un Medication Adherence During Adjunct Therapy With Statins and ACE Inhibitors in Adolescents With Type 1 Diabetes By care.diabetesjournals.org Published On :: 2020-04-20T12:00:33-07:00 OBJECTIVE Suboptimal adherence to insulin treatment is a main issue in adolescents with type 1 diabetes. However, to date, there are no available data on adherence to adjunct noninsulin medications in this population. Our aim was to assess adherence to ACE inhibitors and statins and explore potential determinants in adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS There were 443 adolescents with type 1 diabetes recruited into the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) and exposed to treatment with two oral drugs—an ACE inhibitor and a statin—as well as combinations of both or placebo for 2–4 years. Adherence was assessed every 3 months with the Medication Event Monitoring System (MEMS) and pill count. RESULTS Median adherence during the trial was 80.2% (interquartile range 63.6–91.8) based on MEMS and 85.7% (72.4–92.9) for pill count. Adherence based on MEMS and pill count dropped from 92.9% and 96.3%, respectively, at the first visit to 76.3% and 79.0% at the end of the trial. The percentage of study participants with adherence ≥75% declined from 84% to 53%. A good correlation was found between adherence based on MEMS and pill count (r = 0.82, P < 0.001). Factors associated with adherence were age, glycemic control, and country. CONCLUSIONS We report an overall good adherence to ACE inhibitors and statins during a clinical trial, although there was a clear decline in adherence over time. Older age and suboptimal glycemic control at baseline predicted lower adherence during the trial, and, predictably, reduced adherence was more prevalent in subjects who subsequently dropped out. Full Article
un Increase in Endogenous Glucose Production With SGLT2 Inhibition Is Unchanged by Renal Denervation and Correlates Strongly With the Increase in Urinary Glucose Excretion By care.diabetesjournals.org Published On :: 2020-04-20T12:00:33-07:00 OBJECTIVE Sodium–glucose cotransporter 2 (SGLT2) inhibition causes an increase in endogenous glucose production (EGP). However, the mechanisms are unclear. We studied the effect of SGLT2 inhibitors on EGP in subjects with type 2 diabetes (T2D) and without diabetes (non-DM) in kidney transplant recipients with renal denervation. RESEARCH DESIGN AND METHODS Fourteen subjects who received a renal transplant (six with T2D [A1C 7.2 ± 0.1%] and eight non-DM [A1C 5.6 ± 0.1%) underwent measurement of EGP with [3-3H]glucose infusion following dapagliflozin (DAPA) 10 mg or placebo. Plasma glucose, insulin, C-peptide, glucagon, and titrated glucose-specific activity were measured. RESULTS Following placebo in T2D, fasting plasma glucose (FPG) (143 ± 14 to 124 ± 10 mg/dL; P = 0.02) and fasting plasma insulin (12 ± 2 to 10 ± 1.1 μU/mL; P < 0.05) decreased; plasma glucagon was unchanged, and EGP declined. After DAPA in T2D, FPG (143 ± 15 to 112 ± 9 mg/dL; P = 0.01) and fasting plasma insulin (14 ± 3 to 11 ± 2 μU/mL; P = 0.02) decreased, and plasma glucagon increased (all P < 0.05 vs. placebo). EGP was unchanged from baseline (2.21 ± 0.19 vs. 1.96 ± 0.14 mg/kg/min) in T2D (P < 0.001 vs. placebo). In non-DM following DAPA, FPG and fasting plasma insulin decreased, and plasma glucagon was unchanged. EGP was unchanged from baseline (1.85 ± 0.10 to 1.78 ± 0.10 mg/kg/min) after DAPA, whereas EGP declined significantly with placebo. When the increase in EGP production following DAPA versus placebo was plotted against the difference in urinary glucose excretion (UGE) for all patients, a strong correlation (r = 0.824; P < 0.001) was observed. CONCLUSIONS Renal denervation in patients who received a kidney transplant failed to block the DAPA-mediated stimulation of EGP in both individuals with T2D and non-DM subjects. The DAPA-stimulated rise in EGP is strongly related to the increase in UGE, blunting the decline in FPG. Full Article
un Differential Health Care Use, Diabetes-Related Complications, and Mortality Among Five Unique Classes of Patients With Type 2 Diabetes in Singapore: A Latent Class Analysis of 71,125 Patients By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE With rising health care costs and finite health care resources, understanding the population needs of different type 2 diabetes mellitus (T2DM) patient subgroups is important. Sparse data exist for the application of population segmentation on health care needs among Asian T2DM patients. We aimed to segment T2DM patients into distinct classes and evaluate their differential health care use, diabetes-related complications, and mortality patterns. RESEARCH