v Clinical review of non-invasive ventilation By erj.ersjournals.com Published On :: 2024-11-07T00:35:55-08:00 Non-invasive ventilation (NIV) is the mainstay to treat patients who need augmentation of ventilation for acute and chronic forms of respiratory failure. The last several decades have witnessed an extension of the indications for NIV to a variety of acute and chronic lung diseases. Evolving advancements in technology and personalised approaches to patient care make it feasible to prioritise patient-centred care models that deliver home-based management using telemonitoring and telemedicine systems support. These trends may improve patient outcomes, reduce healthcare costs and improve the quality of life for patients who suffer from chronic diseases that precipitate respiratory failure. Full Article
v Treatment of latent tuberculosis infection in migrants in primary care versus secondary care By erj.ersjournals.com Published On :: 2024-11-07T00:35:55-08:00 Background Control of latent tuberculosis infection (LTBI) is a priority in the World Health Organization strategy to eliminate TB. Many high-income, low TB incidence countries have prioritised LTBI screening and treatment in recent migrants. We tested whether a novel model of care, based entirely within primary care, was effective and safe compared to secondary care. Methods This was a pragmatic cluster-randomised, parallel group, superiority trial (ClinicalTrials.gov: NCT03069807) conducted in 34 general practices in London, UK, comparing LTBI treatment in recent migrants in primary care to secondary care. The primary outcome was treatment completion, defined as taking ≥90% of antibiotic doses. Secondary outcomes included treatment acceptance, adherence, adverse effects, patient satisfaction, TB incidence and a cost-effectiveness analysis. Analyses were performed on an intention-to-treat basis. Results Between September 2016 and May 2019, 362 recent migrants with LTBI were offered treatment and 276 accepted. Treatment completion was similar in primary and secondary care (82.6% versus 86.0%; adjusted OR (aOR) 0.64, 95% CI 0.31–1.29). There was no difference in drug-induced liver injury between primary and secondary care (0.7% versus 2.3%; aOR 0.29, 95% CI 0.03–2.84). Treatment acceptance was lower in primary care (65.2% (146/224) versus 94.2% (130/138); aOR 0.10, 95% CI 0.03–0.30). The estimated cost per patient completing treatment was lower in primary care, with an incremental saving of GBP 315.27 (95% CI 313.47–317.07). Conclusions The treatment of LTBI in recent migrants within primary care does not result in higher rates of treatment completion but is safe and costs less when compared to secondary care. Full Article
v Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (Ki) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated Ki of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone. Full Article
v Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations. Full Article
v Molecular Mechanisms for the Selective Transport of Dichlorofluorescein by Human Organic Anion Transporting Polypeptide 1B1 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Human organic anion transporting polypeptide (OATP) 1B1 and 1B3 are two highly homologous liver-specific uptake transporters. However, 2’,7’-dichlorofluorescein (DCF) is preferably transported by OATP1B1. In the present study, the molecular mechanisms for the selective transport of DCF by OATP1B1 were investigated by constructing and characterizing an array of OATP1B1/1B3 chimeras and site-directed mutagenesis. Our results show that transmembrane domain (TM) 10 is crucial for the surface expression and function of OATP1B1, in which Q541 and L545 play the most important roles in DCF transport. Replacement of TM10 in OATP1B1 with its OATP1B3 counterpart led to OATP1B1’s complete intracellular retention. Q541 and L545 may interact with DCF directly via hydrogen bonding and hydrophobic interactions. The decrease of DCF uptake by Q541A and L545S was due to their reduced binding affinity for DCF as compared with OATP1B1. In addition, Q541 and L545 are also crucial for the transport of estradiol-17β-glucuronide (E17βG) but not for the transport of estrone-3-sulfate (E3S), indicating different interaction modes between DCF/E17βG and E3S in OATP1B1. Taken together, Q541 and L545 in TM10 are critical for OATP1B1-mediated DCF uptake, but their effect is substrate-dependent. SIGNIFICANCE STATEMENT The key TMs and amino acid residues for the selective transport of DCF by OATP1B1 were identified. TM10 is crucial for the surface expression and function of OATP1B1. Within TM10, Q541 and L545 played the most significant roles and affected the function of OATP1B1 in a substrate-dependent manner. This information is crucial for a better understanding of the mechanism of the multispecificity of OATP1B1 and as a consequence the mechanism of OATP1B1-mediated drug–drug interactions. Full Article
v Investigations into the Concentrations and Metabolite Profiles of Doping Agents and Antidepressants in Human Seminal Fluid Using Liquid Chromatography-Mass Spectrometry [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Exogenous substances, including drugs and chemicals, can transfer into human seminal fluid and influence male fertility and reproduction. In addition, substances relevant in the context of sports drug testing programs, can be transferred into the urine of a female athlete (after unprotected sexual intercourse) and trigger a so-called adverse analytical finding. Here, the question arises as to whether it is possible to distinguish analytically between intentional doping offenses and unintentional contamination of urine by seminal fluid. To this end, 480 seminal fluids from nonathletes were analyzed to identify concentration ranges and metabolite profiles of therapeutic drugs that are also classified as doping agents. Therefore, a screening procedure was developed using liquid chromatography connected to a triple quadrupole mass spectrometer, and suspect samples (i.e., samples indicating the presence of relevant compounds) were further subjected to liquid chromatography-high-resolution accurate mass (tandem) mass spectrometry. The screening method yielded 90 findings (including aromatase inhibitors, selective estrogen receptor modulators, diuretics, stimulants, glucocorticoids, beta-blockers, antidepressants, and the nonapproved proliferator-activated receptor delta agonist GW1516) in a total of 81 samples, with 91% of these suspected cases being verified by the confirmation method. In addition to the intact drug, phase-I and -II metabolites were also occasionally observed in the seminal fluid. This study demonstrated that various drugs including those categorized as doping agents partition into seminal fluid. Monitoring substances and metabolites may contribute to a better understanding of the distribution and metabolism of exogenous substances in seminal fluid that may be responsible for the impairment of male fertility. SIGNIFICANCE STATEMENT This study demonstrates that doping agents as well as clinically relevant substances are transferred/eliminated into seminal fluid to a substantial extent and that knowledge about drug levels (and potential consequences for the male fertility and female exposure) is limited. The herein generated new dataset provides new insights into an important and yet little explored area of drug deposition and elimination, and hereby a basis for the assessment of contamination cases by seminal fluid in sports drug testing. Full Article
v Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = aiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th–95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5–2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed. Full Article
v The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2. SIGNIFICANCE STATEMENT The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2. Full Article
v CYP8B1 Catalyzes 12alpha-Hydroxylation of C27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes–1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. Full Article
v Comparison of the CYP3A Selective Inhibitors CYP3cide, Clobetasol, and Azamulin for Their Potential to Distinguish CYP3A7 Activity in the Presence of CYP3A4/5 [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The CYP3A7 enzyme accounts for ~50% of the total cytochrome P450 (P450) content in fetal and neonatal livers and is the predominant P450 involved in neonatal xenobiotic metabolism. Additionally, it is a key player in healthy birth outcomes through the oxidation of dehydroepiandrosterone (DHEA) and DHEA-sulfate. The amount of the other hepatic CYP3A isoforms, CYP3A4 and CYP3A5, expressed in neonates is low but highly variable, and therefore the activity of individual CYP3A isoforms is difficult to differentiate due to their functional similarities. Consequently, a better understanding of the contribution of CYP3A7 to drug metabolism is essential to identify the risk that drugs may pose to neonates and developing infants. To distinguish CYP3A7 activity from CYP3A4/5, we sought to further characterize the selectivity of the specific CYP3A inhibitors CYP3cide, clobetasol, and azamulin. We used three substrate probes, dibenzylfluorescein, luciferin-PPXE, and midazolam, to determine the IC50 and metabolism-dependent inhibition (MDI) properties of the CYP3A inhibitors. Probe selection had a significant effect on the IC50 values and P450 inactivation across all inhibitory compounds and enzymes. CYP3cide and azamulin were both identified as MDIs and were most specific for CYP3A4. Contrary to previous reports, we found that clobetasol propionate (CP) was not an MDI of CYP3A5 but was more selective for CYP3A5 over CYP3A4/7. We further investigated CYP3cide and CP’s ability to differentiate CYP3A7 activity in an equal mixture of recombinant CYP3A4, CYP3A5, and CYP3A7, and our results provide confidence of CYP3cide’s and CP’s ability to distinguish CYP3A7 activity in the presence of the other CYP3A isoforms. SIGNIFICANCE STATEMENT These findings provide valuable insight regarding in vitro testing conditions to investigate the metabolism of new drug candidates and help determine drug safety in neonates. The results presented here also clearly demonstrate the effect that probe selection may have on CYP3A cytochrome P450 inhibition studies. Full Article
v Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook [Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development. Full Article
v Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy. SIGNIFICANCE STATEMENT This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity. Full Article
v Assessing Trends in Cytokine-CYP Drug Interactions and Relevance to Drug Dosing [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The regulation of drug-metabolizing enzymes and transporters by cytokines has been extensively studied in vitro and in clinic. Cytokine-mediated suppression of cytochrome P450 (CYP) or drug transporters may increase or decrease the systemic clearance of drug substrates that are primarily cleared via these pathways; neutralization of cytokines by therapeutic proteins may thereby alter systemic exposures of such drug substrates. The Food and Drug Administration recommends evaluating such clinical drug interactions during clinical development and has provided labeling recommendations for therapeutic proteins. To determine the clinical relevance of these drug interactions to dose adjustments, trends in steady-state exposures of CYP-sensitive substrates coadministered with cytokine modulators as reported in the University of Washington Drug Interaction Database were extracted and examined for each of the CYPs. Coadministration of cytochrome P450 family 3 subfamily A (CYP3A) (midazolam/simvastatin), cytochrome P450 subfamily 2C19 (omeprazole), or cytochrome P450 subfamily 1A2 (caffeine/tizanidine) substrates with anti-interleukin-6 and with anti-interleukin-23 therapeutics led to changes in systemic exposures of CYP substrates ranging from ~ –58% to ~35%; no significant trends were observed for cytochrome P450 subfamily 2D6 (dextromethorphan) and cytochrome P450 subfamily 2C9 (warfarin) substrates. Although none of these changes in systemic exposures have been reported as clinically meaningful, dose adjustment of midazolam for optimal sedation in acute care settings has been reported. Simulated concentration-time profiles of midazolam under conditions of elevated cytokine levels when coadministered with tocilizumab, suggest a ~six- to sevenfold increase in midazolam clearance, suggesting potential implications of cytokine–CYP drug interactions on dose adjustments of sensitive CYP3A substrates in acute care settings. Additionally, this article also provides a brief overview of nonclinical and clinical assessments of cytokine–CYP drug interactions in drug discovery and development. SIGNIFICANCE STATEMENT There has been significant progress in understanding cytokine-mediated drug interactions for CYP-sensitive substrates. This article provides an overview of the progress in this field, including a trend analysis of systemic exposures of CYP-sensitive substrates coadministered with anti-interleukin therapeutics. In addition, the review also provides a perspective of current methods used to assess these drug interactions during drug development and a focus on individualized medicine, particularly in acute care settings. Full Article
v Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy. SIGNIFICANCE STATEMENT Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples. Full Article
v Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments. SIGNIFICANCE STATEMENT An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.: Full Article
v Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. SIGNIFICANT STATEMENT At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides. Full Article
v Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology. Full Article
v 50th Anniversary Celebration Collection Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II--Editorial [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Full Article
