hi Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes [METHOD] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template. Full Article
hi Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:23-07:00 Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to obtain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of human phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neurons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schizophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin interaction, and validated enhancer data, placing variants in the cellular context where they may modulate risk. Full Article
hi Correction: Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Full Article
hi A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer. Implications: We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer. Full Article
hi c-Src Phosphorylates and Inhibits the Function of the CIC Tumor Suppressor Protein By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Capicua (CIC) is a transcriptional repressor that counteracts activation of genes in response to receptor tyrosine kinase (RTK)/Ras/ERK signaling. Following activation of RTK, ERK enters the nucleus and serine-phosphorylates CIC, releasing it from its targets to permit gene expression. We recently showed that ERK triggers ubiquitin-mediated degradation of CIC in glioblastoma (GBM). In this study, we examined whether another important downstream effector of RTK/EGFR, the non-RTK c-Src, affects CIC repressor function in GBM. We found that c-Src binds and tyrosine-phosphorylates CIC on residue 1455 to promote nuclear export of CIC. On the other hand, CIC-mutant allele (CIC-Y1455F), that escapes c-Src–mediated tyrosine phosphorylation, remains localized to the nucleus and retains strong repressor function against CIC targets, the oncogenic transcription factors ETV1 and ETV5. Furthermore, we show that the orally available Src family kinase inhibitor, dasatinib, which prevents EGF-mediated tyrosine phosphorylation of CIC and attenuates elevated ETV1 and ETV5 levels, reduces viability of GBM cells and glioma stem cells (GSC), but not of their control cells with undetectable c-Src activity. In fact, GBM cells and GSC expressing the tyrosine-defective CIC mutant (Y1455F) lose sensitivity to dasatinib, further endorsing the effect of dasatinib on Src-mediated tyrosine phosphorylation of CIC. These findings elucidate important mechanisms of CIC regulation and provide the rationale to target c-Src alongside ERK pathway inhibitors as a way to fully restore CIC tumor suppressor function in neoplasms such as GBM. Implications: c-Src tyrosine-phosphorylates CIC exports to cytoplasm and inactivates its repressor function in GBM. Full Article
hi Circular RNA hsa_circ_0014130 Inhibits Apoptosis in Non-Small Cell Lung Cancer by Sponging miR-136-5p and Upregulating BCL2 By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Previous studies indicated that circular RNAs (circRNA) played vital roles in the development of non–small cell lung cancer (NSCLC). Although hsa_circ_0014130 might be a potential NSCLC biomarker, its function in NSCLC remains unknown. Thus, this study aimed to investigate the role of hsa_circ_0014130 in the progression of NSCLC. The levels of hsa_circ_0014130 in NSCLC tissues and adjacent normal tissues were determined by qRT-PCR. In addition, the expressions of Bcl-2 and cleaved caspase-3 in A549 cells were detected with Western blot analysis. Meanwhile, the dual luciferase reporter system assay was used to determine the interaction of hsa_circ_0014130 and miR-136-5p or Bcl-2 and miR-136-5p in NSCLC, respectively. The level of hsa_circ_0014130 was significantly upregulated in NSCLC tissues. Downregulation of hsa_circ_0014130 markedly inhibited the proliferation and invasion of A549 cells via inducing apoptosis. In addition, downregulation of hsa_circ_0014130 inhibited the tumorigenesis of subcutaneous A549 xenograft in mice in vivo. Meanwhile, mechanistic analysis indicated that downregulation of hsa_circ_0014130 decreased the expression of miR-136-5p–targeted gene Bcl-2 via acting as a competitive "sponge" of miR-136-5p. In this study, we found that hsa_circ_0014130 was upregulated in NSCLC tissues. In addition, hsa_circ_0014130 functions as a tumor promoter in NSCLC to promote tumor growth through upregulating Bcl-2 partially via "sponging" miR-136-5p. Implications: In conclusion, hsa_circ_0014130 might function as a prognostic factor for patients with NSCLC and might be a therapeutic target for the treatment of NSCLC in future. Full Article
hi Histone Demethylase JMJD1A Promotes Tumor Progression via Activating Snail in Prostate Cancer By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 The histone demethylase JMJD1A plays a key functional role in spermatogenesis, sex determination, stem cell renewal, and cancer via removing mono- and di-methyl groups from H3K9 to epigenetically control gene expression. However, its role in prostate cancer progression remains unclear. Here, we found JMJD1A was significantly elevated in prostate cancer tissue compared with matched normal tissue. Ectopic JMJD1A expression in prostate cancer cells promoted proliferation, migration, and invasion in vitro, and tumorigenesis in vivo; JMJD1A knockdown exhibited the opposite effects. Mechanically, we revealed that JMJD1A directly interacted with the Snail gene promoter and regulated its transcriptional activity, promoting prostate cancer progression both in vitro and in vivo. Furthermore, we found that JMJD1A transcriptionally activated Snail expression via H3K9me1 and H3K9me2 demethylation at its special promoter region. In summary, our studies reveal JMJD1A plays an important role in regulating proliferation and progression of prostate cancer cells though Snail, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer. Implications: Our studies identify that JMJD1A promotes the proliferation and progression of prostate cancer cells through enabling Snail transcriptional activation, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer. Full Article
