure more secure data handling over the Internet. This new foundation is an independent project enabling trustworthy exchange and verification of data between any two parties on the Internet. The ToIP Foundation will provide a robust common standard to instill confidence that data is coming from a trusted source. Full Article
us Oculus Quest Production Stymied by Pandemic By www.technewsworld.com Published On :: 2020-05-06T09:02:25-07:00 The next generation of Oculus Quest virtual reality headsets is in the works, but pandemic-related product development and supply chain problems may delay market arrival. Oculus reportedly has multiple potential Quest successors on the drawing board. Smaller, lighter versions with a faster image refresh rate for more realistic rendering are in the advanced testing stage. Full Article
us In the Time of Virus By www.crmbuyer.com Published On :: 2020-03-19T12:36:58-07:00 Life goes on, though I keep thinking about the coronavirus and its impact on business, which is substantial. I am wondering if it's time to count our blessings even as we remain vigilant. At this point the number of active cases in the U.S. is still small, relative to the population, though the bug has an annoying ability to do math in the form of exponential spread. Full Article
us How AI Can Improve Customer Retention By www.crmbuyer.com Published On :: 2020-03-21T04:00:00-07:00 Customer attrition and churn are not new problems. Anyone who has spent time in the sales world has heard statistics around the cost of acquiring a new customer. It can be five to 25 times more expensive to acquire a new customer than to retain an existing one. Improving customer retention by just 5 percent can increase profits by 25-95 percent, depending on your industry and company size. Full Article
us A Patchwork of Useful Things By www.crmbuyer.com Published On :: 2020-04-04T04:00:00-07:00 Adobe just announced what it calls the first digital economy index. It seems like it's modeled after other indices usually kept by the federal government to measure economic output and consumption. The Adobe index captures only consumer consumption behavior though. Some of its insights include new shopping behavior, such as which products have become hot items or decreased in popularity over time. Full Article
us How to Adapt Your Customer Service When Crisis Strikes By www.crmbuyer.com Published On :: 2020-05-08T04:00:00-07:00 Customer service doesn't have to suffer while your company goes through a difficult transition. In fact, 78 percent of consumers said they stopped doing business with a company because of poor customer service. Now is the time to show your most valuable buyers how you'll keep them informed, updated and respected throughout this crisis by adapting your practices to the moment. Full Article
us Health Insurance, Banking, Oil Industries Met with Koch, Chamber, Glenn Beck to Plot 2010 Election By thinkprogress.org Published On :: Full Article
us Rod Watson: Collins keeps grabbing, but we just watch By www.buffalonews.com Published On :: Full Article
us Ten MORE egregious lies from 2010 campaign ads By blog.timesunion.com Published On :: Full Article
us Israeli Jews at odds with liberal brethren in US By www.washingtonpost.com Published On :: Full Article
us 02020-02-01: Fires along the Indus River By modis.gsfc.nasa.gov Published On :: 02020-02-01: Fires along the Indus River Full Article
us 02020-02-04: Burn Scars in Australia By modis.gsfc.nasa.gov Published On :: 02020-02-04: Burn Scars in Australia Full Article
us Exiting low inflation traps by "consensus": nominal wages and price stability By www.bis.org Published On :: 2019-12-20T09:00:00Z Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019. Full Article
us Bold steps to pump coronavirus rescue funds down the last mile By www.bis.org Published On :: 2020-03-30T21:55:00Z Op-ed by Agustín Carstens published in the Financial Times on 29 March 2020. Full Article
us Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Krabbe's disease is an infantile neurodegenerative disease, which is affected by mutations in the lysosomal enzyme galactocerebrosidase, leading to the accumulation of its metabolite psychosine. We have shown previously that the S1P receptor agonist fingolimod (FTY720) attenuates psychosine-induced glial cell death and demyelination both in vitro and ex vivo models. These data, together with a lack of therapies for Krabbe's disease, prompted the current preclinical study examining the effects of fingolimod in twitcher mice, a murine model of Krabbe's disease. Twitcher mice, both male and female, carrying a natural mutation in the galc gene were given fingolimod via drinking water (1 mg/kg/d). The direct impact of fingolimod administration was assessed via histochemical and biochemical analysis using markers of myelin, astrocytes, microglia, neurons, globoid cells, and immune cells. The effects of fingolimod on twitching behavior and life span were also demonstrated. Our results show that treatment of twitcher mice with fingolimod significantly rescued myelin levels compared with vehicle-treated animals and also regulated astrocyte and microglial reactivity. Furthermore, nonphosphorylated neurofilament levels were decreased, indicating neuroprotective and neurorestorative processes. These protective effects of fingolimod on twitcher mice brain pathology was reflected by an increased life span of fingolimod-treated twitcher mice. These in vivo findings corroborate initial in vitro studies and highlight the potential use of S1P receptors as drug targets for treatment of Krabbe's disease. SIGNIFICANCE STATEMENT This study demonstrates that the administration of the therapy known as fingolimod in a mouse model of Krabbe's disease (namely, the twitcher mouse model) significantly rescues myelin levels. Further, the drug fingolimod also regulates the reactivity of glial cells, astrocytes and microglia, in this mouse model. These protective effects of fingolimod result in an increased life span of twitcher mice. Full Article