v Inhibitory Actions of Potentiating Neuroactive Steroids in the Human {alpha}1{beta}3{gamma}2L {gamma}-Aminobutyric Acid Type A Receptor [Article] By molpharm.aspetjournals.org Published On :: 2024-10-17T05:12:59-07:00 The -aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β32L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ~13 μM and maximal inhibitory effects of 70–90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN. SIGNIFICANCE STATEMENT The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β32L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions. Full Article
v Ghrelin Modulates Voltage-Gated Ca2+ Channels through Voltage-Dependent and Voltage-Independent Pathways in Rat Gastric Vagal Afferent Neurons [Article] By molpharm.aspetjournals.org Published On :: 2024-10-17T05:12:59-07:00 The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = –2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gαi/o or Gαq/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin’s effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gαi/o and Gαq/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin’s regulation of gastric vagal afferents. SIGNIFICANCE STATEMENT This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders. Full Article
v Simplified Method for Kinetic and Thermodynamic Screening of Cardiotonic Steroids through the K+-Dependent Phosphatase Activity of Na+/K+-ATPase with Chromogenic pNPP Substrate [Article] By molpharm.aspetjournals.org Published On :: 2024-10-17T05:12:59-07:00 The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon), dissociation rate (koff), and equilibrium (Ki) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon. In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon. When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff. A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon. Raising the temperature did not alter the koff of digitoxin, generating a H (koff) of –10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon, koff, and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds. SIGNIFICANCE STATEMENT This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure. Full Article
v Arachidonic Acid Directly Activates the Human DP2 Receptor [Article] By molpharm.aspetjournals.org Published On :: 2024-10-17T05:12:59-07:00 Aberrant type 2 inflammatory responses are the underlying cause of the pathophysiology of allergic asthma, allergic rhinitis, and other atopic diseases, with an alarming prevalence in relevant parts of the Western world. A bulk of evidence points out the important role of the DP2 receptor in these inflammation processes. A screening of different polyunsaturated fatty acids at a fluorescence resonance energy transfer–based DP2 receptor conformation sensor expressed in human embryonic kidney (HEK) cells revealed an agonistic effect of the prostaglandin (PG)-D2 precursor arachidonic acid on DP2 receptor activity of about 80% of the effect induced by PGD2. In a combination of experiments at the conformation sensor and using a bioluminescence resonance energy transfer–based G protein activation sensor expressed together with DP2 receptor wild type in HEK cells, we found that arachidonic acid acts as a direct activator of the DP2 receptor, but not the DP1 receptor, in a concentration range considered physiologically relevant. Pharmacological inhibition of cyclooxygenases and lipoxygenases as well as cytochrome P450 did not lead to a diminished arachidonic acid response on the DP2 receptor, confirming a direct action of arachidonic acid on the receptor. SIGNIFICANCE STATEMENT This study identified the prostaglandin precursor arachidonic acid to directly activate the DP2 receptor, a G protein–coupled receptor that is known to play an important role in type 2 inflammation. Full Article
v Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G{alpha} in Human Cancer [Minireview] By molpharm.aspetjournals.org Published On :: 2024-10-17T05:12:59-07:00 G protein–coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and β subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein β subunits (Gβ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα. Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics. Full Article
v Promoting Male Involvement in Family Planning: Insights From the No-Scalpel Vasectomy Program of Davao City, Philippines By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTDespite global consensus on the importance of male involvement in family planning, disparities persist in low- and middle-income countries, where women continue to bear the responsibility for these initiatives. The Philippines, with a high fertility rate and unmet family planning needs, exemplifies this challenge. We present the experiences and lessons learned from implementing the no-scalpel vasectomy (NSV) program in Davao City, showcasing its potential for increasing male engagement in family planning decisions. Launched in 2008, the program aimed to address gender disparity by promoting NSV as a safe and effective contraceptive alternative to female-centric methods. Through the use of culturally sensitive information campaigns and couple-focused counseling, the program challenged traditional notions of masculinity and encouraged shared decision-making. Strong local government commitment and public-private partnerships played key roles in driving the program’s success. Results showed an average annual increase of 80% in NSV clients over the past 3 years compared to before the COVID-19 pandemic, underscoring its effectiveness. The program presents a compelling intervention model for similar initiatives, highlighting how overcoming cultural barriers, infrastructure limitations, and budgetary constraints through policy advocacy, strategic partnerships, and tailored approaches can significantly boost male involvement in family planning and improve reproductive health outcomes within communities. Full Article
v FP2020 and FP2030 Country Commitments: A Mixed Method Study of Adolescent and Youth Sexual and Reproductive Health Components By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Family Planning 2020 (FP2020) was established in 2012 with the goal of expanding contraceptive access. By 2020, 46 countries had made commitments to FP2020. A sustained focus on adolescents and youth (AY) began in 2016. During the commitment formulation process, substantial support was offered to countries to develop AY commitments based on sound data, research evidence, and programmatic experience. This study assesses how country commitments under FP2020 and FP2030 have evolved over time with respect to improving attention to and focus on the needs of adolescents and youth sexual and reproductive health (AYSRH).Methods:We analyzed the content of FP2020 and FP2030 country commitments focusing on AY (aged 10–24 years) using a scoring guideline we developed to measure the AY commitments in terms of completeness, clarity, and quality.Results:This analysis shows that FP2030 commitments better articulate strategies and activities to reach AY with contraceptive information and services when compared to FP2020 commitments.Conclusion:FP2030 commitments are stronger in some areas on AYSRH, such as commitment to establish national or local policies, strategies, and guidance for AY programming, specifying the target audience of the AY commitment, and partnering with AY or youth-led organizations in commitments. However, more work remains to be done by countries to dedicate a budget for achieving AY objectives, including measurable targets for monitoring progress, identifying and addressing the root causes that impact AY access to and use of contraception, including child marriage and gender-based violence, and reducing financial barriers to access contraception. Full Article