hi 27-Hydroxycholesterol Impairs Plasma Membrane Lipid Raft Signaling as Evidenced by Inhibition of IL6-JAK-STAT3 Signaling in Prostate Cancer Cells By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 We recently reported that restoring the CYP27A1–27hydroxycholesterol axis had antitumor properties. Thus, we sought to determine the mechanism by which 27HC exerts its anti–prostate cancer effects. As cholesterol is a major component of membrane microdomains known as lipid rafts, which localize receptors and facilitate cellular signaling, we hypothesized 27HC would impair lipid rafts, using the IL6–JAK–STAT3 axis as a model given its prominent role in prostate cancer. As revealed by single molecule imaging of DU145 prostate cancer cells, 27HC treatment significantly reduced detected cholesterol density on the plasma membranes. Further, 27HC treatment of constitutively active STAT3 DU145 prostate cancer cells reduced STAT3 activation and slowed tumor growth in vitro and in vivo. 27HC also blocked IL6-mediated STAT3 phosphorylation in nonconstitutively active STAT3 cells. Mechanistically, 27HC reduced STAT3 homodimerization, nuclear translocation, and decreased STAT3 DNA occupancy at target gene promoters. Combined treatment with 27HC and STAT3 targeting molecules had additive and synergistic effects on proliferation and migration, respectively. Hallmark IL6–JAK–STAT gene signatures positively correlated with CYP27A1 gene expression in a large set of human metastatic castrate-resistant prostate cancers and in an aggressive prostate cancer subtype. This suggests STAT3 activation may be a resistance mechanism for aggressive prostate cancers that retain CYP27A1 expression. In summary, our study establishes a key mechanism by which 27HC inhibits prostate cancer by disrupting lipid rafts and blocking STAT3 activation. Implications: Collectively, these data show that modulation of intracellular cholesterol by 27HC can inhibit IL6–JAK–STAT signaling and may synergize with STAT3-targeted compounds. Full Article
hi Selected Articles from This Issue By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Full Article
hi Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats [Inflammation, Immunopharmacology, and Asthma] By jpet.aspetjournals.org Published On :: 2020-04-21T11:17:48-07:00 Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β–induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6–induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-B pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β–induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug. SIGNIFICANCE STATEMENT In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug. Full Article
hi Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro. Full Article
hi KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB. SIGNIFICANCE STATEMENT TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder. Full Article
hi Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. SIGNIFICANCE STATEMENT Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. Full Article
hi A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden. SIGNIFICANCE STATEMENT Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period. Full Article
hi Mouse Colonic Epithelial Cells Functionally Express the Histamine H4 Receptor [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow–chimeric mice were generated from H4R knockout (H4R–/–) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R–/– and WT mice using chopstick electrodes. Bone marrow–chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype. SIGNIFICANCE STATEMENT The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate–induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity. Full Article
hi The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-30T01:09:45-07:00 Xiaofei Cao, Sergio Lilla, Zhenbo Cao, Marie Anne Pringle, Ojore B. V. Oka, Philip J. Robinson, Tomasz Szmaja, Marcel van Lith, Sara Zanivan, and Neil J. Bulleid Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins. Full Article
hi The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Dalton Buysse, Anna-Katharina Pfitzner, Matt West, Aurelien Roux, and Greg Odorizzi The ESCRT-III protein complex executes reverse-topology membrane scission. The scission mechanism is unclear but is linked to remodeling of ESCRT-III complexes at the membrane surface. At endosomes, ESCRT-III mediates the budding of intralumenal vesicles (ILVs). In Saccharomyces cerevisiae, ESCRT-III activity at endosomes is regulated through an unknown mechanism by Doa4, an ubiquitin hydrolase that deubiquitylates transmembrane proteins sorted into ILVs. We report that the non-catalytic N-terminus of Doa4 binds Snf7, the predominant ESCRT-III subunit. Through this interaction, Doa4 overexpression alters Snf7 assembly status and inhibits ILV membrane scission. In vitro, the Doa4 N-terminus inhibits association of Snf7 with Vps2, which functions with Vps24 to arrest Snf7 polymerization and remodel Snf7 polymer structure. In vivo, Doa4 overexpression inhibits Snf7 interaction with Vps2 and also with the ATPase Vps4, which is recruited by Vps2 and Vps24 to remodel ESCRT-III complexes by catalyzing subunit turnover. Our data suggest a mechanism by which the deubiquitylation machinery regulates ILV biogenesis by interfering with ESCRT-III remodeling. Full Article