us The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning. SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner. Full Article
us Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing. SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions. Full Article
us Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39 By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness. SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic. Full Article
us Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone. SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function. Full Article
us Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Neural plasticity due to hearing loss results in tonotopic map changes. Several studies have suggested a relation between hearing loss-induced tonotopic reorganization and tinnitus. This large fMRI study on humans was intended to clarify the relations between hearing loss, tinnitus, and tonotopic reorganization. To determine the differential effect of hearing loss and tinnitus, both male and female participants with bilateral high-frequency hearing loss, with and without tinnitus, and a control group were included. In a total of 90 participants, bilateral cortical responses to sound stimulation were measured with loudness-matched pure-tone stimuli (0.25-8 kHz). In the bilateral auditory cortices, the high-frequency sound-evoked activation level was higher in both hearing-impaired participant groups, compared with the control group. This was most prominent in the hearing loss group without tinnitus. Similarly, the tonotopic maps for the hearing loss without tinnitus group were significantly different from the controls, whereas the maps of those with tinnitus were not. These results show that higher response amplitudes and map reorganization are a characteristic of hearing loss, not of tinnitus. Both tonotopic maps and response amplitudes of tinnitus participants appear intermediate to the controls and hearing loss without tinnitus group. This observation suggests a connection between tinnitus and an incomplete form of central compensation to hearing loss, rather than excessive adaptation. One implication of this may be that treatments for tinnitus shift their focus toward enhancing the cortical plasticity, instead of reversing it. SIGNIFICANCE STATEMENT Tinnitus, a common and potentially devastating condition, is the presence of a "phantom" sound that often accompanies hearing loss. Hearing loss is known to induce plastic changes in cortical and subcortical areas. Although plasticity is a valuable trait that allows the human brain to rewire and recover from injury and sensory deprivation, it can lead to tinnitus as an unwanted side effect. In this large fMRI study, we provide evidence that tinnitus is related to a more conservative form of reorganization than in hearing loss without tinnitus. This result contrasts with the previous notion that tinnitus is related to excessive reorganization. As a consequence, treatments for tinnitus may need to enhance the cortical plasticity, rather than reverse it. Full Article
us Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [11C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies. SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11C]ABP688 and [11C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy. Full Article
us Basigin Associates with Integrin in Order to Regulate Perineurial Glia and Drosophila Nervous System Morphology By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system. SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system. Full Article
us The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease. SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states. Full Article
us Sustained Visual Priming Effects Can Emerge from Attentional Oscillation and Temporal Expectation By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Priming refers to the influence that a previously encountered object exerts on future responses to similar objects. For many years, visual priming has been known as a facilitation and sometimes an inhibition effect that lasts for an extended period of time. It contrasts with the recent finding of an oscillated priming effect where facilitation and inhibition alternate over time periodically. Here we developed a computational model of visual priming that combines rhythmic sampling of the environment (attentional oscillation) with active preparation for future events (temporal expectation). Counterintuitively, it shows that both the sustained and oscillated priming effects can emerge from an interaction between attentional oscillation and temporal expectation. The