DESIGN AND METHODS Latent class analysis was conducted on a retrospective cohort of 71,125 T2DM patients. Latent class indicators included patient’s age, ethnicity, comorbidities, and duration of T2DM. Outcomes evaluated included health care use, diabetes-related complications, and 4-year all-cause mortality. The relationship between class membership and outcomes was evaluated with the appropriate regression models. RESULTS Five classes of T2DM patients were identified. The prevalence of depression was high among patients in class 3 (younger females with short-to-moderate T2DM duration and high psychiatric and neurological disease burden) and class 5 (older patients with moderate-to-long T2DM duration and high disease burden with end-organ complications). They were the highest tertiary health care users. Class 5 patients had the highest risk of myocardial infarction (hazard ratio [HR] 12.05, 95% CI 10.82–13.42]), end-stage renal disease requiring dialysis initiation (HR 25.81, 95% CI 21.75–30.63), stroke (HR 19.37, 95% CI 16.92–22.17), lower-extremity amputation (HR 12.94, 95% CI 10.90–15.36), and mortality (HR 3.47, 95% CI 3.17–3.80). CONCLUSIONS T2DM patients can be segmented into classes with differential health care use and outcomes. Depression screening should be considered for the two identified classes of patients. Full Article
un Every Fifth Individual With Type 1 Diabetes Suffers From an Additional Autoimmune Disease: A Finnish Nationwide Study By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE The aim of this study was to quantify the excess risk of autoimmune hypothyroidism and hyperthyroidism, Addison disease, celiac disease, and atrophic gastritis in adults with type 1 diabetes (T1D) compared with nondiabetic individuals in Finland. RESEARCH DESIGN AND METHODS The study included 4,758 individuals with T1D from the Finnish Diabetic Nephropathy (FinnDiane) Study and 12,710 nondiabetic control individuals. The autoimmune diseases (ADs) were identified by linking the data with the Finnish nationwide health registries from 1970 to 2015. RESULTS The median age of the FinnDiane individuals at the end of follow-up in 2015 was 51.4 (interquartile range 42.6–60.1) years, and the median duration of diabetes was 35.5 (26.5–44.0) years. Of individuals with T1D, 22.8% had at least one additional AD, which included 31.6% of women and 14.9% of men. The odds ratios for hypothyroidism, hyperthyroidism, celiac disease, Addison disease, and atrophic gastritis were 3.43 (95% CI 3.09–3.81), 2.98 (2.27–3.90), 4.64 (3.71–5.81), 24.13 (5.60–104.03), and 5.08 (3.15–8.18), respectively, in the individuals with T1D compared with the control individuals. The corresponding ORs for women compared with men were 2.96 (2.53–3.47), 2.83 (1.87–4.28), 1.52 (1.15–2.02), 2.22 (0.83–5.91), and 1.36 (0.77–2.39), respectively, in individuals with T1D. Late onset of T1D and aging increased the risk of hypothyroidism, whereas young age at onset of T1D increased the risk of celiac disease. CONCLUSIONS This is one of the largest studies quantifying the risk of coexisting AD in adult individuals with T1D in the country with the highest incidence of T1D in the world. The results highlight the importance of continuous screening for other ADs in individuals with T1D. Full Article
un Incidence and Associations of Chronic Kidney Disease in Community Participants With Diabetes: A 5-Year Prospective Analysis of the EXTEND45 Study By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE To determine the incidence of and factors associated with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 in people with diabetes. RESEARCH DESIGN AND METHODS We identified people with diabetes in the EXamining ouTcomEs in chroNic Disease in the 45 and Up Study (EXTEND45), a population-based cohort study (2006–2014) that linked the Sax Institute’s 45 and Up Study cohort to community laboratory and administrative data in New South Wales, Australia. The study outcome was the first eGFR measurement <60 mL/min/1.73 m2 recorded during the follow-up period. Participants with eGFR < 60 mL/min/1.73 m2 at baseline were excluded. We used Poisson regression to estimate the incidence of eGFR <60 mL/min/1.73 m2 and multivariable Cox regression to examine factors associated with the study outcome. RESULTS Of 9,313 participants with diabetes, 2,106 (22.6%) developed incident eGFR <60 mL/min/1.73 m2 over a median follow-up time of 5.7 years (interquartile range, 3.0–5.9 years). The eGFR <60 mL/min/1.73 m2 incidence rate per 100 person-years was 6.0 (95% CI 5.7–6.3) overall, 1.5 (1.3–1.9) in participants aged 45–54 years, 3.7 (3.4–4.0) for 55–64 year olds, 7.6 (7.1–8.1) for 65–74 year olds, 15.0 (13.0–16.0) for 75–84 year olds, and 26.0 (22.0–32.0) for those aged 85 years and over. In a fully adjusted multivariable model incidence was independently associated with age (hazard ratio 1.23 per 5-year increase; 95% CI 1.19–1.26), geography (outer regional and remote versus major city: 1.36; 1.17–1.58), obesity (obese class III versus normal: 1.44; 1.16–1.80), and the presence of hypertension (1.52; 1.33–1.73), coronary heart disease (1.13; 1.02–1.24), cancer (1.30; 1.14–1.50), and depression/anxiety (1.14; 1.01–1.27). CONCLUSIONS In participants with diabetes, the incidence of an eGFR <60 mL/min/1.73 m2 was high. Older age, remoteness of residence, and the presence of various comorbid conditions were associated with higher incidence. Full Article
un Initial Glycemic Control and Care Among Younger Adults Diagnosed With Type 2 Diabetes By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE The prevalence of type 2 diabetes is increasing among adults under age 45. Onset of type 2 diabetes at a younger age increases an individual’s risk for diabetes-related complications. Given the lasting benefits conferred by early glycemic control, we compared glycemic control and initial care between adults with younger onset (21–44 years) and mid-age onset (45–64 years) of type 2 diabetes. RESEARCH DESIGN AND METHODS Using data from a large, integrated health care system, we identified 32,137 adults (aged 21–64 years) with incident diabetes (first HbA1c ≥6.5% [≥48 mmol/mol]). We excluded anyone with evidence of prior type 2 diabetes, gestational diabetes mellitus, or type 1 diabetes. We used generalized linear mixed models, adjusting for demographic and clinical variables, to examine differences in glycemic control and care at 1 year. RESULTS Of identified individuals, 26.4% had younger-onset and 73.6% had mid-age–onset type 2 diabetes. Adults with younger onset had higher initial mean HbA1c values (8.9% [74 mmol/mol]) than adults with onset in mid-age (8.4% [68 mmol/mol]) (P < 0.0001) and lower odds of achieving an HbA1c <7% (<53 mmol/mol) 1 year after the diagnosis (adjusted odds ratio [aOR] 0.70 [95% CI 0.66–0.74]), even after accounting for HbA1c at diagnosis. Adults with younger onset had lower odds of in-person primary care contact (aOR 0.82 [95% CI 0.76–0.89]) than those with onset during mid-age, but they did not differ in telephone contact (1.05 [0.99–1.10]). Adults with younger onset had higher odds of starting metformin (aOR 1.20 [95% CI 1.12–1.29]) but lower odds of adhering to that medication (0.74 [0.69–0.80]). CONCLUSIONS Adults with onset of type 2 diabetes at a younger age were less likely to achieve glycemic control at 1 year following diagnosis, suggesting the need for tailored care approaches to improve outcomes for this high-risk patient population. Full Article
un Bariatric Surgery in Patients With Obesity and Latent Autoimmune Diabetes in Adults (LADA) By care.diabetesjournals.org Published On :: 2020-04-20T12:00:33-07:00 Full Article
un Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Receptor-mediated endocytosis, which contributes to a wide range of cellular functions, including receptor signaling, cell adhesion, and migration, requires endocytic vesicle release by the large GTPase dynamin 2. Here, the role of dynamin 2 was investigated in platelet hemostatic function using both pharmacological and genetic approaches. Dnm2fl/fl Pf4-Cre (Dnm2Plt–/–) mice specifically lacking dynamin 2 within the platelet lineage developed severe thrombocytopenia and bleeding diathesis and Dnm2Plt–/– platelets adhered poorly to collagen under arterial shear rates. Signaling via the collagen receptor GPVI was impaired in platelets treated with the dynamin GTPase inhibitor dynasore, as evidenced by poor protein tyrosine phosphorylation, including that of the proximal tyrosine kinase Lyn on its activating tyrosine 396 residue. Platelet stimulation via GPVI resulted in a slight decrease in GPVI, which was maintained by dynasore treatment. Dynasore-treated platelets had attenuated function when stimulated via GPVI, as evidenced by reduced GPIbα downregulation, α-granule release, integrin αIIbβ3 activation, and spreading onto immobilized fibrinogen. By contrast, responses to the G-protein coupled receptor agonist thrombin were minimally affected by dynasore treatment. GPVI expression was severely reduced in Dnm2Plt–/– platelets, which were dysfunctional in response to stimulation via GPVI, and to a lesser extent to thrombin. Dnm2Plt–/– platelets lacked fibrinogen in their α-granules, but retained von Willebrand factor. Taken together, the data show that dynamin 2 plays a proximal role in signaling via the collagen receptor GPVI and is required for fibrinogen uptake and normal platelet hemostatic function. Full Article
un TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Immunotherapeutic strategies targeting the rare leukemic stem cell compartment might provide salvage to the high relapse rates currently observed in acute myeloid leukemia (AML). We applied gene expression profiling for comparison of leukemic blasts and leukemic stem cells with their normal counterparts. Here, we show that the T-cell receptor chain alternate reading frame protein (TARP) is over-expressed in de novo pediatric (n=13) and adult (n=17) AML sorted leukemic stem cells and blasts compared to hematopoietic stem cells and normal myeloblasts (15 healthy controls). Moreover, TARP expression was significantly associated with a fms-like tyrosine kinase receptor-3 internal tandem duplication in pediatric AML. TARP overexpression was confirmed in AML cell lines (n=9), and was found to be absent in B-cell acute lymphocytic leukemia (n=5) and chronic myeloid leukemia (n=1). Sequencing revealed that both a classical TARP transcript, as described in breast and prostate adenocarcinoma, and an AML-specific alternative TARP transcript, were present. Protein expression levels mostly matched transcript levels. TARP was shown to reside in the cytoplasmic compartment and showed sporadic endoplasmic reticulum co-localization. TARP-T-cell receptor engineered cytotoxic T-cells in vitro killed AML cell lines and patient leukemic cells co-expressing TARP and HLA-A*0201. In conclusion, TARP qualifies as a relevant target for immunotherapeutic T-cell therapy in AML. Full Article
un Genetics of "high-risk" chronic lymphocytic leukemia in the times of chemoimmunotherapy By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Full Article
un Immunosuppression and growth factors for severe aplastic anemia: new data for old questions By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Full Article
un Severe treatment-refractory T-cell-mediated immune skin toxicities observed with obinutuzumab/rituximab-atezo-pola in two patients with follicular lymphoma By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
un Hemolytic anemia due to the unstable hemoglobin Wien: manifestations and long-term course in the largest pedigree identified to date By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
un Early high plasma ST2, the decoy IL-33 receptor, in children undergoing hematopoietic cell transplantation is associated with the development of post-transplant diabetes mellitus By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
un IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
un Functional assessment of glucocerebrosidase modulator efficacy in primary patient-derived macrophages is essential for drug development and patient stratification By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
un A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function. Full Article
un Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Identifying gene variants causing monogenic diabetes (MD) increases understanding of disease etiology and allows for implementation of precision therapy to improve metabolic control and quality of life. Here, we aimed to assess the prevalence of MD in youth with diabetes in Lithuania, uncover potential diabetes-related gene variants, and prospectively introduce precision treatment. First, we assessed all pediatric and most young-adult patients with diabetes in Lithuania (n = 1,209) for diabetes-related autoimmune antibodies. We then screened all antibody-negative patients (n = 153) using targeted high-throughput sequencing of >300 potential candidate genes. In this group, 40.7% had MD, with the highest percentage (100%) in infants (diagnosis at ages 0–12 months), followed by those diagnosed at ages >1–18 years (40.3%) and >18–25 years (22.2%). The overall prevalence of MD in youth with diabetes in Lithuania was 3.5% (1.9% for GCK diabetes, 0.7% for HNF1A, 0.2% for HNF4A and ABCC8, 0.3% for KCNJ11, and 0.1% for INS). Furthermore, we identified likely pathogenic variants in 11 additional genes. Microvascular complications were present in 26% of those with MD. Prospective treatment change was successful in >50% of eligible candidates, with C-peptide >252 pmol/L emerging as the best prognostic factor. Full Article
un Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Diabetic keratopathy occurs in ~70% of all people with diabetes. This study was designed to examine the effects of vitamin D receptor knockout (VDR–/–) and vitamin D deficiency (VDD) on corneal epithelial wound healing and nerve density in diabetic mice. Diabetes was induced using the low-dose streptozotocin method. Corneal epithelial wounds were created using an Algerbrush, and wound healing was monitored over time. Corneal nerve density was measured in unwounded mice. VDR–/– and VDD diabetic mice (diabetic for 8 and 20 weeks, respectively) had slower healing ratios than wild-type diabetic mice. VDR–/– and VDD diabetic mice also showed significantly decreased nerve density. Reduced wound healing ratios and nerve densities were not fully rescued by a supplemental diet rich in calcium, lactose, and phosphate. We conclude that VDR–/– and VDD significantly reduce both corneal epithelial wound healing and nerve density in diabetic mice. Because the supplemental diet did not rescue wound healing or nerve density, these effects are likely not specifically related to hypocalcemia. This work supports the hypothesis that low vitamin D levels can exacerbate preexisting ophthalmic conditions, such as diabetes. Full Article
un Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Studies implicating sodium–glucose cotransporter 2 (SGLT2) inhibitors in glucagon secretion by pancreatic α-cells reported controversial results. We hypothesized that interindividual heterogeneity in SGLT2 expression and regulation may affect glucagon secretion by human α-cells in response to SGLT2 inhibitors. An unbiased RNA-sequencing analysis of 207 donors revealed an unprecedented level of heterogeneity of SLC5A2 expression. To determine heterogeneity of SGLT2 expression at the protein level, the anti-SGLT2 antibody was first rigorously evaluated for specificity, followed by Western blot and immunofluorescence analysis on islets from 10 and 12 donors, respectively. The results revealed a high interdonor variability of SGLT2 protein expression. Quantitative analysis of 665 human islets showed a significant SGLT2 protein colocalization with glucagon but not with insulin or somatostatin. Moreover, glucagon secretion by islets from 31 donors at low glucose (1 mmol/L) was also heterogeneous and correlated with dapagliflozin-induced glucagon secretion at 6 mmol/L glucose. Intriguingly, islets from three donors did not secrete glucagon in response to either 1 mmol/L glucose or dapagliflozin, indicating a functional impairment of the islets of these donors to glucose sensing and SGLT2 inhibition. Collectively, these data suggest that heterogeneous expression of SGLT2 protein and variability in glucagon secretory responses contribute to interindividual differences in response to SGLT2 inhibitors. Full Article
un MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA–mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies. Full Article
un Abnormal expression of GABAA receptor subunits and hypomotility upon loss of gabra1 in zebrafish [RESEARCH ARTICLE] By bio.biologists.org Published On :: 2020-04-13T03:41:34-07:00 Nayeli G. Reyes-Nava, Hung-Chun Yu, Curtis R. Coughlin II, Tamim H. Shaikh, and Anita M. Quintana We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease. Full Article
un Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing [RESEARCH ARTICLE] By bio.biologists.org Published On :: 2020-04-13T03:41:34-07:00 Yu Liu, Shuhua Qi, Fridtjof Thomas, Brittany L. Correia, Angela P. Taylor, Roy V. Sillitoe, and Detlef H. Heck Respiration is controlled by central pattern generating circuits in the brain stem, whose activity can be modulated by inputs from other brain areas to adapt respiration to autonomic and behavioral demands. The cerebellum is known to be part of the neuronal circuitry activated during respiratory challenges, such as hunger for air, but has not been found to be involved in the control of spontaneous, unobstructed breathing (eupnea). Here we applied a measure of intrinsic rhythmicity, the CV2, which evaluates the similarity of subsequent intervals and is thus sensitive to changes in rhythmicity at the temporal resolution of individual respiratory intervals. The variability of intrinsic respiratory rhythmicity was reduced in a mouse model of cerebellar ataxia compared to their healthy littermates. Irrespective of that difference, the average respiratory rate and the average coefficient of variation (CV) were comparable between healthy and ataxic mice. We argue that these findings are consistent with a proposed role of the cerebellum in modulating the duration of individual respiratory intervals, which could serve the purpose of coordinating respiration with other rhythmic orofacial movements, such as fluid licking and swallowing. Full Article