hi Plakophilin 3 phosphorylation by ribosomal S6 kinases supports desmosome assembly [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-16T04:24:24-07:00 Lisa Müller, Katrin Rietscher, Rene Keil, Marvin Neuholz, and Mechthild Hatzfeld Desmosome remodeling is crucial for epidermal regeneration, differentiation and wound healing. It is mediated by adapting the composition, and by post-translational modifications, of constituent proteins. We have previously demonstrated in mouse suprabasal keratinocytes that plakophilin (PKP) 1 mediates strong adhesion, which is negatively regulated by insulin-like growth factor 1 (IGF1) signaling. The importance of PKP3 for epidermal adhesion is incompletely understood. Here, we identify a major role of epidermal growth factor (EGF), but not IGF1, signaling in PKP3 recruitment to the plasma membrane to facilitate desmosome assembly. We find that ribosomal S6 kinases (RSKs) associate with and phosphorylate PKP3, which promotes PKP3 association with desmosomes downstream of the EGF receptor. Knockdown of RSKs as well as mutation of an RSK phosphorylation site in PKP3 interfered with desmosome formation, maturation and adhesion. Our findings implicate a coordinate action of distinct growth factors in the control of adhesive properties of desmosomes through modulation of PKPs in a context-dependent manner. Full Article
hi Dynein-mediated microtubule translocation powering neurite outgrowth in chick and Aplysia neurons requires microtubule assembly [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-24T07:56:32-07:00 Kristi McElmurry, Jessica E. Stone, Donghan Ma, Phillip Lamoureux, Yueyun Zhang, Michelle Steidemann, Lucas Fix, Fang Huang, Kyle E. Miller, and Daniel M. Suter Previously, we have shown that bulk microtubule (MT) movement correlates with neurite elongation, and blocking either dynein activity or MT assembly inhibits both processes. However, whether the contributions of MT dynamics and dynein activity to neurite elongation are separate or interdependent is unclear. Here, we investigated the underlying mechanism by testing the roles of dynein and MT assembly in neurite elongation of Aplysia and chick neurites using time-lapse imaging, fluorescent speckle microscopy, super-resolution imaging and biophysical analysis. Pharmacologically inhibiting either dynein activity or MT assembly reduced neurite elongation rates as well as bulk and individual MT anterograde translocation. Simultaneously suppressing both processes did not have additive effects, suggesting a shared mechanism of action. Single-molecule switching nanoscopy revealed that inhibition of MT assembly decreased the association of dynein with MTs. Finally, inhibiting MT assembly prevented the rise in tension induced by dynein inhibition. Taken together, our results suggest that MT assembly is required for dynein-driven MT translocation and neurite outgrowth. Full Article
hi Cofilin regulates axon growth and branching of Drosophila {gamma}-neurons [SHORT REPORT] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Sriram Sudarsanam, Shiri Yaniv, Hagar Meltzer, and Oren Schuldiner The mechanisms that control intrinsic axon growth potential, and thus axon regeneration following injury, are not well understood. Developmental axon regrowth of Drosophila mushroom body -neurons during neuronal remodeling offers a unique opportunity to study the molecular mechanisms controlling intrinsic growth potential. Motivated by the recently uncovered developmental expression atlas of -neurons, we here focus on the role of the actin-severing protein cofilin during axon regrowth. We show that Twinstar (Tsr), the fly cofilin, is a crucial regulator of both axon growth and branching during developmental remodeling of -neurons. tsr mutant axons demonstrate growth defects both in vivo and in vitro, and also exhibit actin-rich filopodial-like structures at failed branch points in vivo. Our data is inconsistent with Tsr being important for increasing G-actin availability. Furthermore, analysis of microtubule localization suggests that Tsr is required for microtubule infiltration into the axon tips and branch points. Taken together, we show that Tsr promotes axon growth and branching, likely by clearing F-actin to facilitate protrusion of microtubules. Full Article
hi A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the {mu}-Opioid Receptor [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:10-07:00 G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the μ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT G protein–coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily–selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the μ-opioid receptor most efficaciously because it has the ability to cross cell membranes. Full Article
hi Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1 [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:10-07:00 Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity. SIGNIFICANCE STATEMENT Bortezomib and carfilzomib are two Food and Drug Administration–approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions. Full Article
hi Lidocaine Binding Enhances Inhibition of Nav1.7 Channels by the Sulfonamide PF-05089771 [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:09-07:00 PF-05089771 is an aryl sulfonamide Nav1.7 channel blocker that binds to the inactivated state of Nav1.7 channels with high affinity but binds only weakly to channels in the resting state. Such aryl sulfonamide Nav1.7 channel blockers bind to the extracellular surface of the S1-S4 voltage-sensor segment of homologous Domain 4, whose movement is associated with inactivation. This binding site is different from that of classic sodium channel inhibitors like lidocaine, which also bind with higher affinity to the inactivated state than the resting state but bind at a site within the pore of the channel. The common dependence on gating state with distinct binding sites raises the possibility that inhibition by aryl sulfonamides and by classic local anesthetics might show an interaction mediated by their mutual state dependence. We tested this possibility by examining the