v Learnings From an Innovative Model to Expand Access to a New and Underutilized Nonhormonal Contraceptive Diaphragm By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTWe document the effort over the last 30 years to respond to the call by women advocates at the International Conference on Population and Development for more woman-initiated single or dual-purpose contraceptive methods by developing the Caya contoured diaphragm, an innovative diaphragm designed to meet the needs of women and their partners and expand options for nonhormonal barrier contraception. We describe the complex and interrelated set of activities undertaken to develop the product using a human-centered design process and how we are working to create a corollary sustainable market. This review includes the evidence generated around improved acceptability among couples in low- and middle-income countries and depicts challenges and practical actions on how to dispel misconceptions about diaphragm use. Importantly, we share programmatic lessons learned on increasing universal access to this new sexual and reproductive health technology. Following our new model for increasing access to new and underutilized methods, Caya is now registered and being marketed in nearly 40 countries worldwide. Full Article
v Family Planning, Reproductive Health, and Progress Toward the Sustainable Development Goals: Reflections and Directions on the 30th Anniversary of the International Conference on Population and Development By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 Full Article
v Can the International Conference on Population and Development Programme of Action and Cairo Consensus Normalize the Discourse on Population? By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 Full Article
v Early Lessons From Working With Local Partners to Expand Private-Sector Health Care Networks in Burundi and Mali By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTThe private health care sector is an important source of service delivery in low- and middle-income countries (LMICs). Yet, the private sector remains fragmented, making it difficult for health system actors to support and ensure the availability of quality health care services. In global health programs, social franchising is one model used to engage and organize the private health care sector. Two social franchise networks, ProFam in West Africa and Tunza in East and Central Africa, provide health care through branded networks of facilities. However, these social franchise networks include a limited number of private health care facilities, and in fragile contexts, like Burundi and Mali, they have faced challenges in integrating with national health systems. The MOMENTUM Private Healthcare Delivery (MPHD) project in Burundi and Mali sought to expand the number of health facilities it engaged beyond the existing ProFam and Tunza networks. The expansion aimed to help improve service quality in more private facilities while advancing localization and reducing fragmentation for improved stewardship by health system actors. MPHD achieved this expansion by removing barriers for private health facilities to join inclusive, nonbranded networks and engaging local partners to build and maintain these networks. We share lessons learned regarding the growing role of local organizations as actors within mixed health systems and provide insights on strengthening stewardship of the increasingly heterogeneous private health care delivery sector in LMICs, particularly in fragile settings. Full Article
v Delays in Cardiovascular Emergency Responses in Africa: Health System Failures or Cultural Challenges? By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 Full Article
v Maturity Assessment of the Health Information System Using Stages of Continuous Improvement Methodology: Results From Serbia By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Since the health information system (HIS) in public health care services in Serbia was introduced in 2009, it has gradually expanded. However, it is unclear how well the HIS components have developed and the whole system’s stage of maturity.Method:In June–September 2021, a maturity assessment of the Serbian HIS was conducted for the first time using the HIS Stages of Continuous Improvement (SOCI) toolkit. The toolkit measures HIS status across 5 HIS domains: leadership and governance, management and workforce, information and communication technology (ICT), standards and interoperability, and data quality and use. The domains were further divided into 13 components and 39 subcomponents whose maturity stage was assessed on a 5-point Likert scale, indicating the level of development: (1) emerging/ad hoc; (2) repeatable; (3) defined; (4) managed; and (5) optimized. The toolkit was applied in a working group of 32 professionals and experts who were engaged in developing the new national eHealth strategy and action plan.Results:The overall maturity score of the Serbian HIS was 1.6, which indicates a low level. The highest baseline score (2) was given to the standards and interoperability domain, and the lowest (1.1) was given to ICT infrastructure. The remaining 3 domains (leadership and governance, Management and Workforce, and Data Quality and Use) were similarly rated (1.7, 1.7, and 1.6, respectively).Conclusion:A baseline assessment of the maturity level of Serbian HIS indicates that the majority of components are between the emerging/ad hoc stage and repeatable, which represent isolated, ad hoc efforts, with some basic processes in place and existing and accessible policies. This exercise provided an opportunity to address identified weaknesses in the upcoming national eHealth strategy. Full Article
v Documenting the Provision of Emergency Contraceptive Pills Through Youth-Serving Delivery Channels: Exploratory Mixed Methods Research on Malawi’s Emergency Contraception Strategy By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Emergency contraceptive pills (ECPs) are effective and can be used safely at any age repeatedly within the same cycle. They are often favored by youth yet are underutilized. Private facilities can increase ECP access but present barriers including cost. Identifying effective public-sector ECP distribution models can help ensure equitable access. The Malawi Ministry of Health developed a strategy to improve ECP access in 2020. We documented ECP provision through select public, youth-serving channels recommended by the strategy: general and youth-specific outreach, paid and unpaid community health workers (CHWs), and youth clubs.Methods:We conducted this mixed methods study from November 2022–March 2023 in 2 rural districts (Mchinji and Phalombe) implementing the strategy. We conducted qualitative interviews with 10 national stakeholders, 46 providers, and 24 clients aged 15–24 years about ECP service delivery. Additionally, 25 