ri

6-Methyl-4-{[4-(tri­methyl­sil­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-2H-chromen-2-one

In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, mol­ecules are linked into [010] chains by weak C—H⋯O inter­actions.




ri

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




ri

Redetermination of di­ammonium trivanadate, (NH4)2V3O8

The crystal structure of (NH4)2V3O8 has been reported twice using single-crystal X-ray data [Theobald et al. (1984). J. Phys. Chem. Solids, 45, 581–587; Range et al. (1988). Z. Naturforsch. Teil B, 43, 309–317]. In both cases, the orientation of the ammonium cation in the asymmetric unit was poorly defined: in Theobald's study, the shape and dimensions were constrained for NH4+, while in Range's study, H atoms were not included. In the present study, we collected a highly redundant data set for this ternary oxide, at 0.61 Å resolution, using Ag Kα radiation. These accurate data reveal that the NH4+ cation is disordered by rotation around a non-crystallographic axis. The rotation axis coincides with one N—H bond lying in the mirror m symmetry element of space-group type P4bm, and the remaining H sites were modelled over two disordered positions, with equal occupancy. It therefore follows that the NH4+ cations filling the space available in the (001) layered structure formed by (V3O8)2– ions do not form strong N—H⋯O hydrogen bonds with the mixed-valent oxidovanadate(IV,V) anions. This feature could have consequences for the Li-ion inter­calation properties of this material, which is used as a cathode for supercapacitors.




ri

2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one

In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into dimers with the mol­ecules related by twofold symmetry.




ri

2,4,6-Triphenyl-N-{(3E)-3-[(2,4,6-tri­phenyl­phen­yl)imino]­butan-2-yl­idene}aniline

The title compound, C52H40N2, is disposed about a centre of inversion and the conformation about the imine bond [1.268 (3) Å] is E. The terminal benzene ring is approximately perpendicular to the central 1,4-di­aza­butadiene mean plane, forming a dihedral angle of 81.2 (3)°. Weak C—H⋯π and π–π [inter-centroid distance = 4.021 (5) Å] inter­actions help to consolidate the packing.




ri

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, mol­ecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane.




ri

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




ri

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




ri

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




ri

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




ri

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




ri

Crystal structure of di-μ-chlorido-bis­[di­chlorido(l-histidinium-κO)cadmium(II)]

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.




ri

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




ri

Crystal structures of a series of 6-aryl-1,3-diphenyl­fulvenes

The synthesis and crystal structures of a series of 6-aryl­fuvlenes (fulvene is 5-methyl­idene­cyclo­penta-1,3-diene) with varying methyl­ation patterns on the 6-phenyl substituent are reported, namely 6-(3-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-(4-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-mesityl-3-di­phenyl­fulvene (C27H24) and 6-(2,3,4,5,6-penta­methyl­phen­yl)-1,3-di­phenyl­fulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring inter­actions consolidates the packing in each structure.




ri

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




ri

Crystal structure of bis(μ-{2-[(5-bromo-2-oxido­benzyl­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2'-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4O,N,N',O

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.




ri

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.




ri

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




ri

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.




ri

Crystal structure of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne di­chloro­methane monosolvate

The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitro­gen atoms of a porphyrin mol­ecule within a square-planar coordination environment. Weak intra­molecular C—H⋯Cl and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding inter­actions. In addition, the two unique di­chloro­methane solvate mol­ecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chloro­phenyl groups of the porphyrin mol­ecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-ortho­rhom­bic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry.




ri

Crystal structure of a polymorph of μ-oxido-bis­[(5,10,15,20-tetra­phenyl­porphyrinato)iron(III)]

The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetra­phenyl­porphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the ortho­rhom­bic form previously reported [Hoffman et al. (1972). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985) Acta Cryst. C41, 671–673; Kooijmann et al. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetra­phenyl­porphyrin ligand. The FeIII-tetra­phenyl­porphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3).




ri

Crystal structure of 3,14-diethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data

The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water mol­ecule. The mol­ecular dication, C22H46N42+, together with the nitrate anion and hydrate water mol­ecule are involved in an extensive range of hydrogen bonds. The mol­ecule is stabilized, as is the conformation of the dication, by forming inter­molecular N—H⋯O, O—H⋯O, together with intra­molecular N—H⋯N hydrogen bonds.




ri

Crystal structure, synthesis and thermal properties of tetra­kis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)iron(II)

The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoyl­pyridine ligands and one thio­cyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thio­cyanate anions and four 4-benzoyl­pyridine ligands into discrete complexes with a slightly distorted octa­hedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoyl­pyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown.




ri

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.




ri

Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2

Rb0.21(H2O)yWS2, rubidium hydrate di­thio­tungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water mol­ecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octa­hedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K.




ri

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




ri

Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]

The coordination of the ligands with respect to the central atom in the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloro­form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa­hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di­phenyl­pyridyl­phosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H inter­actions contribute 26%, the distance of these inter­actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di­chloro­methane leads to the partial decoord­ination of the pyridyl­phosphine ligand, whose pyridyl group is replaced by a piperidine mol­ecule, and the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol­ecule has an intra­molecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro­form mol­ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl­phosphine. The contribution to the scattering from highly disordered solvent mol­ecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account.




ri

Crystal structure, DFT and MEP study of (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile

The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent mol­ecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intra­molecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking inter­actions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network.