state-dependent inhibition by PF-05089771 and lidocaine of human Nav1.7 channels expressed in human embryonic kidney 293 cells. At –80 mV, where a small fraction of channels are in an inactivated state under drug-free conditions, inhibition by PF-05089771 was both enhanced and speeded in the presence of lidocaine. The results suggest that lidocaine binding to the channel enhances PF-05089771 inhibition by altering the equilibrium between resting states (with D4S4 in the inner position) and inactivated states (with D4S4 in the outer position). The gating state–mediated interaction between the compounds illustrates a principle applicable to many state-dependent agents. SIGNIFICANCE STATEMENT The results show that lidocaine enhances the degree and rate of inhibition of Nav1.7 channels by the aryl sulfonamide compound PF-05089771, consistent with state-dependent binding by lidocaine increasing the fraction of channels presenting a high-affinity binding site for PF-05089771 and suggesting that combinations of agents targeted to the pore-region binding site of lidocaine and the external binding site of aryl sulfonamides may have synergistic actions. Full Article
hi Radiohybrid Ligands: A Novel Tracer Concept Exemplified by 18F- or 68Ga-Labeled rhPSMA Inhibitors By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 When we critically assess the reason for the current dominance of 68Ga-labeled peptides and peptide-like ligands in radiopharmacy and nuclear medicine, we have to conclude that the major advantage of such radiopharmaceuticals is the apparent lack of suitable 18F-labeling technologies with proven clinical relevance. To prepare and to subsequently perform a clinical proof-of-concept study on the general suitability of silicon-fluoride-acceptor (SiFA)–conjugated radiopharmaceuticals, we developed inhibitors of the prostate-specific membrane antigen (PSMA) that are labeled by isotopic exchange (IE). To compensate for the pronounced lipophilicity of the SiFA unit, we used metal chelates, conjugated in close proximity to SiFA. Six different radiohybrid PSMA ligands (rhPSMA ligands) were evaluated and compared with the commonly used 18F-PSMA inhibitors 18F-DCFPyL and 18F-PSMA-1007. Methods: All inhibitors were synthesized by solid-phase peptide synthesis. Human serum albumin binding was measured by affinity high-performance liquid chromatography, whereas the lipophilicity of each tracer was determined by the n-octanol/buffer method. In vitro studies (IC50, internalization) were performed on LNCaP cells. Biodistribution studies were conducted on LNCaP tumor–bearing male CB-17 SCID mice. Results: On the laboratory scale (starting activities, 0.2–9.0 GBq), labeling of 18F-rhPSMA-5 to -10 by IE was completed in < 20 min (radiochemical yields, 58% ± 9%; radiochemical purity, >97%) with molar activities of 12–60 GBq/μmol. All rhPSMAs showed low nanomolar affinity and high internalization by PSMA-expressing cells when compared with the reference radiopharmaceuticals, medium-to-low lipophilicity, and high human serum albumin binding. Biodistribution studies in LNCaP tumor–bearing mice revealed high tumor uptake, sufficiently fast clearance kinetics from blood, low hepatobiliary excretion, fast renal excretion, and very low uptake of 18F activity in bone. Conclusion: The novel 18F-rhPSMA radiopharmaceuticals developed under the radiohybrid concept show equal or better targeting characteristics than the established 18F-PSMA tracers 18F-DCFPyL and 18F-PSMA-1007. The unparalleled simplicity of production, the possibility to produce the identical 68Ga-labeled 19F-68Ga-rhPSMA tracers, and the possibility to extend this concept to true theranostic radiohybrid radiopharmaceuticals, such as F-Lu-rhPSMA, are unique features of these radiopharmaceuticals. Full Article
hi Histologically Confirmed Diagnostic Efficacy of 18F-rhPSMA-7 PET for N-Staging of Patients with Primary High-Risk Prostate Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 18F-rhPSMA-7 (radiohybrid prostate-specific membrane antigen [PSMA]) is a novel ligand for PET imaging. Here, we present data from a retrospective analysis using PET/CT and PET/MRI examinations to investigate the efficacy of 18F-rhPSMA-7 PET for primary N-staging of patients with prostate cancer (PC) compared with morphologic imaging (CT or MRI) and validated by histopathology. Methods: Data from 58 patients with high-risk PC (according to the D’Amico criteria) who were staged with 18F-rhPSMA-7 PET/CT or PET/MRI at our institution between July 2017 and June 2018 were reviewed. The patients had a median prescan prostate-specific antigen value of 12.2 ng/mL (range, 1.2–81.6 ng/mL). The median injected activity of 18F-rhPSMA-7 was 327 MBq (range, 132–410 MBq), with a median uptake time of 79.5 min (range, 60–153 min). All patients underwent subsequent radical prostatectomy and extended pelvic lymph node dissection. The presence of lymph node metastases was determined by an experienced reader independently for both the PET and the morphologic datasets using a template-based analysis on a 5-point scale. Patient-level and template-based results were both compared with histopathologic findings. Results: Lymph node metastases were present in 18 patients (31.0%) and were located in 52 of 375 templates (13.9%). Receiver-operating-characteristic analyses showed 18F-rhPSMA-7 PET to perform significantly better than morphologic imaging on both patient-based and template-based analyses (areas under curve, 0.858 vs. 0.649 [P = 0.012] and 0.765 vs. 0.589 [P < 0.001], respectively). On patient-based analyses, the sensitivity, specificity, and accuracy of 18F-rhPSMA-7 PET were 72.2%, 92.5%, and 86.2%, respectively, and those of morphologic imaging were 50.0%, 72.5%, and 65.5%, respectively. On template-based analyses, the sensitivity, specificity, and accuracy of 18F-rhPSMA-7 PET were 53.8%, 96.9%, and 90.9%, respectively, and those of morphologic imaging were 9.6%, 95.0%, and 83.2%, respectively. Conclusion: 18F-rhPSMA-7 PET is superior to morphologic imaging for N-staging of high-risk primary PC. The efficacy of 18F-rhPSMA-7 is similar to published data for 68Ga-PSMA-11. Full Article