interaction also leads to novel predictions, such as the change of visual priming effects with temporal expectation and attentional oscillation. Reanalysis of two published datasets and the results of two new experiments of visual priming tasks with male and female human participants provide support for the model's relevance to human behavior. More generally, our model offers a new perspective that may unify the increasing findings of behavioral and neural oscillations with the classic findings in visual perception and attention. SIGNIFICANCE STATEMENT There is increasing behavioral and neural evidence that visual attention is a periodic process that sequentially samples different alternatives in the theta frequency range. It contrasts with the classic findings of sustained facilitatory or inhibitory attention effects. How can an oscillatory perceptual process give rise to sustained attention effects? Here we make this connection by proposing a computational model for a "fruit fly" visual priming task and showing both the sustained and oscillated priming effects can have the same origin: an interaction between rhythmic sampling of the environment and active preparation for future events. One unique contribution of our model is to predict how temporal contexts affects priming. It also opens up the possibility of reinterpreting other attention-related classic phenomena. Full Article
us A Model to Study NMDA Receptors in Early Nervous System Development By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play critical roles in neuronal development and nervous system function. Here, we developed a model to study NMDARs in early development in zebrafish, by generating CRISPR-mediated lesions in the NMDAR genes, grin1a and grin1b, which encode the obligatory GluN1 subunits. While receptors containing grin1a or grin1b show high Ca2+ permeability, like their mammalian counterpart, grin1a is expressed earlier and more broadly in development than grin1b. Both grin1a–/– and grin1b–/– zebrafish are viable. Unlike in rodents, where the grin1 knockout is embryonic lethal, grin1 double-mutant fish (grin1a–/–; grin1b–/–), which lack all NMDAR-mediated synaptic transmission, survive until ~10 d dpf (days post fertilization), providing a unique opportunity to explore NMDAR function during development and in generating behaviors. Many behavioral defects in the grin1 double-mutant larvae, including abnormal evoked responses to light and acoustic stimuli, prey-capture deficits, and a failure to habituate to acoustic stimuli, are replicated by short-term treatment with the NMDAR antagonist MK-801, suggesting that they arise from acute effects of compromised NMDAR-mediated transmission. Other defects, however, such as periods of hyperactivity and alterations in place preference, are not phenocopied by MK-801, suggesting a developmental origin. Together, we have developed a unique model to study NMDARs in the developing vertebrate nervous system. SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by chemical neurotransmitters. One such ligand-gated ion channel, the NMDAR, impacts nearly all forms of nervous system function. It has been challenging, however, to study the prolonged absence of NMDARs in vertebrates, and hence their role in nervous system development, due to experimental limitations. Here, we demonstrate that zebrafish lacking all NMDAR transmission are viable through early development and are capable of a wide range of stereotypic behaviors. As such, this zebrafish model provides a unique opportunity to study the role of NMDAR in the development of the early vertebrate nervous system. Full Article
us The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 The septo-hippocampal cholinergic system is critical for hippocampal learning and memory. However, a quantitative description of the in vivo firing patterns and physiological function of medial septal (MS) cholinergic neurons is still missing. In this study, we combined optogenetics with multichannel in vivo recording and recorded MS cholinergic neuron firings in freely behaving male mice for 5.5–72 h. We found that their firing activities were highly correlated with hippocampal theta states. MS cholinergic neurons were highly active during theta-dominant epochs, such as active exploration and rapid eye movement sleep, but almost silent during non-theta epochs, such as slow-wave sleep (SWS). Interestingly, optogenetic activation of these MS cholinergic neurons during SWS suppressed CA1 ripple oscillations. This suppression could be rescued by muscarinic M2 or M4 receptor antagonists. These results suggest the following important physiological function of MS cholinergic neurons: maintaining high hippocampal acetylcholine level by persistent firing during theta epochs, consequently suppressing ripples and allowing theta oscillations to dominate. SIGNIFICANCE STATEMENT The major source of acetylcholine in the hippocampus comes from the medial septum. Early experiments found that lesions to the MS result in the disappearance of hippocampal theta oscillation, which leads to speculation that the septo-hippocampal cholinergic projection contributing to theta oscillation. In this article, by long-term recording of MS cholinergic neurons, we found that they show a theta state-related firing pattern. However, optogenetically activating these neurons shows little effect on theta rhythm in the hippocampus. Instead, we found that activating MS cholinergic neurons during slow-wave sleep could suppress hippocampal ripple oscillations. This suppression is mediated by muscarinic M2 and M4 receptors. Full Article