ri

Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]di­chlorido­bis­(dimethyl sulfoxide-κS)ruthenium(II)

The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyl­triazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3.




ri

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively.




ri

Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2

Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sinter­ing. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexa­gonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetra­hedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values.




ri

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnII–π-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−.




ri

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.




ri

Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-6-phenyl­pyridazin-3(2H)-one

The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the 4-fluoro­phenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In mol­ecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming columns stacking along the a-axis direction. The B mol­ecules are linked to each other in a similar manner and form columns separating the columns of A mol­ecules.




ri

Crystal structure of hexa-μ-chlorido-μ4-oxido-tetra­kis­{[1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts

The title tetra­nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O­(MET)4] [MET is 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra­hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra­hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro­gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro­gen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N inter­actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol­ecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155].




ri

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone

Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho­rhom­bic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol­ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra­molecular and one inter­molecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone.




ri

Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2

The crystal structures of dirubidium potassium dysprosium bis­(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis­(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group Poverline{3}m1 with the glaserite structure type. VO4 tetra­hedra are linked to DyO6 or GdO6 octa­hedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.




ri

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di­aqua­[2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole]di­thio­cyanato­nickel(II)

The reaction of 2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole (4-pox) and thio­cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa­hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol­ecules. In the crystal, the mol­ecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




ri

Crystal structures of two CuII compounds: catena-poly[[chlorido­copper(II)]-μ-N-[eth­oxy(pyridin-2-yl)methyl­idene]-N'-[oxido(pyridin-3-yl)methyl­idene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-di­chlorido-2κ

Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitro­gen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitro­gen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by inter­molecular C—H⋯O and C—H⋯Cl inter­actions, leading to a three-dimensional network structure. The tetra­nuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually inter­connected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the penta­coordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hy­droxy groups and one chloride anion to two other CuII ions. Each of the penta­coordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetra­nuclear monomeric unit, which is connected to four tetra­nuclear monomeric units by inter­molecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane.




ri

Crystal structure and Hirshfeld surface analysis of di­iodido­{N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II)

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O penta­coordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both mol­ecules feature an intra­molecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking inter­actions [centroid–centroid separation = 3.830 (2) Å] link the mol­ecules into dimers.




ri

Crystal structure analysis of the biologically active drug mol­ecule riluzole and riluzolium chloride

This study is an investigation into the crystal structure of the biologically active drug mol­ecule riluzole [RZ, 6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-2-amine], C8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-3-ium chloride], C8H6F3N2OS+·Cl−. In spite of repeated efforts to crystallize the drug, its crystal structure has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydro­chloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from di­chloro­methane. The crystals of riluzole were obtained in the presence of l-glutamic acid and d-glutamic acid in separate experiments. In the crystal structure of RZHCl, the –OCF3 moiety is perpendicular to the mol­ecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different mol­ecules in the asymmetric unit show that in three cases the tri­fluoro­meth­oxy group is perpendicular to the riluzole mol­ecular plane and only in one mol­ecule does the –OCF3 group lie in the same mol­ecular plane. The crystal structure of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S inter­actions, while that of its salt is stabilized by strong [N—H]+⋯Cl− and weak C—H⋯Cl−, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl− inter­actions.




ri

Crystal structures and Hirshfeld surface analysis of a series of 4-O-aryl­perfluoro­pyridines

Five new crystal structures of perfluoro­pyridine substituted in the 4-position with phen­oxy, 4-bromo­phen­oxy, naphthalen-2-yl­oxy, 6-bromo­naphthalen-2-yl­oxy, and 4,4'-biphen­oxy are reported, viz. 2,3,5,6-tetra­fluoro-4-phen­oxy­pyridine, C11H5F4NO (I), 4-(4-bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine, C11H4BrF4NO (II), 2,3,5,6-tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine, C15H7F4NO (III), 4-[(6-bromo­naphthalen-2-yl)­oxy]-2,3,5,6-tetra­fluoropyridine, C15H6BrF4NO (IV), and 2,2'-bis­[(perfluoro­pyridin-4-yl)­oxy]-1,1'-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in I–IV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete mol­ecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F inter­actions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing.




ri

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset π–π inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.




ri

(E)-6,6'-(Diazene-1,2-di­yl)bis­(1,10-phenanthrolin-5-ol) tri­chloro­methane disolvate: a superconjugated ligand

Phenanthroline ligands are important metal-binding mol­ecules which have been extensively researched for applications in both material science and medicinal chemistry. Azo­benzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as mol­ecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3.




ri

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




ri

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-di­chloro-1-(4-meth­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile

In the title compound, C16H11Cl2N3O, the 4-meth­oxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzo­nitrile group. In the crystal, mol­ecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) inter­actions.




ri

Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate]

The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare ortho­rhom­bic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetra­gonal framework with small channels along the c-axis direction occupied by water mol­ecules of crystallization, which are inter­linked via O—H⋯O hydrogen bonds with carboxyl­ate groups, leading to right- and left-handed helical dispositions.




ri

Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-

The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F inter­tactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H inter­actions, followed by H⋯H and O⋯H/H⋯O.




ri

Crystal structure of poly[[(μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris­[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate]

The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxyl­ate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water mol­ecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure.




ri

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)meth­oxy]meth­

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.