hi ProPSMA: A Callout to the Nuclear Medicine Community to Change Practices with Prospective, High-Quality Data By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
hi Assessing Radiographic Response to 223Ra with an Automated Bone Scan Index in Metastatic Castration-Resistant Prostate Cancer Patients By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 For effective clinical management of patients being treated with 223Ra, there is a need for radiographic response biomarkers to minimize disease progression and to stratify patients for subsequent treatment options. The objective of this study was to evaluate an automated bone scan index (aBSI) as a quantitative assessment of bone scans for radiographic response in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: In a multicenter retrospective study, bone scans from patients with mCRPC treated with monthly injections of 223Ra were collected from 7 hospitals in Sweden. Patients with available bone scans before treatment with 223Ra and at treatment discontinuation were eligible for the study. The aBSI was generated at baseline and at treatment discontinuation. The Spearman rank correlation was used to correlate aBSI with the baseline covariates: alkaline phosphatase (ALP) and prostate-specific antigen (PSA). The Cox proportional-hazards model and Kaplan–Meier curve were used to evaluate the association of covariates at baseline and their change at treatment discontinuation with overall survival (OS). The concordance index (C-index) was used to evaluate the discriminating strength of covariates in predicting OS. Results: Bone scan images at baseline were available from 156 patients, and 67 patients had both a baseline and a treatment discontinuation bone scan (median, 5 doses; interquartile range, 3–6 doses). Baseline aBSI (median, 4.5; interquartile range, 2.4–6.5) was moderately correlated with ALP (r = 0.60, P < 0.0001) and with PSA (r = 0.38, P = 0.003). Among baseline covariates, aBSI (P = 0.01) and ALP (P = 0.001) were significantly associated with OS, whereas PSA values were not (P = 0.059). After treatment discontinuation, 36% (24/67), 80% (54/67), and 13% (9/67) of patients demonstrated a decline in aBSI, ALP, and PSA, respectively. As a continuous variable, the relative change in aBSI after treatment, compared with baseline, was significantly associated with OS (P < 0.0001), with a C-index of 0.67. Median OS in patients with both aBSI and ALP decline (median, 134 wk) was significantly longer than in patients with ALP decline only (median, 77 wk; P = 0.029). Conclusion: Both aBSI at baseline and its change at treatment discontinuation were significant parameters associated with OS. The study warrants prospective validation of aBSI as a quantitative imaging response biomarker to predict OS in patients with mCRPC treated with 223Ra. Full Article
hi Incidental Findings Suggestive of COVID-19 in Asymptomatic Patients Undergoing Nuclear Medicine Procedures in a High-Prevalence Region By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may remain asymptomatic, leading to under-recognition of the related disease, coronavirus disease, 2019 (COVID-19), and to incidental findings in nuclear imaging procedures performed for standard clinical indications. Here, we report about our local experience in a region with high COVID-19 prevalence and dynamically increasing infection rates. Methods: Within the 8-d period of March 16–24, 2020, hybrid imaging studies of asymptomatic patients who underwent 18F-FDG PET/CT or 131I SPECT/CT for standard oncologic indications at our institution in Brescia, Italy, were analyzed for findings suggestive of COVID-19. The presence, radiologic features, and metabolic activity of interstitial pneumonia were identified, correlated with the subsequent short-term clinical course, and described in a case series. Results: Six of 65 patients (9%) who underwent PET/CT for various malignancies showed unexpected signs of interstitial pneumonia on CT and elevated regional 18F-FDG avidity. Additionally, 1 of 12 patients who received radioiodine for differentiated thyroid carcinoma also showed interstitial pneumonia on SPECT/CT. Five of 7 patients had subsequent proof of COVID-19 by reverse-transcriptase polymerase chain reaction. The remaining 2 patients were not tested immediately but underwent quarantine and careful monitoring. Conclusion: Incidental findings suggestive of COVID-19 may not be infrequent in hybrid imaging of asymptomatic patients in regions with an expansive spread of SARS-CoV-2. Nuclear medicine services should prepare accordingly. Full Article
hi IAEA Launches Curie Fellowships for Women By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
hi SNMMI Leadership Update: SNMMI Strong: Advancing the Profession through Advocacy, Collaboration, and Awareness By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
hi Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly. Full Article
hi The Most Important Thing We Give to People Is Hope: Overcoming Stigma in Diabetes and Obesity By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Editor’s Note: This article is adapted from the address Ms. Valentine delivered as the recipient of the American Diabetes Association’s (ADA’s) Outstanding Educator in Diabetes Award for 2019. She delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. A webcast of this speech is available for viewing at the ADA website (professional.diabetes.org/webcast/outstanding-educator-diabetes-award-lecture%E2%80%94-most-important-thing-we-give-people-hope). Full Article
