ri 6-Methyl-4-{[4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl]methyl}-2H-chromen-2-one By scripts.iucr.org Published On :: 2020-04-03 In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, molecules are linked into [010] chains by weak C—H⋯O interactions. Full Article text
ri Tris(4,4'-di-tert-butyl-2,2'-bipyridine)(trans-4-tert-butylcyclohexanolato)deca-μ-oxido-heptaoxidoheptavanadium acetonitrile monosolvate including another unknown solvent molecule By scripts.iucr.org Published On :: 2020-04-07 The title heptanuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butylcyclohexanol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetrahedra, two VO6 octahedra and three VO4N2 octahedra. In the crystal, these complexes are linked together by weak intermolecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bipyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent molecule. The contribution of other disordered solvent molecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent molecules are not considered in the chemical formula and other crystal data. Full Article text
ri Redetermination of diammonium trivanadate, (NH4)2V3O8 By scripts.iucr.org Published On :: 2020-04-09 The crystal structure of (NH4)2V3O8 has been reported twice using single-crystal X-ray data [Theobald et al. (1984). J. Phys. Chem. Solids, 45, 581–587; Range et al. (1988). Z. Naturforsch. Teil B, 43, 309–317]. In both cases, the orientation of the ammonium cation in the asymmetric unit was poorly defined: in Theobald's study, the shape and dimensions were constrained for NH4+, while in Range's study, H atoms were not included. In the present study, we collected a highly redundant data set for this ternary oxide, at 0.61 Å resolution, using Ag Kα radiation. These accurate data reveal that the NH4+ cation is disordered by rotation around a non-crystallographic axis. The rotation axis coincides with one N—H bond lying in the mirror m symmetry element of space-group type P4bm, and the remaining H sites were modelled over two disordered positions, with equal occupancy. It therefore follows that the NH4+ cations filling the space available in the (001) layered structure formed by (V3O8)2– ions do not form strong N—H⋯O hydrogen bonds with the mixed-valent oxidovanadate(IV,V) anions. This feature could have consequences for the Li-ion intercalation properties of this material, which is used as a cathode for supercapacitors. Full Article text
ri 2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one By scripts.iucr.org Published On :: 2020-04-21 In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, molecules are linked by C—H⋯π interactions into dimers with the molecules related by twofold symmetry. Full Article text
ri 2,4,6-Triphenyl-N-{(3E)-3-[(2,4,6-triphenylphenyl)imino]butan-2-ylidene}aniline By scripts.iucr.org Published On :: 2020-04-30 The title compound, C52H40N2, is disposed about a centre of inversion and the conformation about the imine bond [1.268 (3) Å] is E. The terminal benzene ring is approximately perpendicular to the central 1,4-diazabutadiene mean plane, forming a dihedral angle of 81.2 (3)°. Weak C—H⋯π and π–π [inter-centroid distance = 4.021 (5) Å] interactions help to consolidate the packing. Full Article text
ri Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API) By scripts.iucr.org Published On :: 2019-06-11 The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenylpyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, molecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane. Full Article text
ri Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]methyl}phenol acetonitrile hemisolvate By scripts.iucr.org Published On :: 2019-05-10 The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an acetonitrile hemisolvate; the solvent molecule being located on a twofold rotation axis. The molecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intramolecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supramolecular framework. Within the framework there are offset π–π stacking interactions [intercentroid distance = 3.833 (2) Å] present involving inversion-related molecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-dinitrobenzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u. Full Article text
ri Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2019-05-10 This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile, a phthalonitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent molecules are connected by pairs of weak intermolecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic molecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. Full Article text
ri Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bischalcone: (1E,4E)-1,5-bis(4-bromophenyl)penta-1,4-dien-3-one By scripts.iucr.org Published On :: 2019-05-10 In the title bischalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromophenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromophenyl rings is 51.56 (2)°. In the crystal, molecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π interactions. The conformations of related bischalcones are surveyed and a Hirshfeld surface analysis is used to investigate and quantify the intermolecular contacts. Full Article text
ri N-[2-(Trifluoromethyl)phenyl]maleamic acid: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-05-10 The title molecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O interactions into (100) sheets, which are cross-linked by another C—H⋯O interaction to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%). Full Article text
ri Crystal structure of tetrakis[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetrafluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetrahydrate By scripts.iucr.org Published On :: 2019-05-17 The crystal structure of the title molecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carboxyadamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carboxylic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water molecules and VO2F2− ions of adjacent molecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure. Full Article text
ri Crystal structure of di-μ-chlorido-bis[dichlorido(l-histidinium-κO)cadmium(II)] By scripts.iucr.org Published On :: 2019-05-17 In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the molecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information. Full Article text
ri Crystal structure and Hirshfeld surface analysis of tris(2,2'-bipyridine)nickel(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) dihydrate By scripts.iucr.org Published On :: 2019-05-24 The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) interactions involving the CH3 group. The intermolecular interactions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots. Full Article text