un Improving mental health in autistic young adults: a qualitative study exploring help-seeking barriers in UK primary care By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 BackgroundAutistic people are at increased risk of developing mental health problems. To reduce the negative impact of living with autism in a non-autistic world, efforts to improve take-up and access to care, and support in early years, which will typically start with a GP appointment, must be grounded in the accounts of autistic young adults.AimTo explore how autistic young adults understand and manage mental health problems; and to consider help seeking as a focus.Design and settingA cross-sectional, qualitative study. Autistic participants were purposively selected to represent a range of mental health conditions including anxiety and depression. A subsample were recruited from a population cohort screened for autism in childhood. The study concerns access to primary care.MethodNineteen autistic young adults without learning disabilities, aged 23 or 24 years, were recruited. In-depth, semi-structured interviews explored how they understood and managed mental health problems. Data were analysed thematically.ResultsYoung adults preferred self-management strategies. Multiple factors contributed to a focus on self-management, including: beliefs about the aetiology of mental health difficulties and increased vulnerability with the context of a diagnosis of autism, knowledge of self-management, and a view that formal support was unavailable or inadequate. Families had limited awareness of professional support.ConclusionYoung autistic adults without learning disabilities, and their families, may hold erroneous beliefs about autism and mental health. This may affect help seeking and contribute to an exacerbation of symptoms. GPs need to be alert to the fact that autistic young adults in their care may be experiencing mental health difficulties but may not recognise them as such. Full Article
un Understanding how patients establish strategies for living with asthma: a qualitative study in UK primary care as part of IMP2ART By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 BackgroundIn the context of a variable condition such as asthma, patient recognition of deteriorating control and knowing what prompt action to take is crucial. Yet, implementation of recommended self-management strategies remains poor.AimTo explore how patients with asthma and parents/carers of children with asthma develop and establish recommended self-management strategies for living with asthma, and how clinicians can best support the process.Design and settingA qualitative study in UK primary care.MethodPatients with asthma and parents/carers of children with asthma from 10 general practices were purposively sampled (using age, sex, and duration of asthma) to participate in focus groups or interviews between May 2016 and August 2016. Participants’ experiences of health care, management of asthma, and views on supported self-management were explored. Interviews and focus group sessions were audio-recorded and transcribed verbatim. Iterative thematic analysis was conducted, guided by the research questions and drawing on habit theory in discussion with a multidisciplinary research team.ResultsA total of 49 participants (45 patients; 4 parents/carers) took part in 32 interviews and five focus groups. Of these, 11 reported using an action plan. Patients learnt how to self-manage over time, building knowledge from personal experience and other sources, such as the internet. Some regular actions, for example, taking medication, became habitual. Dealing with new or unexpected scenarios required reflective abilities, which may be supported by a tailored action plan.ConclusionPatients reported learning intuitively how to self-manage. Some regular actions became habitual; dealing with the unexpected required more reflective cognitive skills. In order to support implementation of optimal asthma self- management, clinicians should consider both these aspects of self-management and support, and educate patients proactively. Full Article
un Are chronic wounds a feature of frailty? By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
un The human encounter, attention, and equality: the value of doctor-patient contact By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
un It could happen to anyone: vulnerability and boundaries By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
un STFM OFFERS MEDICAL SCHOOL FACULTY FUNDAMENTALS CERTIFICATE PROGRAM [Family Medicine Updates] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
un THE EVERYONE PROJECT UNVEILS IMPLICIT BIAS TRAINING GUIDE [Family Medicine Updates] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
un Connecting General Practitioners Through a Peer-Facilitated Community of Practice for Chronic Disease Care [Innovations in Primary Care] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