hi Prognostic impact of pre-existing interstitial lung disease in non-HIV patients with Pneumocystis pneumonia By openres.ersjournals.com Published On :: 2020-05-04T00:29:32-07:00 Background The increasing incidence of life-threatening Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients is a global concern. Yet, no reports have examined the prognostic significance of pre-existing interstitial lung disease (ILD) in non-HIV PCP. Methods We retrospectively reviewed the medical records of non-HIV PCP patients with (ILD group) or without (non-ILD group) pre-existing ILD. The clinical features and outcomes of the ILD group were compared with those of the non-ILD group. Cox regression models were constructed to identify prognostic factors. Results 74 patients were enrolled in this study. The 90-day mortality was significantly higher in the ILD group than in the non-ILD group (62.5% versus 19.0%, p<0.001). In the ILD group, patients with a higher percentage of bronchoalveolar lavage fluid neutrophils had worse outcomes compared to those having a lower percentage (p=0.026). Multivariate analyses revealed that pre-existing ILD (p=0.002) and low levels of serum albumin (p=0.009) were independent risk factors for 90-day mortality. Serum levels of β-d-glucan were significantly reduced after treatment of PCP in both groups, whereas levels of Krebs von den Lungen-6 (KL-6) significantly increased in the ILD group. In the ILD group, the 90-day mortality of patients with increasing KL-6 levels after treatment was significantly higher than those with decreasing levels (78.9% versus 0%, p=0.019). Conclusion In non-HIV PCP patients, pre-existing ILD is associated with a poorer prognosis. Prophylaxis for PCP is needed in patients with pre-existing ILD under immunosuppression. Full Article
hi Epidemiological features and medical care-seeking process of patients with COVID-19 in Wuhan, China By openres.ersjournals.com Published On :: 2020-04-27T00:30:10-07:00 Background We aimed to investigate the epidemiological and clinical features, and medical care-seeking process of patients with the 2019 coronavirus disease (COVID-19) in Wuhan, China, to provide useful information to contain COVID-19 in other places with similar outbreaks of the virus. Methods We collected epidemiological and clinical information of patients with COVID-19 admitted to a makeshift Fangcang hospital between 7 and 26 February, 2020. The waiting time of each step during the medical care-seeking process was also analysed. Results Of the 205 patients with COVID-19 infection, 31% had presumed transmission from a family member. 10% of patients had hospital-related transmission. It took as long as a median of 6 days from the first medical visit to receive the COVID-19 nucleic acid test and 10 days from the first medical visit to hospital admission, indicating early recognition of COVID-19 was not achieved at the early stage of the outbreak, although these delays were shortened later. After clinical recovery from COVID-19, which took a mean of 21 days from illness onset, there was still a substantial proportion of patients who had persistent SARS-CoV-2 infection. Conclusions The diagnostic evaluation process of suspected patients needs to be accelerated at the epicentre of the outbreak and early isolation of infected patients in a healthcare setting rather than at home is urgently required to stop the spread of the virus. Clinical recovery is not an appropriate criterion to release isolated patients and as long as 4 weeks' isolation for patients with COVID-19 is not enough to prevent the spread of the virus. Full Article
hi High cytomegalovirus serology and subsequent COPD-related mortality: a longitudinal study By openres.ersjournals.com Published On :: 2020-04-27T00:30:10-07:00 Background Positive serology for cytomegalovirus (CMV) has been associated with all-cause mortality risk but its role in COPD mortality is unknown. The objective of the present study was to assess the relationship between CMV serology and COPD mortality. Methods We analysed data from 806 participants in the Tucson Epidemiological Study of Airway Obstructive Disease who, at enrolment, were aged 28–70 years and had completed lung function tests. We tested CMV serology in sera from enrolment and defined "high CMV serology" as being in the highest tertile. Vital status, date and cause of death were assessed through death certificates and/or linkage with the National Death Index up to January 2017. The association of CMV serology with all-cause and cause-specific mortality risk was tested in Cox models adjusted for age, sex, level of education, body mass index, smoking status and pack-years. Results High CMV serology was marginally associated with all-cause mortality (p=0.071) but the effect was inversely dependent on age, with the association being much stronger among participants <55 years than among participants ≥55 years at enrolment (p-value for CMV-by-age interaction <0.001). Compared with low CMV serology, high CMV serology was associated with mortality from COPD among all subjects (adjusted hazard ratio (HR) 2.38, 95% CI 1.11–5.08; p=0.025) and particularly in subjects <55 years old at enrolment (HR 5.40, 95% CI 1.73–16.9; p=0.004). Consistent with these results, high CMV serology also predicted mortality risk among subjects who already had airflow limitation at enrolment (HR 2.10, 95% CI 1.20–3.68; p=0.009). Conclusions We report a strong relationship between CMV serology and the risk of dying from COPD, and thus identify a novel risk factor for COPD mortality. Full Article