us Impairment of Pattern Separation of Ambiguous Scenes by Single Units in the CA3 in the Absence of the Dentate Gyrus By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Theoretical models and experimental evidence have suggested that connections from the dentate gyrus (DG) to CA3 play important roles in representing orthogonal information (i.e., pattern separation) in the hippocampus. However, the effects of eliminating the DG on neural firing patterns in the CA3 have rarely been tested in a goal-directed memory task that requires both the DG and CA3. In this study, selective lesions in the DG were made using colchicine in male Long–Evans rats, and single units from the CA3 were recorded as the rats performed visual scene memory tasks. The original scenes used in training were altered during testing by blurring to varying degrees or by using visual masks, resulting in maximal recruitment of the DG–CA3 circuits. Compared with controls, the performance of rats with DG lesions was particularly impaired when blurred scenes were used in the task. In addition, the firing rate modulation associated with visual scenes in these rats was significantly reduced in the single units recorded from the CA3 when ambiguous scenes were presented, largely because DG-deprived CA3 cells did not show stepwise, categorical rate changes across varying degrees of scene ambiguity compared with controls. These findings suggest that the DG plays key roles not only during the acquisition of scene memories but also during retrieval when modified visual scenes are processed in conjunction with the CA3 by making the CA3 network respond orthogonally to ambiguous scenes. SIGNIFICANCE STATEMENT Despite the behavioral evidence supporting the role of the dentate gyrus in pattern separation in the hippocampus, the underlying neural mechanisms are largely unknown. By recording single units from the CA3 in DG-lesioned rats performing a visual scene memory task, we report that the scene-related modulation of neural firing was significantly reduced in the DG-lesion rats compared with controls, especially when the original scene stimuli were ambiguously altered. Our findings suggest that the dentate gyrus plays an essential role during memory retrieval and performs a critical computation to make categorical rate modulation occur in the CA3 between different scenes, especially when ambiguity is present in the environment. Full Article
us Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Sensory systems integrate multiple stimulus features to generate coherent percepts. Spectral surround suppression, the phenomenon by which sound-evoked responses of auditory neurons are suppressed by stimuli outside their receptive field, is an example of this integration taking place in the auditory system. While this form of global integration is commonly observed in auditory cortical neurons, and potentially used by the nervous system to separate signals from noise, the mechanisms that underlie this suppression of activity are not well understood. We evaluated the contributions to spectral surround suppression of the two most common inhibitory cell types in the cortex, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, in mice of both sexes. We found that inactivating SOM+ cells, but not PV+ cells, significantly reduces sustained spectral surround suppression in excitatory cells, indicating a dominant causal role for SOM+ cells in the integration of information across multiple frequencies. The similarity of these results to those from other sensory cortices provides evidence of common mechanisms across the cerebral cortex for generating global percepts from separate features. SIGNIFICANCE STATEMENT To generate coherent percepts, sensory systems integrate simultaneously occurring features of a stimulus, yet the mechanisms by which this integration occurs are not fully understood. Our results show that neurochemically distinct neuronal subtypes in the primary auditory cortex have different contributions to the integration of different frequency components of an acoustic stimulus. Together with findings from other sensory cortices, our results provide evidence of a common mechanism for cortical computations used for global integration of stimulus features. Full Article
us Neurog2 Acts as a Classical Proneural Gene in the Ventromedial Hypothalamus and Is Required for the Early Phase of Neurogenesis By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 The tuberal hypothalamus is comprised of the dorsomedial, ventromedial, and arcuate nuclei, as well as parts of the lateral hypothalamic area, and it governs a wide range of physiologies. During neurogenesis, tuberal hypothalamic neurons are thought to be born in a dorsal-to-ventral and outside-in pattern, although the accuracy of this description has been questioned over the years. Moreover, the intrinsic factors that control the timing of neurogenesis in this region are poorly characterized. Proneural genes, including Achate-scute-like 1 (Ascl1) and Neurogenin 3 (Neurog3) are widely expressed in hypothalamic progenitors and