ri Crystal structures of a series of 6-aryl-1,3-diphenylfulvenes By scripts.iucr.org Published On :: 2019-05-21 The synthesis and crystal structures of a series of 6-arylfuvlenes (fulvene is 5-methylidenecyclopenta-1,3-diene) with varying methylation patterns on the 6-phenyl substituent are reported, namely 6-(3-methylphenyl)-1,3-diphenylfulvene (C25H20), 6-(4-methylphenyl)-1,3-diphenylfulvene (C25H20), 6-mesityl-3-diphenylfulvene (C27H24) and 6-(2,3,4,5,6-pentamethylphenyl)-1,3-diphenylfulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring interactions consolidates the packing in each structure. Full Article text
ri Bis[μ-bis(2,6-diisopropylphenyl) phosphato-κ2O:O']bis[(2,2'-bipyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide By scripts.iucr.org Published On :: 2019-05-21 The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bipyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex molecule and one molecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bipyridine ligand is chelating to the Li+ cation, generating a distorted tetrahedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π interactions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide. Full Article text
ri Crystal structure of bis(μ-{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido-κ3N,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O By scripts.iucr.org Published On :: 2019-05-24 The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cysteamine (2-aminoethanethiol) and 5-bromosalicylaldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') molecule and one DMF solvent molecule. Each CoIII ion has a slightly distorted octahedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin. Full Article text
ri Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chlorobenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetate By scripts.iucr.org Published On :: 2019-05-24 The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O interactions, forming chains extending parallel to the c-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts. Full Article text
ri Zn and Ni complexes of pyridine-2,6-dicarboxylates: crystal field stabilization matters! By scripts.iucr.org Published On :: 2019-05-31 Six reaction products of ZnII and NiII with pyridine-2,6-dicarboxylic acid (H2Lig1), 4-chloropyridine-2,6-dicarboxylic acid (H2Lig2) and 4-hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octahedral ZnII coordination sphere in bis(6-carboxypicolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis(6-carboxypicolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloropyridine-2,6-dicarboxylato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hydroxypyridine-2,6-dicarboxylato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-dicarboxylate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely triaqua(4-chloropyridine-2,6-dicarboxylato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and triaqua(4-hydroxypyridine-2,6-dicarboxylato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octahedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures. Full Article text
ri Some chalcones derived from thiophene-3-carbaldehyde: synthesis and crystal structures By scripts.iucr.org Published On :: 2019-06-04 The synthesis, spectroscopic data and crystal and molecular structures of four 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives, namely 1-(4-hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thiophene-3-carbaldehyde with an acetophenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thiophene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thiophene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The molecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O interactions. In addition, C—H⋯π(thiophene) interactions in 2 and C—H⋯S(thiophene) interactions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thiophene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved. Full Article text
ri Crystal structure of 210,220-bis(2,6-dichlorophenyl)-4,7,12,15-tetraoxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cycloheptadecaphane-9-yne dichloromethane monosolvate By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitrogen atoms of a porphyrin molecule within a square-planar coordination environment. Weak intramolecular C—H⋯Cl and C—H⋯O interactions stabilize the molecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding interactions. In addition, the two unique dichloromethane solvate molecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chlorophenyl groups of the porphyrin molecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-orthorhombic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry. Full Article text
ri Crystal structure of a polymorph of μ-oxido-bis[(5,10,15,20-tetraphenylporphyrinato)iron(III)] By scripts.iucr.org Published On :: 2019-05-31 The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetraphenylporphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the orthorhombic form previously reported [Hoffman et al. (1972). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985) Acta Cryst. C41, 671–673; Kooijmann et al. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetraphenylporphyrin ligand. The FeIII-tetraphenylporphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3). Full Article text
ri Crystal structure of 3,14-diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data By scripts.iucr.org Published On :: 2019-05-31 The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water molecule. The molecular dication, C22H46N42+, together with the nitrate anion and hydrate water molecule are involved in an extensive range of hydrogen bonds. The molecule is stabilized, as is the conformation of the dication, by forming intermolecular N—H⋯O, O—H⋯O, together with intramolecular N—H⋯N hydrogen bonds. Full Article text
ri Crystal structure, synthesis and thermal properties of tetrakis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)iron(II) By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoylpyridine ligands and one thiocyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thiocyanate anions and four 4-benzoylpyridine ligands into discrete complexes with a slightly distorted octahedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoylpyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown. Full Article text
ri Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate By scripts.iucr.org Published On :: 2019-06-04 In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported. Full Article text
ri Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2 By scripts.iucr.org Published On :: 2019-06-11 Rb0.21(H2O)yWS2, rubidium hydrate dithiotungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water molecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octahedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K. Full Article text
ri Synthesis, characterization, and crystal structure of aquabis(4,4'-dimethoxy-2,2'-bipyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octahydrate By scripts.iucr.org Published On :: 2019-06-11 Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bipyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis(4,4'-dimethoxy-2,2'-bipyridine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight molecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs. Full Article text