hi Evidence from a mouse model on the dangers of thirdhand electronic cigarette exposure during early life By openres.ersjournals.com Published On :: 2020-04-19T07:30:11-07:00 Electronic cigarettes (e-cigarettes) have been used in many countries for >10 years and in this time, there has been a division of opinions amongst both the general public and health professionals regarding the benefit or harms of e-cigarettes. Prior to the reporting of a new phenomenon known as vaping-associated pulmonary injury (VAPI), public opinion about the relative harm of e-cigarettes were increasing but they were perceived as less harmful than cigarettes by one third of people [1]. The recent cases of severe illness and death attributable to VAPI were first described in September 2019 [2]. VAPI appears to be related to either the addition of cannabis/cannabis derivates or vitamin E acetate [3], and as such has not caused radical swing away from the use of e-cigarettes without cannabis or cannabis derivates. Full Article
hi Medical Cannabinoid Products in Children and Adolescents By pedsinreview.aappublications.org Published On :: 2020-05-01T01:00:19-07:00 Full Article
hi Case 2: Diarrhea and Petechiae in an 8-year-old Girl By pedsinreview.aappublications.org Published On :: 2020-05-01T01:00:19-07:00 Full Article
hi Dysphagia and Chronic Pulmonary Aspiration in Children By pedsinreview.aappublications.org Published On :: 2020-05-01T01:00:19-07:00 Full Article
hi Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites [Review] By mmbr.asm.org Published On :: 2020-04-01T05:29:40-07:00 While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well. Full Article
hi Posttranscriptional Regulation of tnaA by Protein-RNA Interaction Mediated by Ribosomal Protein L4 in Escherichia coli [Article] By jb.asm.org Published On :: 2020-04-27T08:00:23-07:00 Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5' or 3' half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon. IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions. Full Article
hi Articles of Significant Interest in This Issue [Spotlight] By jb.asm.org Published On :: 2020-04-27T08:00:23-07:00 Full Article
hi Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster [Article] By jb.asm.org Published On :: 2020-04-27T08:00:23-07:00 The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the –10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the –10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species. Full Article
hi The Antiactivator of Type III Secretion, OspD1, Is Transcriptionally Regulated by VirB and H-NS from Remote Sequences in Shigella flexneri [Article] By jb.asm.org Published On :: 2020-04-27T08:00:23-07:00 Shigella species, the causal agents of bacillary dysentery, use a type III secretion system (T3SS) to inject two waves of virulence proteins, known as effectors, into the colonic epithelium to subvert host cell machinery. Prior to host cell contact and secretion of the first wave of T3SS effectors, OspD1, an effector and antiactivator protein, prevents premature production of the second wave of effectors. Despite this important role, regulation of the ospD1 gene is not well understood. While ospD1 belongs to the large regulon of VirB, a transcriptional antisilencing protein that counters silencing mediated by the histone-like nucleoid structuring protein H-NS, it remains unclear if VirB directly or indirectly regulates ospD1. Additionally, it is not known if ospD1 is regulated by H-NS. Here, we identify the primary ospD1 transcription start site (+1) and show that the ospD1 promoter is remotely regulated by both VirB and H-NS. Our findings demonstrate that VirB regulation of ospD1 requires at least one of the two newly identified VirB regulatory sites, centered at –978 and –1270 relative to the ospD1 +1. Intriguingly, one of these sites lies on a 193-bp sequence found in three conserved locations on the large virulence plasmids of Shigella. The region required for H-NS-dependent silencing of ospD1 lies between –1120 and –820 relative to the ospD1 +1. Thus, our study provides further evidence that cis-acting regulatory sequences for transcriptional antisilencers and silencers, such as VirB and H-NS, can lie far upstream of the canonical bacterial promoter region (i.e., –250 to +1). IMPORTANCE Transcriptional silencing and antisilencing mechanisms regulate virulence gene expression in many important bacterial pathogens. In Shigella species, plasmid-borne virulence genes, such as those encoding the type III secretion system (T3SS), are silenced by the histone-like nucleoid structuring protein H-NS and antisilenced by VirB. Previous work at the plasmid-borne icsP locus revealed that VirB binds to a remotely located cis-acting regulatory site to relieve transcriptional silencing mediated by H-NS. Here, we characterize a second example of remote VirB antisilencing at ospD1, which encodes a T3SS antiactivator and effector. Our study highlights that remote transcriptional silencing and antisilencing occur more frequently in Shigella than previously thought, and it raises the possibility that long-range transcriptional regulation in bacteria is commonplace. Full Article
hi Measuring airway clearance outcomes in bronchiectasis: a review By err.ersjournals.com Published On :: 2020-04-29T01:39:43-07:00 While airway clearance techniques (ACTs) are recommended for individuals with bronchiectasis, many trials have demonstrated inconsistent benefits or failed to reach their primary outcome. This review determined the most common clinical and patient-reported outcome measures used to evaluate the efficacy of ACTs in bronchiectasis. A literature search of five databases using relevant keywords and filtering for studies published in English, up until the end of August 2019, was completed. Studies included randomised controlled trials, using crossover or any other trial design, and abstracts. Studies were included where the control was placebo, no intervention, standard care, usual care or an active comparator. Adults with bronchiectasis not related to cystic fibrosis were included. Extracted data comprised study authors, design, duration, intervention, outcome measures and results. The search identified 27 published studies and one abstract. The most common clinical outcome measures were sputum volume (n=23), lung function (n=17) and pulse oximetry (n=9). The most common patient-reported outcomes were health-related quality of life (measured with St George's Respiratory Questionnaire, n=4), cough-related quality of life (measured with Leicester Cough Questionnaire, n=4) and dyspnoea (measured with Borg/modified Borg scale, n=8). Sputum volume, lung function, dyspnoea and health- and cough-related quality of life appear to be the most common clinical and patient-reported measures of airway clearance treatment efficacy. Full Article