un COVID-19 and the Inpatient Dialysis Unit: Managing Resources during Contingency Planning Pre-Crisis By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Full Article
un Lessons from the Experience in Wuhan to Reduce Risk of COVID-19 Infection in Patients Undergoing Long-Term Hemodialysis By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Full Article
un Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19 By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Full Article
un The Elusive Promise of Bioimpedance in Fluid Management of Patients Undergoing Dialysis By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Full Article
un GITR Agonism Triggers Antitumor Immune Responses through IL21-Expressing Follicular Helper T Cells By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Although treatment with the glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR) agonistic antibody (DTA-1) has shown antitumor activity in various tumor models, the underlying mechanism is not fully understood. Here, we demonstrate that interleukin (IL)-21–producing follicular helper T (Tfh) cells play a crucial role in DTA-1–induced tumor inhibition. The administration of DTA-1 increased IL21 expression by Tfh cells in an antigen-specific manner, and this activation led to enhanced antitumor cytotoxic T lymphocyte (CTL) activity. Mice treated with an antibody that neutralizes the IL21 receptor exhibited decreased antitumor activity when treated with DTA-1. Tumor growth inhibition by DTA-1 was abrogated in Bcl6fl/flCd4Cre mice, which are genetically deficient in Tfh cells. IL4 was required for optimal induction of IL21-expressing Tfh cells by GITR costimulation, and c-Maf mediated this pathway. Thus, our findings identify GITR costimulation as an inducer of IL21-expressing Tfh cells and provide a mechanism for the antitumor activity of GITR agonism. Full Article
un Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies. Full Article
un IL1{alpha} Antagonizes IL1{beta} and Promotes Adaptive Immune Rejection of Malignant Tumors By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β–/–, IL1α–/–, and IL1R1–/– mice. Tumors grew progressively in IL1R–/– and IL1α–/– mice but were often absent in IL1β–/– mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages. Antibodies to IL1β prevented tumor growth in wild-type (WT) mice but not in IL1R1–/– or IL1α–/– mice. Antibodies to IL1α promoted tumor growth in IL1β–/– mice and reversed the tumor-suppressive effect of anti-IL1β in WT mice. Depletion of CD8+ T cells and blockade of lymphocyte mobilization abrogated the IL1β–/– tumor suppressive effect, as did crossing IL1β–/– mice to SCID or Rag1–/– mice. Finally, blockade of IL1β synergized with blockade of PD-1 to inhibit tumor growth in WT mice. These results suggest that IL1β promotes tumor growth, whereas IL1α inhibits tumor growth by enhancing T-cell–mediated antitumor immunity. Full Article
un Intratumoral Delivery of a PD-1-Blocking scFv Encoded in Oncolytic HSV-1 Promotes Antitumor Immunity and Synergizes with TIGIT Blockade By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Oncolytic virotherapy can lead to systemic antitumor immunity, but the therapeutic potential of oncolytic viruses in humans is limited due to their insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). Here, we showed that locoregional oncolytic virotherapy upregulated the expression of PD-L1 in the TME, which was mediated by virus-induced type I and type II IFNs. To explore PD-1/PD-L1 signaling as a direct target in tumor tissue, we developed a novel immunotherapeutic herpes simplex virus (HSV), OVH-aMPD-1, that expressed a single-chain variable fragment (scFv) against PD-1 (aMPD-1 scFv). The virus was designed to locally deliver aMPD-1 scFv in the TME to achieve enhanced antitumor effects. This virus effectively modified the TME by releasing damage-associated molecular patterns, promoting antigen cross-presentation by dendritic cells, and enhancing the infiltration of activated T cells; these alterations resulted in antitumor T-cell activity that led to reduced tumor burdens in a liver cancer model. Compared with OVH, OVH-aMPD-1 promoted the infiltration of myeloid-derived suppressor cells (MDSC), resulting in significantly higher percentages of CD155+ granulocytic-MDSCs (G-MDSC) and monocytic-MDSCs (M-MDSC) in tumors. In combination with TIGIT blockade, this virus enhanced tumor-specific immune responses in mice with implanted subcutaneous tumors or invasive tumors. These findings highlighted that intratumoral immunomodulation with an OV expressing aMPD-1 scFv could be an effective stand-alone strategy to treat cancers or drive maximal efficacy of a combination therapy with other immune checkpoint inhibitors. Full Article