contribute to lineage commitment and subtype-specific neuronal identifies, but the potential role of Neurogenin 2 (Neurog2) remains unexplored. Birthdating in male and female mice showed that tuberal hypothalamic neurogenesis begins as early as E9.5 in the lateral hypothalamic and arcuate and rapidly expands to dorsomedial and ventromedial neurons by E10.5, peaking throughout the region by E11.5. We confirmed an outside-in trend, except for neurons born at E9.5, and uncovered a rostrocaudal progression but did not confirm a dorsal-ventral patterning to tuberal hypothalamic neuronal birth. In the absence of Neurog2, neurogenesis stalls, with a significant reduction in early-born BrdU+ cells but no change at later time points. Further, the loss of Ascl1 yielded a similar delay in neuronal birth, suggesting that Ascl1 cannot rescue the loss of Neurog2 and that these proneural genes act independently in the tuberal hypothalamus. Together, our findings show that Neurog2 functions as a classical proneural gene to regulate the temporal progression of tuberal hypothalamic neurogenesis. SIGNIFICANCE STATEMENT Here, we investigated the general timing and pattern of neurogenesis within the tuberal hypothalamus. Our results confirmed an outside-in trend of neurogenesis and uncovered a rostrocaudal progression. We also showed that Neurog2 acts as a classical proneural gene and is responsible for regulating the birth of early-born neurons within the ventromedial hypothalamus, acting independently of Ascl1. In addition, we revealed a role for Neurog2 in cell fate specification and differentiation of ventromedial -specific neurons. Last, Neurog2 does not have cross-inhibitory effects on Neurog1, Neurog3, and Ascl1. These findings are the first to reveal a role for Neurog2 in hypothalamic development. Full Article
us Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In Drosophila melanogaster brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca2+ efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling. SIGNIFICANCE STATEMENT Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation. Full Article
us Ependymal Vps35 Promotes Ependymal Cell Differentiation and Survival, Suppresses Microglial Activation, and Prevents Neonatal Hydrocephalus By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Hydrocephalus is a pathologic condition associated with various brain diseases, including Alzheimer's disease (AD). Dysfunctional ependymal cells (EpCs) are believed to contribute to the development of hydrocephalus. It is thus of interest to investigate EpCs' development and function. Here, we report that vacuolar protein sorting-associated protein 35 (VPS35) is critical for EpC differentiation, ciliogenesis, and survival, and thus preventing neonatal hydrocephalus. VPS35 is abundantly expressed in EpCs. Mice with conditional knock-out (cKO) of Vps35 in embryonic (Vps35GFAP-Cre and Vps35Emx1-Cre) or postnatal (Vps35Foxj1-CreER) EpC progenitors exhibit enlarged lateral ventricles (LVs) and hydrocephalus-like pathology. Further studies reveal marked reductions in EpCs and their cilia in both Vps35GFAP-Cre and Vps35Foxj1-CreER mutant mice. The reduced EpCs appear to be due to impairments in EpC differentiation and survival. Additionally, both Vps35GFAP-Cre and Vps35Foxj1-CreER neonatal pups exhibit increased cell proliferation and death largely in a region close to LV-EpCs. Many microglia close to the mutant LV-EpC region become activated. Depletion of the microglia by PLX3397, an antagonist of colony-stimulating factor 1 receptor (CSF1R), restores LV-EpCs and diminishes the pathology of neonatal hydrocephalus in Vps35Foxj1-CreER mice. Taken together, these observations suggest unrecognized functions of Vps35 in EpC differentiation, ciliogenesis, and survival in neonatal LV, and reveal pathologic roles of locally activated microglia in EpC homeostasis and hydrocephalus development. SIGNIFICANCE STATEMENT This study reports critical functions of vacuolar protein sorting-associated protein 35 (VPS35) not only in promoting ependymal cell (EpC) differentiation, ciliogenesis, and survival, but also in preventing local microglial activation. The dysfunctional EpCs and activated microglia are likely to induce hydrocephalus. Full Article
us Neonatal Stroke and TLR1/2 Ligand Recruit Myeloid Cells through the Choroid Plexus in a CX3CR1-CCR2- and Context-Specific Manner By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex. SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain. Full Article
us Uncharacteristic Task-Evoked Pupillary Responses Implicate Atypical Locus Ceruleus Activity in Autism By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Autism spectrum disorder (ASD) is characterized partly by atypical attentional engagement, reflected in exaggerated and variable responses to sensory stimuli. Attentional engagement is known to be regulated by the locus ceruleus (LC). Moderate baseline LC activity globally dampens neural responsivity and is associated with adaptive deployment and narrowing of attention to task-relevant stimuli. In contrast, increased baseline LC activity enhances neural responsivity across cortex and widening of attention to environmental stimuli regardless of their task relevance. Given attentional atypicalities in ASD, this study is the first to evaluate whether, under different