providers collected quantitative tally data about clients seeking ECPs. We analyzed qualitative data using grounded theory and quantitative data descriptively.Results:Stakeholders and providers reported ECP uptake increased in geographies where the strategy was implemented, especially among youth. Providers documented 3,988 client visits for ECPs over 3 months. Of these visits, 26% were from male clients, 36% were from clients aged younger than 20 years, and 64% received ECPs for the first time. Across channels, youth club leaders and unpaid CHWs reported the most client visits per provider and served the youngest clients. However, no ECPs were dispensed during 29% of visits due to stock-outs. While many providers were supportive of youth accessing ECPs, most held unfavorable attitudes toward repeat use.Conclusion:ECP access should be expanded through provision in the studied channels, especially youth clubs and CHWs. However, to meet demand, the supply chain must be strengthened. We recommend addressing providers’ attitudes about repeat use to ensure informed method choice. Full Article
v Antenatal Care Interventions to Increase Contraceptive Use Following Birth in Low- and Middle-Income Countries: Systematic Review and Narrative Synthesis By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Health risks associated with short interpregnancy intervals, coupled with women’s desires to avoid pregnancy following childbirth, underscore the need for effective postpartum family planning programs. The antenatal period provides an opportunity to intervene; however, evidence is limited on the effectiveness of interventions aimed at reaching women in the antenatal period to increase voluntary postpartum family planning in low- and middle-income countries (LMICs). This systematic review aimed to identify and describe interventions in LMICs that attempted to increase postpartum contraceptive use via contacts with pregnant women in the antenatal period.Methods:Studies published from January 2012 to July 2022 were considered if they were conducted in LMICs, evaluated an intervention delivered during the antenatal period, were designed to affect postpartum contraceptive use, were experimental or quasi-experimental, and were published in French or English. The main outcome of interest was postpartum contraceptive use within 1 year after birth, defined as the use of any method of contraception at the time of data collection. We searched EMBASE, Global Health, and Medline and manually searched the reference lists from studies included in the full-text screening.Results:We double-screened 771 records and included 34 reports on 31 unique interventions in the review. Twenty-three studies were published from 2018 on, with 21 studies conducted in sub-Saharan Africa. Approximately half of the study designs (n=16) were randomized controlled trials, and half (n=15) were quasi-experimental. Interventions were heterogeneous. Among the 24 studies that reported on the main outcome of interest, 18 reported a positive intervention effect, with intervention recipients having greater contraceptive use in the first year postpartum.Conclusion:While the studies in this systematic review were heterogeneous, the findings suggest that interventions that included a multifaceted package of initiatives appeared to be most likely to have a positive effect. Full Article
v Adapting the Social Norms Exploration Tool in the Democratic Republic of the Congo to Identify Social Norms for Behavior Change By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIn the Democratic Republic of the Congo (DRC), male engagement, social norms, and social networks mitigate family planning behavior. We discuss the adaptation of the Social Norms Exploration Tool (SNET), which identifies relevant social norms and community members upholding these norms, to inform the development of family planning interventions in the DRC. The SNET provides activity tools and templates to guide users through the following steps: (1) plan and prepare, (2) identify reference groups, (3) explore social norms, (4) analyze results, and (5) apply findings.The SNET approach resulted in discussion of social norms, particularly around birth spacing and gender norms framing the man as the decision-maker. However, despite applying a methodology specifically designed to identify social norms, other factors limiting use of contraceptive methods were identified in the process, including lack of education, rumors, and misconceptions. Adaptations were needed to include the full range of reference groups due to narrow phrasing of primary questions, and some of the participatory methods were overly complicated. Feedback from experienced data collectors suggested that the social norms framework is not intuitive, is difficult to apply correctly, and may require that data collectors have a stronger foundation in the relevant concepts to produce valid and actionable results.Although the SNET provides language for discussing normative factors and techniques to identify reference groups and social norms, modifications to the implementation process are recommended when adapting the tool for research. Full Article
v Improving Maternity Care Where Home Births Are Still the Norm: Establishing Local Birthing Centers in Guatemala That Incorporate Traditional Midwives By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTMore than half of births among Indigenous women in Guatemala are still being attended at home by providers with no formal training. We describe the incorporation of comadronas (traditional midwives) into casas maternas (birthing centers) in the rural highlands of western Guatemala. Although there was initial resistance to the casa, comadronas and clients have become increasingly enthusiastic about them. The casas provide the opportunity for comadronas to continue the cultural traditions of prayers, massages, and other practices that honor the vital spiritual dimension of childbirth close to home in a home-like environment with extended family support while at the same time providing a safer childbirth experience in which complications can be detected by trained personnel at the casa, managed locally, or promptly referred to a higher-level facility. Given the growing acceptance of this innovation in an environment in which geographical, financial, and cultural barriers to deliveries at higher-level facilities lead most women to deliver at home, casas maternas represent a feasible option for reducing the high level of maternal mortality in Guatemala.This article provides an update on the growing utilization of casas and provides new insights into the role of comadronas as birthing team members and enthusiastic promotors of casas maternas as a preferable alternative to home births. Through the end of 2023, these casas maternas had cared for 4,322 women giving birth. No maternal deaths occurred at a casa, but 4 died after referral.The Ministry of Health of Guatemala has recently adopted this approach and has begun to implement it in other rural areas where home births still predominate. This approach deserves consideration as a viable and feasible option for reducing maternal mortality throughout the world where home births are still common, while at the same time providing women with respectful and culturally appropriate care. Full Article