hi Chitotriosidase: a marker and modulator of lung disease By err.ersjournals.com Published On :: 2020-04-29T01:39:43-07:00 Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article. Full Article
hi The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at The Natural History Museum, London By jm.lyellcollection.org Published On :: 2017-08-10T08:29:35-07:00 The Henry Buckley Collection of Planktonic Foraminifera at the Natural History Museum in London (NHMUK) consists of 1665 single-taxon slides housing 23 897 individuals from 203 sites in all the major ocean basins, as well as a vast research library of Scanning Electron Microscope (SEM) photomicrographs. Buckley picked the material from the NHMUK Ocean-Bottom Deposit Collection and also from fresh tow samples. However, his collection remains largely unused as he was discouraged by his managers in the Mineralogy Department from working on or publicizing the collection. Nevertheless, Buckley published pioneering papers on isotopic interpretation of oceanographic and climatic change and was one of the first workers to investigate foraminiferal wall structure using the SEM technique. Details of the collection and images of each slide are available via the NHMUK Data Portal (http://dx.doi.org/10.5519/0035055). The Buckley Collection and its associated Ocean-Bottom Deposit Collection have great potential for taxon-specific studies as well as geochemical work, and both collections are available on request. Full Article
hi Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran By jm.lyellcollection.org Published On :: 2017-08-10T08:29:35-07:00 A new larger benthic porcelaneous foraminifer of soritid affinity is described as Tarburina zagrosiana n. gen., n. sp. from the late Maastrichtian of the Tarbur Formation, Zagros Zone, SW Iran. It occurs in foraminiferal–dasycladalean wackestones and packstones, in association with Loftusia ssp., dicyclinids/cuneolinids, Neobalkhania bignoti Cherchi & Schroeder, Gyroconulina columellifera Schroeder & Darmoian, Spirolina? farsiana Schlagintweit & Rashidi, Broeckina cf. dufrenoyi (d'Archiac), other benthic foraminifers, and dasycladalean algae. Due to its elongate test and marginal chamber subdivision by aligned vertical partitions, Tarburina n. gen. can be compared with representatives of the Praerhapydionininae. The interio-marginal slit-like foramina/aperture of Tarburina represents an outstanding feature in complex porcelaneous taxa. The monospecific genus Tarburina is considered a Maastrichtian newcomer within the Late Cretaceous Global Community Maturation cycle of larger benthic foraminifera. A biostratigraphic and palaeobiogeographical restriction seems possible, as reported for many other Late Cretaceous larger benthic foraminifera. Full Article
hi How Should Home-Based Maternal and Child Health Records Be Implemented? A Global Framework Analysis By ghspjournal.org Published On :: 2020-03-31T15:28:55-07:00 ABSTRACTBackground:A home-based record (HBR) is a health document kept by the patient or their caregivers, rather than by the health care facility. HBRs are used in 163 countries, but they have not been implemented universally or consistently. Effective implementation maximizes both health impacts and cost-effectiveness. We sought to examine this research-to-practice gap and delineate the facilitators and barriers to the effective implementation and use of maternal and child health HBRs especially in low- and middle-income countries (LMICs).Methods:Using a framework analysis approach, we created a framework of implementation categories in advance using subject expert inputs. We collected information through 2 streams. First, we screened 69 gray literature documents, of which 18 were included for analysis. Second, we conducted semi-structured interviews with 12 key informants, each of whom had extensive experience with HBR implementation. We abstracted the relevant data from the documents and interviews into an analytic matrix. The matrix was based on the initial framework and adjusted according to emergent categories from the data.Results:We identified 8 contributors to successful HBR implementation. These include establishing high-level support from the government and ensuring clear communication between all ministries and nongovernmental organizations involved. Choice of appropriate contents within the record was noted as important for alignment with the health system and for end user acceptance, as were the design, its physical durability, and timely redesigns. Logistical considerations, such as covering costs sustainably and arranging printing and distribution, could be potential bottlenecks. Finally, end users' engagement with HBRs depended on how the record was initially introduced to them and how its importance was reinforced over time by those in leadership positions.Conclusions:This framework analysis is the first study to take a more comprehensive and broad approach to the HBR implementation process in LMICs. The findings provide guidance for policy makers, donors, and health care practitioners regarding best implementation practice and effective HBR use, as well as where further research is required. Full Article