un Deciphering the Immunomodulatory Capacity of Oncolytic Vaccinia Virus to Enhance the Immune Response to Breast Cancer By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors." Full Article
un Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The identification of biomarkers for patient stratification is fundamental to precision medicine efforts in oncology. Here, we identified two baseline, circulating immune cell subsets associated with overall survival in patients with metastatic pancreatic cancer who were enrolled in two phase II randomized studies of GVAX pancreas and CRS-207 immunotherapy. Single-cell mass cytometry was used to simultaneously measure 38 cell surface or intracellular markers in peripheral blood mononuclear cells obtained from a phase IIa patient subcohort (N = 38). CITRUS, an algorithm for identification of stratifying subpopulations in multidimensional cytometry datasets, was used to identify single-cell signatures associated with clinical outcome. Patients with a higher abundance of CD8+CD45RO–CCR7–CD57+ cells and a lower abundance of CD14+CD33+CD85j+ cells had improved overall survival [median overall survival, range (days) 271, 43–1,247] compared with patients with a lower abundance of CD8+CD45RO–CCR7–CD57+ cells and higher abundance of CD14+CD33+CD85j+ cells (77, 24–1,247 days; P = 0.0442). The results from this prospective–retrospective biomarker analysis were validated by flow cytometry in 200 patients with pancreatic cancer enrolled in a phase IIb study (P = 0.0047). The identified immune correlates provide potential prognostic or predictive signatures that could be employed for patient stratification. Full Article
un Remodeling Translation Primes CD8+ T-cell Antitumor Immunity By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The requisites for protein translation in T cells are poorly understood and how translation shapes the antitumor efficacy of T cells is unknown. Here we demonstrated that IL15-conditioned T cells were primed by the metabolic energy sensor AMP-activated protein kinase to undergo diminished translation relative to effector T cells. However, we showed that IL15-conditioned T cells exhibited a remarkable capacity to enhance their protein translation in tumors, which effector T cells were unable to duplicate. Studying the modulation of translation for applications in cancer immunotherapy revealed that direct ex vivo pharmacologic inhibition of translation elongation primed robust T-cell antitumor immunity. Our work elucidates that altering protein translation in CD8+ T cells can shape their antitumor capability. Full Article
un Different Effects of Soil Fertilization on Bacterial Community Composition in the Penicillium canescens Hyphosphere and in Bulk Soil [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling. IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil. Full Article
un Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally. IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally. Full Article
un Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2 [Biodegradation] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes. IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans. Full Article
un Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation [Biotechnology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (~8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections. IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa. A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections. Full Article
un Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes. Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2. In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes. IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes. Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes. Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes. Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria. Full Article
un Microbial Diversity in Deep-Subsurface Hot Brines of Northwest Poland: from Community Structure to Isolate Characteristics [Geomicrobiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes. Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic. IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth’s crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported. Full Article
un Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Microbial mat communities are associated with extensive (~700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL. IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ~700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record. Full Article