v Capacity-Building Through Digital Approaches: Evaluating the Feasibility and Effectiveness of eLearning to Introduce Subcutaneous DMPA Self-Injection in Senegal and Uganda By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTTraining health workers is one of the biggest challenges and cost drivers when introducing a new contraceptive method or service delivery innovation. PATH developed a digital training curriculum for family planning providers who are learning to offer subcutaneous DMPA (DMPA-SC), including through self-injection, as an option among a range of contraceptive methods. The DMPA-SC eLearning course for health workers includes 10 lessons with an emphasis on informed choice counseling and training clients to self-inject. In partnership with Ministries of Health in Senegal and Uganda, the course was rolled out in select areas in 2019–2020, including during the COVID-19 pandemic when physical distancing requirements restricted in-person training. We conducted evaluations in both countries to assess the practical application of this digital training approach for contraceptive introduction. The evaluation consisted of a post-training survey, an observational assessment conducted during post-training supportive supervision, and an estimation of training costs.In both countries, a majority (88.6% in Uganda and 64.3% in Senegal) scored above 80% on a DMPA-SC knowledge test following the training. In Senegal, where there was a comparison group of providers trained in person, those providers scored similar on the post-test to eLearners. Providers in both groups and in both countries felt more prepared to administer DMPA-SC or offer self-injection to clients after receiving a supervision visit (93%–98% of eLearners felt very prepared after supervision as compared to 45%–72% prior). The evaluation results suggest that digital approaches offer a number of benefits, can be cost-effective, and are most optimal when blended with in-person training and/or supportive supervision. Full Article
v Innovations in Providing HIV Index Testing Services: A Retrospective Evaluation of Partner Elicitation Models in Southern Nigeria By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTBackground: This analysis aimed to evaluate the effectiveness of eliciting sexual partners from HIV-positive clients using the elicitation box model (where an HIV-positive index can report sexual contacts on paper and insert in a box for a health care provider to contact at a later time) compared to the conventional model (in which a health care provider elicits sexual contacts directly from clients) in Akwa Ibom, Southern Nigeria.Methods: Between March 2021 and April 2022, data were collected from index testing registers at 4 health facilities with a high volume of HIV clients currently on treatment in 4 local government areas in Akwa Ibom State. Primary outcome analyzed was the elicitation ratio (number of partners elicited per HIV-index offered index testing services). Secondary outcomes were the index testing acceptance (index HIV-positive clients accepted index testing service), testing coverage (partners tested for HIV from a list of partners elicited from HIV-index accepted index testing services), testing yield (index partners identified HIV positive from index partners HIV-tested), and linkage rate (index partners identified HIV positive and linked to antiretroviral therapy).Results: Of the total 2,705 index clients offered index testing services, 91.9% accepted, with 2,043 and 439 indexes opting for conventional elicitation and elicitation box models, respectively. A total of 3,796 sexual contacts were elicited: 2,546 using the conventional model (elicitation ratio=1:1) and 1,250 using the elicitation box model (elicitation ratio=1:3). Testing coverage was significantly higher in the conventional compared to the elicitation box model (P<.001). However, there was no significant difference in the testing yield (P=.81) and linkage rate using the conventional compared to elicitation box models (P=.13).Conclusion: The implementation of the elicitation box model resulted in an increase in partner elicitation compared to the conventional model. Increasing the testing coverage by implementing the elicitation box model should be considered. Full Article
v Development and Piloting of Implementation Strategies to Support Delivery of a Clinical Intervention for Postpartum Hemorrhage in Four sub-Saharan Africa Countries By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Postpartum hemorrhage (PPH) remains the leading cause of maternal mortality. A new clinical intervention (E-MOTIVE) holds the potential to improve early PPH detection and management. We aimed to develop and pilot implementation strategies to support uptake of this intervention in Kenya, Nigeria, South Africa, and Tanzania.Methods:Implementation strategy development: We triangulated findings from qualitative interviews, surveys and a qualitative evidence synthesis to identify current PPH care practices and influences on future intervention implementation. We mapped influences using implementation science frameworks to identify candidate implementation strategies before presenting these at stakeholder consultation and design workshops to discuss feasibility, acceptability, and local adaptations. Piloting: The intervention and implementation strategies were piloted in 12 health facilities (3 per country) over 3 months. Interviews (n=58), case report forms (n=1,269), and direct observations (18 vaginal births, 7 PPHs) were used to assess feasibility, acceptability, and fidelity.Results:Implementation strategy development: Key influences included shortages of drugs, supplies, and staff, limited in-service training, and perceived benefits of the intervention (e.g., more accurate PPH detection and reduced PPH mortality). Proposed implementation strategies included a PPH trolley, on-site simulation-based training, champions, and audit and feedback. Country-specific adaptations included merging the E-MOTIVE intervention with national maternal health trainings, adapting local PPH protocols, and PPH trollies depending on staff needs. Piloting: Intervention and implementation strategy fidelity differed within and across countries. Calibrated drapes resulted in earlier and more accurate PPH detection but were not consistently used at the start. Implementation strategies were feasible to deliver; however, some instances of limited use were observed (e.g., PPH trolley and skills practice after training).Conclusion:Systematic intervention development, piloting, and process evaluation helped identify initial challenges related to intervention fidelity, which were addressed ahead of a larger-scale effectiveness evaluation. This has helped maximize the internal validity of the trial. Full Article