ri Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] By scripts.iucr.org Published On :: 2019-06-21 The coordination of the ligands with respect to the central atom in the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octahedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-diphenylpyridylphosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H interactions contribute 26%, the distance of these interactions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in dichloromethane leads to the partial decoordination of the pyridylphosphine ligand, whose pyridyl group is replaced by a piperidine molecule, and the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The molecule has an intramolecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloroform molecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridylphosphine. The contribution to the scattering from highly disordered solvent molecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account. Full Article text
ri Crystal structure, DFT and MEP study of (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile By scripts.iucr.org Published On :: 2019-06-14 The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent molecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intramolecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking interactions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network. Full Article text
ri Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]dichloridobis(dimethyl sulfoxide-κS)ruthenium(II) By scripts.iucr.org Published On :: 2019-07-04 The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyltriazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3. Full Article text
ri Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
ri Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2 By scripts.iucr.org Published On :: 2019-06-21 Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sintering. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexagonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetrahedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values. Full Article text
ri Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga) By scripts.iucr.org Published On :: 2019-06-25 From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chlorobenzene, the new cationic SnII–π-arene complexes catena-poly[[chloridoaluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-μ-chlorido-3:4κ4Cl-[chloridoaluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chloridogallate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetramethylbenzene)tin(II)]-di-μ-chlorido-3:4κ4Cl-[chloridogallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding interaction of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−. Full Article text
ri Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral molecules, cations and heptamolybdate anions By scripts.iucr.org Published On :: 2019-06-21 The title compound, hexakis(2-methyl-1H-imidazol-3-ium) heptamolybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methylimidazole and ammonium heptamolybdate tetrahydrate in acid solution. The [Mo7O24]6− heptamolybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methylimidazolium cations, two neutral C4H6N2 2-methylimidazole molecules and two water molecules of crystallization. The cluster consists of seven distorted MoO6 octahedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O interactions consolidate the packing. Full Article text
ri Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluorophenyl)-2-oxoethyl]-6-phenylpyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-06-21 The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent molecules (A and B) in the asymmetric unit. In molecule A, the 4-fluorophenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In molecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A molecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming columns stacking along the a-axis direction. The B molecules are linked to each other in a similar manner and form columns separating the columns of A molecules. Full Article text
ri Crystal structure of hexa-μ-chlorido-μ4-oxido-tetrakis{[1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts By scripts.iucr.org Published On :: 2019-06-25 The title tetranuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O(MET)4] [MET is 1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetrahedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetrahedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitrogen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitrogen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N interactions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent molecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. Full Article text
ri (1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol and (1R,2S,4r)-4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone By scripts.iucr.org Published On :: 2019-06-21 Reductive cyclization of 1,3,5-triphenyl- and 3-(2-methoxyphenyl)-1,5-diphenylpentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-triphenylcyclopentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in orthorhombic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent molecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intramolecular and one intermolecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone. Full Article text
ri Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2 By scripts.iucr.org Published On :: 2019-06-21 The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group Poverline{3}m1 with the glaserite structure type. VO4 tetrahedra are linked to DyO6 or GdO6 octahedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities. Full Article text
ri Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-diaqua[2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole]dithiocyanatonickel(II) By scripts.iucr.org Published On :: 2019-06-21 The reaction of 2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole (4-pox) and thiocyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octahedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water molecules. In the crystal, the molecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ri Crystal structures of two CuII compounds: catena-poly[[chloridocopper(II)]-μ-N-[ethoxy(pyridin-2-yl)methylidene]-N'-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κ By scripts.iucr.org Published On :: 2019-06-28 Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitrogen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitrogen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by intermolecular C—H⋯O and C—H⋯Cl interactions, leading to a three-dimensional network structure. The tetranuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually interconnected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the pentacoordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hydroxy groups and one chloride anion to two other CuII ions. Each of the pentacoordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intramolecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetranuclear monomeric unit, which is connected to four tetranuclear monomeric units by intermolecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane. Full Article text