attentional task demands, individuals with ASD exhibit a different profile of LC activity compared with typically developing controls. Males and females with ASD and age- and gender-matched controls participated in a one-back letter detection test while task-evoked pupillary responses, an established correlate for LC activity, were recorded. Participants completed this task in two conditions, either in the absence or presence of distractor auditory tones. Compared with controls, individuals with ASD evinced atypical pupillary responses in the presence versus absence of distractors. Notably, this atypical pupillary profile was evident despite the fact that both groups exhibited equivalent task performance. Moreover, between-group differences in pupillary responses were observed specifically in response to task-relevant events, providing confirmation that the group differences most likely were specifically associated with distinctions in LC activity. These findings suggest that individuals with ASD show atypical modulation of LC activity with changes in attentional demands, offering a possible mechanistic and neurobiological account for attentional atypicalities in ASD. SIGNIFICANCE STATEMENT Individuals with autism spectrum disorder (ASD) exhibit atypical attentional behaviors, including altered sensory responses and atypical fixedness, but the neural mechanism underlying these behaviors remains elusive. One candidate mechanism is atypical locus ceruleus (LC) activity, as the LC plays a critical role in attentional modulation. Specifically, LC activity is involved in regulating the trade-off between environmental exploration and focused attention. This study shows that, under tightly controlled conditions, task-evoked pupil responses, an LC activity proxy, are lower in individuals with ASD than in controls, but only in the presence of task-irrelevant stimuli. This suggests that individuals with ASD evince atypical modulation of LC activity in accordance with changes in attentional demands, offering a mechanistic account for attentional atypicalities in ASD. Full Article
us MECP2 Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 MECP2 gain-of-function and loss-of-function in genetically engineered monkeys recapitulates typical phenotypes in patients with autism, yet where MECP2 mutation affects the monkey brain and whether/how it relates to autism pathology remain unknown. Here we report a combination of gene–circuit–behavior analyses including MECP2 coexpression network, locomotive and cognitive behaviors, and EEG and fMRI findings in 5 MECP2 overexpressed monkeys (Macaca fascicularis; 3 females) and 20 wild-type monkeys (Macaca fascicularis; 11 females). Whole-genome expression analysis revealed MECP2 coexpressed genes significantly enriched in GABA-related signaling pathways, whereby reduced β-synchronization within fronto-parieto-occipital networks was associated with abnormal locomotive behaviors. Meanwhile, MECP2-induced hyperconnectivity in prefrontal and cingulate networks accounted for regressive deficits in reversal learning tasks. Furthermore, we stratified a cohort of 49 patients with autism and 72 healthy controls of 1112 subjects using functional connectivity patterns, and identified dysconnectivity profiles similar to those in monkeys. By establishing a circuit-based construct link between genetically defined models and stratified patients, these results pave new avenues to deconstruct clinical heterogeneity and advance accurate diagnosis in psychiatric disorders. SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a complex disorder with co-occurring symptoms caused by multiple genetic variations and brain circuit abnormalities. To dissect the gene–circuit–behavior causal chain underlying ASD, animal models are established by manipulating causative genes such as MECP2. However, it is unknown whether such models have captured any circuit-level pathology in ASD patients, as demonstrated by human brain imaging studies. Here, we use transgenic macaques to examine the causal effect of MECP2 overexpression on gene coexpression, brain circuits, and behaviors. For the first time, we demonstrate that the circuit abnormalities linked to MECP2 and autism-like traits in the monkeys can be mapped to a homogeneous ASD subgroup, thereby offering a new strategy to deconstruct clinical heterogeneity in ASD. Full Article
us A Causal Role for Mouse Superior Colliculus in Visual Perceptual Decision-Making By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 The superior colliculus (SC) is arguably the most important visual structure in the mouse brain and is well known for its involvement in innate responses to visual threats and prey items. In other species, the SC plays a central role in voluntary as well as innate visual functions, including crucial contributions to selective attention and perceptual decision-making. In the mouse, the possible role of the SC in voluntary visual choice behaviors has not been established. Here, we demonstrate that the mouse SC of both sexes plays a causal role in visual perceptual decision-making by transiently inhibiting SC activity during an orientation change detection task. First, unilateral SC inhibition-induced spatially specific deficits in detection. Hit rates were reduced, and reaction times increased for orientation changes in the contralateral