v Twinning Partnership Network: A Learning and Experience-Sharing Network Among Health Professionals in Rwanda to Improve Health Services By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTWe describe the development, implementation, and evaluation of a novel twinning approach: the Twinning Partnership Network (TPN). Twinning is a well-known approach to peer learning that has been used in a variety of settings to build organizational capacity. Although twinning takes many forms, the heart of the approach is that institutions with shared characteristics collaborate via sharing information and experiences to achieve a specific goal. We adapted a twinning partnership strategy developed by the World Health Organization to create a network of like-minded health institutions. The key innovation of the TPN is the network, which ensures that an institution always has a high-performing peer with whom to partner on a specific topic area of interest. We identified 10 hospitals and 30 districts in Rwanda to participate in the TPN. These districts and hospitals participated in a kickoff workshop in which they identified capacity gaps, clarified goals, and selected twinning partners. After the workshop, districts and hospitals participated in exchange visits, coaching visits, and virtual and in-person learning events. We found that districts and hospitals that selected specific areas and worked on them throughout the duration of the TPN with their peers improved their performance significantly when compared with those that selected and worked on other areas. Accreditation scores improved by 5.6% more in hospitals selecting accreditation than those that did not. Districts that selected improving community-based health insurance coverage improved by 4.8% more than districts that did not select this topic area. We hypothesize that these results are due to senior management’s interest and motivation to improve in these specific areas, the motivation gained by learning from high-performing peers with similar resources, and context-specific knowledge sharing from peer hospitals and districts. Full Article
v National Politics’ Role in Developing Primary Health Care Policy for Maternal Health in Papua New Guinea: A Qualitative Document Analysis By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTPolitics is one of the critical factors that influence health policy agendas. However, scholarly efforts, especially in low- and middle-income countries, rarely focus on how politics influence health policy agenda-setting. We conducted a qualitative document review to examine the factors that led to developing the free primary health care policy for maternal health in Papua New Guinea. We also discuss mechanisms through which national politics, as an overriding factor, influenced the development of the policy. The review draws on Kingdon’s multiple-stream model for agenda-setting and incorporates theoretical insights from Fox and Reich’s framework for analyzing the politics of health reform for universal health coverage in low- and middle-income countries. Full Article
v Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator [Neuropharmacology] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role. SIGNIFICANCE STATEMENT Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ~10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration. Full Article
v Factors Influencing the Central Nervous System (CNS) Distribution of the Ataxia Telangiectasia Mutated and Rad3-Related Inhibitor Elimusertib (BAY1895344): Implications for the Treatment of CNS Tumors [Metabolism, Transport, and Pharmacogenetics] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro–in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors. Full Article
v Nonclinical Profile of PF-06952229 (MDV6058), a Novel TGF{beta}RI/Activin Like Kinase 5 Inhibitor Supports Clinical Evaluation in Cancer [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 The development of transforming growth factor βreceptor inhibitors (TGFβRi) as new medicines has been affected by cardiac valvulopathy and arteriopathy toxicity findings in nonclinical toxicology studies. PF-06952229 (MDV6058) selected using rational drug design is a potent and selective TGFβRI inhibitor with a relatively clean off-target selectivity profile and good pharmacokinetic properties across species. PF-06952229 inhibited clinically translatable phospho-SMAD2 biomarker (≥60%) in human and cynomolgus monkey peripheral blood mononuclear cells, as well as in mouse and rat splenocytes. Using an optimized, intermittent dosing schedule (7-day on/7-day off/cycle; 5 cycles), PF-06952229 demonstrated efficacy in a 63-day syngeneic MC38 colon carcinoma mouse model. In the pivotal repeat-dose toxicity studies (rat and cynomolgus monkey), PF-06952229 on an intermittent dosing schedule (5-day on/5-day off cycle; 5 cycles, 28 doses) showed no cardiac-related adverse findings. However, new toxicity findings related to PF-06952229 included reversible hepatocellular (hepatocyte necrosis with corresponding clinically monitorable transaminase increases) and lung (hemorrhage with mixed cell inflammation) findings at ≥ targeted projected clinical efficacious exposures. Furthermore, partially reversible cartilage hypertrophy (trachea and femur in rat; femur in monkey) and partially to fully reversible, clinically monitorable decreases in serum phosphorus and urinary phosphate at ≥ projected clinically efficacious exposures were observed. Given the integral role of TGFβ in endochondral bone formation, cartilage findings in toxicity studies have been observed with other TGFβRi classes of compounds. The favorable cumulative profile of PF-06952229 in biochemical, pharmacodynamic, pharmacokinetic, and nonclinical studies allowed for its evaluation in cancer patients using the intermittent dosing schedule (7-day on/7-day off) and careful protocol-defined monitoring. SIGNIFICANCE STATEMENT Only a few TGFβRi have progressed for clinical evaluation due to adverse cardiac findings in pivotal nonclinical toxicity studies. The potential translations of such findings in patients are of major concern. Using a carefully optimized intermittent dosing schedule, PF-06952229 has demonstrated impressive pharmacological efficacy in the syngeneic MC38 colon carcinoma mouse model. Additionally, a nonclinical toxicology package without cardiovascular liabilities and generally monitorable toxicity profile has been completed. The compound presents an acceptable International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use S9-compliant profile for the intended-to-treat cancer patients. Full Article