ri Crystal structure and Hirshfeld surface analysis of diiodido{N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II) By scripts.iucr.org Published On :: 2019-06-25 In each of the two independent molecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O pentacoordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both molecules feature an intramolecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking interactions [centroid–centroid separation = 3.830 (2) Å] link the molecules into dimers. Full Article text
ri Crystal structure analysis of the biologically active drug molecule riluzole and riluzolium chloride By scripts.iucr.org Published On :: 2019-07-02 This study is an investigation into the crystal structure of the biologically active drug molecule riluzole [RZ, 6-(trifluoromethoxy)-1,3-benzothiazol-2-amine], C8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(trifluoromethoxy)-1,3-benzothiazol-3-ium chloride], C8H6F3N2OS+·Cl−. In spite of repeated efforts to crystallize the drug, its crystal structure has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydrochloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from dichloromethane. The crystals of riluzole were obtained in the presence of l-glutamic acid and d-glutamic acid in separate experiments. In the crystal structure of RZHCl, the –OCF3 moiety is perpendicular to the molecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different molecules in the asymmetric unit show that in three cases the trifluoromethoxy group is perpendicular to the riluzole molecular plane and only in one molecule does the –OCF3 group lie in the same molecular plane. The crystal structure of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S interactions, while that of its salt is stabilized by strong [N—H]+⋯Cl− and weak C—H⋯Cl−, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl− interactions. Full Article text
ri Crystal structures and Hirshfeld surface analysis of a series of 4-O-arylperfluoropyridines By scripts.iucr.org Published On :: 2019-07-04 Five new crystal structures of perfluoropyridine substituted in the 4-position with phenoxy, 4-bromophenoxy, naphthalen-2-yloxy, 6-bromonaphthalen-2-yloxy, and 4,4'-biphenoxy are reported, viz. 2,3,5,6-tetrafluoro-4-phenoxypyridine, C11H5F4NO (I), 4-(4-bromophenoxy)-2,3,5,6-tetrafluoropyridine, C11H4BrF4NO (II), 2,3,5,6-tetrafluoro-4-[(naphthalen-2-yl)oxy]pyridine, C15H7F4NO (III), 4-[(6-bromonaphthalen-2-yl)oxy]-2,3,5,6-tetrafluoropyridine, C15H6BrF4NO (IV), and 2,2'-bis[(perfluoropyridin-4-yl)oxy]-1,1'-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in I–IV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete molecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F interactions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing. Full Article text
ri Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one By scripts.iucr.org Published On :: 2019-07-09 The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent molecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intramolecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, molecules are linked by N—H⋯π interactions, forming chains along the b-axis direction. A C—H⋯π interaction links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π interaction, forming a three-dimensional structure. In the crystal of II, the two independent molecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π interactions involving inversion-related A molecules. The latter are linked by offset π–π interactions [intercentroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure. Full Article text
ri (E)-6,6'-(Diazene-1,2-diyl)bis(1,10-phenanthrolin-5-ol) trichloromethane disolvate: a superconjugated ligand By scripts.iucr.org Published On :: 2019-07-23 Phenanthroline ligands are important metal-binding molecules which have been extensively researched for applications in both material science and medicinal chemistry. Azobenzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as molecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3. Full Article text
ri N,N'-Bis(pyridin-4-ylmethyl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-07-09 The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide molecule: N,N'-bis(pyridin-4-ylmethyl)ethanediamide], comprises a half molecule of each constituent as each is disposed about a centre of inversion. In the oxalamide molecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intramolecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the molecule adopts an antiperiplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supramolecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyridyl) hydrogen bonds. The layers stack encompassing benzene molecules which provide the links between layers via methylene-C—H⋯π(benzene) and benzene-C—H⋯π(pyridyl) interactions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces). Full Article text
ri Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile By scripts.iucr.org Published On :: 2019-07-16 In the title compound, C16H11Cl2N3O, the 4-methoxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzonitrile group. In the crystal, molecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) interactions. Full Article text
ri Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate] By scripts.iucr.org Published On :: 2019-07-12 The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxylate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare orthorhombic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetragonal framework with small channels along the c-axis direction occupied by water molecules of crystallization, which are interlinked via O—H⋯O hydrogen bonds with carboxylate groups, leading to right- and left-handed helical dispositions. Full Article text
ri Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoropyridin-4-yl)-3a,4,7,7a-tetrahydro-4,7-methanoisoindole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoropyridin-4-yl)oxy]-3a,4,7,7a- By scripts.iucr.org Published On :: 2019-07-12 The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F intertactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H interactions, followed by H⋯H and O⋯H/H⋯O. Full Article text
ri Crystal structure of poly[[(μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate] By scripts.iucr.org Published On :: 2019-07-16 The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxylate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water molecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure. Full Article text
ri Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)methoxy]meth By scripts.iucr.org Published On :: 2019-07-12 In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds link the molecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl⋯π interaction complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Electrochemical measurements are also reported. Full Article text