but not ipsilateral visual field. Second, the deficits caused by SC inhibition were specific to a temporal epoch coincident with early visual burst responses in the SC. Inhibiting SC during this 100-ms period caused a contralateral detection deficit, whereas inhibition immediately before or after did not. Third, SC inhibition reduced visual detection sensitivity. Psychometric analysis revealed that inhibiting SC visual activity significantly increased detection thresholds for contralateral orientation changes. In addition, effects on detection thresholds and lapse rates caused by SC inhibition were larger in the presence of a competing visual stimulus, indicating a role for the mouse SC in visual target selection. Together, our results demonstrate that the mouse SC is necessary for the normal performance of voluntary visual choice behaviors. SIGNIFICANCE STATEMENT The mouse superior colliculus (SC) has become a popular model for studying the circuit organization and development of the visual system. Although the SC is a fundamental component of the visual pathways in mice, its role in visual perceptual decision-making is not clear. By investigating how temporally precise SC inhibition influenced behavioral performance during a visually guided orientation change detection task, we identified a 100-ms temporal epoch of SC visual activity that is crucial for the ability of mice to detect behaviorally relevant visual changes. In addition, we found that SC inhibition also caused deficits in visual target selection. Thus, our findings highlight the importance of the SC for visual perceptual choice behavior in the mouse. Full Article
us Calcineurin Inhibition Causes {alpha}2{delta}-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2-1–GluN1 complexes in the spinal cord and the level of α2-1–bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2-1 with gabapentin or disrupting the α2-1–NMDAR interaction with α2-1Tat peptide completely reversed the effects of FK506. In α2-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2-1–bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS. SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2-1 and NMDARs and their synaptic trafficking in the spinal cord. α2-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2-1 or disrupting α2-1–NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition. Full Article
us ‘We must be voices of the hungry' By www.fao.org Published On :: Mon, 14 Oct 2013 00:00:00 GMT We will only achieve zero hunger if we speak on behalf of those unable to represent themselves. That was a key message during an event titled “Zero Hunger: are we ready?” at FAO headquarters in Rome, Italy, on Friday, 11 October. “Hungry people have no voice, they are different from all others,” said FAO Director-General José Graziano da Silva (pictured, left). “We [...] Full Article
us Make your thunder heard. Join us in the Thunderclap for the Intl Year of Family Farming By www.fao.org Published On :: Mon, 16 Dec 2013 00:00:00 GMT Help raise the profile of the IYFF 2014 and its role in eradicating hunger Family farming is the predominant form of agriculture in the world with more than 500 million family farmers playing a key role in securing a future where more quality food is produced in a sustainable way. For this reason, the 2014 International Year of Family Farming plays a [...] Full Article
us If we had to pay the bill to nature, what would food waste cost us? By www.fao.org Published On :: Wed, 17 Sep 2014 00:00:00 GMT Each year, 30 percent of global food production is lost after harvest or wasted in shops, households and catering services. This represents 750 billion USD in terms of producer or farmgate prices, going up to almost a trillion US dollars of trade value of food every year – half the GDP of Italy!If nature asked us to pay the total [...] Full Article
us 7 actions to build a sustainable planet By www.fao.org Published On :: Wed, 01 Apr 2015 00:00:00 GMT As the clock ticks on the Millennium Development Goals (MDGs), the world community is deep in discussion over the successor global framework. Many current practices are damaging the planet’s ecosystems and the biodiversity essential for healthy food production. By 2050 an estimated additional 2 billion people will be living on Earth. This means food production must rise by 60%. From 8 MDGs [...] Full Article
us Cooked or raw, Fe'i bananas are delicious and nutritious By www.fao.org Published On :: Wed, 17 Feb 2016 00:00:00 GMT When thinking of this fruit we love so much what is the image that first pops to mind? Perhaps a green or a yellow with a greenish tint energy food? Or maybe a banana packaged in a perfect shade of yellow? If that’s the case, then it is time to broaden that perspective. Say hello to the Fe’i banana! This traditional [...] Full Article
us Spotlight: How do pulses contribute to a sustainable world? By www.fao.org Published On :: Wed, 27 Apr 2016 00:00:00 GMT Pulses are being celebrated in 2016 all over the world since they are nutritious, suited for use in a variety of dishes, easy on the budget and good for the health of the soil. From food security and nutrition to ensuring biodiversity and mitigating the effects of climate change, pulses contribute to sustainable development. Here is how. 1. Nutritional benefits of pulses Pulses [...] Full Article