v Gabapentinoids Increase the Potency of Fentanyl and Heroin and Decrease the Potency of Naloxone to Antagonize Fentanyl and Heroin in Rats Discriminating Fentanyl [Behavioral Pharmacology] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Despite a significant decrease in the number of prescriptions for opioids, the opioid crisis continues, fueled in large part by the availability of the phenylpiperidine mu opioid receptor (MOR) agonist fentanyl. In contrast, the number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. Although gabapentinoids can decrease the potency of the opioid receptor antagonist naloxone to reverse heroin-induced hypoventilation in male rats, the specificity and nature of interaction between gabapentinoids and MOR agonists and any potential sex difference in those interactions are not well characterized. Gabapentinoids were studied in female and male rats discriminating fentanyl (0.0032 mg/kg, i.p.) or cocaine (3.2 mg/kg, i.p.). Alone, neither gabapentin nor pregabalin significantly increased fentanyl- or cocaine-appropriate responding. In rats discriminating fentanyl, each gabapentinoid dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the left, whereas naloxone dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the right. Each gabapentinoid (100 mg/kg) significantly decreased the potency of naloxone to antagonize the discriminative stimulus effect of fentanyl or heroin. In contrast, each gabapentinoid dose-dependently shifted the cocaine and d-methamphetamine discrimination dose-effect functions to the right. There were no significant sex differences in this study. These results suggest that gabapentinoids impact the misuse of opioids, the co-use of opioids and stimulant drugs, and the increasing number of overdose deaths in individuals using opioids, stimulant drugs, and gabapentinoids in mixtures. SIGNIFICANCE STATEMENT The number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. This study reports that in rats gabapentinoids increase the potency of fentanyl and heroin to produce discriminative stimulus effects while decreasing the potency of naloxone to antagonize those effects of fentanyl and heroin. These results can help guide policies for regulating gabapentinoids and treating opioid misuse and overdose. Full Article
v Effects of Dual Inhibition at Dopamine Transporter and {sigma} Receptors in the Discriminative-Stimulus Effects of Cocaine in Male Rats [Behavioral Pharmacology] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Previous studies demonstrated that sigma receptor (R) antagonists alone fail to alter cocaine self-administration despite blocking various other effects of cocaine. However, R antagonists when combined with dopamine transporter (DAT) inhibitors substantially decrease cocaine self-administration. To better understand the effects of this combination, the present study examined the effects of R antagonist and DAT inhibitor combinations in male rats discriminating cocaine (10 mg/kg, i.p.) from saline injections. The DAT inhibitors alone [(–)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate monohydrate (WIN 35,428) and methylphenidate] at low (0.1-mg/kg) doses that were minimally active failed to shift the dose-effect function for discriminative-stimulus effects of cocaine to the left more than 2-fold. At 0.32 mg/kg the DAT inhibitors alone shifted the cocaine dose-effect function leftward 24- or 6.6-fold, respectively. The R antagonists (BD1008, BD1047, and BD1063) failed to fully substitute for cocaine, although BD1008 and BD1047 substituted partially. At 10 mg/kg, BD1008, BD1047, or BD1063 alone shifted the cocaine dose-effect function leftward less than 6.0-fold. In combination with 0.1 mg/kg WIN 35,428, the 10 mg/kg doses of R antagonists shifted the cocaine dose-effect function from 12.3- to 36.7-fold leftward, and with 0.32 mg/kg WIN 35,428 from 14.3- to 440-fold leftward. In combination with 0.1 mg/kg methylphenidate, those R antagonist doses shifted the cocaine dose-effect function from 5.5- to 55.0-fold leftward, and with 0.32 mg/kg methylphenidate from 10.5- to 48.1-fold leftward. The present results suggest that dual DAT/R inhibition produces agonist-like subjective effects that may promote decreases in self-administration obtained in previous studies. SIGNIFICANCE STATEMENT There is currently no approved medication for treating stimulant abuse, although dopamine uptake inhibitors in combination with sigma receptor (R) antagonists decrease cocaine self-administration in laboratory animals. The present study assessed how this combination alters the discriminative-stimulus effects of cocaine in male rats. Results suggest that concurrent dopamine uptake inhibition and R antagonism together may promote decreases in self-administration, possibly by mimicking the subjective effects extant when subjects cease continued cocaine self-administration. Full Article
v Alternative Reinforcers Enhance the Effects of Opioid Antagonists, but Not Agonists, on Oxycodone Choice Self-Administration in Nonhuman Primates [Behavioral Pharmacology] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Clinical reports suggest that the most effective strategies for managing opioid use disorder comprise a comprehensive treatment program of both pharmacological and nonpharmacological approaches. However, the conditions under which these combinations are most effective are not well characterized. This study examined whether the presence of an alternative reinforcer could alter the efficacy of Food and Drug Administration–approved opioid antagonist or agonist medications, as well as the nonopioid flumazenil, in decreasing oxycodone choice self-administration in nonhuman primates. Adult squirrel monkeys (n = 7; four females) responded under concurrent second-order fixed-ratio (FR)-3(FR5:S);TO45s schedules of reinforcement for intravenous oxycodone (0.1 mg/kg) or saline on one lever and 30% sweetened condensed milk or water on the other. Doses of naltrexone (0.00032–1.0 mg/kg), nalbuphine (0.32–10 mg/kg), buprenorphine (0.0032–0.032 mg/kg), methadone (0.32–1.0 mg/kg), or flumazenil (1–3.2 mg/kg) were administered intramuscularly prior to oxycodone self-administration sessions that occurred with either milk or water as the alternative. Naltrexone, a μ-opioid receptor antagonist, was >30-fold more potent when milk was available compared with water and abolished oxycodone intake (injections/session) while concomitantly increasing milk deliveries at the highest dose tested. Pretreatment with the low-efficacy μ-agonist nalbuphine was most effective in the presence of milk compared with water, decreasing oxycodone preference to <50% of control values. The higher efficacy μ-agonists, methadone and buprenorphine, and the benzodiazepine antagonist flumazenil did not appreciably alter the reinforcing potency of oxycodone under either condition. These results suggest that antagonist medications used in combination with alternative reinforcers may be an effective strategy to curtail opioid abuse–related behaviors. SIGNIFICANCE STATEMENT Clinical treatment programs for opioid use disorder use a combination of pharmacological and nonpharmacological approaches. However, the conditions under which these combinations are most effective have not been fully characterized. This study examined whether the effectiveness of μ-opioid medications to decrease oxycodone self-administration is altered in the presence of an alternative reinforcer. The results suggest that alternative reinforcers enhance the effects of antagonist or low-efficacy partial agonists, suggesting they may be a more effective strategy to curtail opioid use. Full Article
v Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors. Full Article
v Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings. SIGNIFICANCE STATEMENT This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications. Full Article
v Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. Full Article
v KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7–10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need. Full Article