id

Crystal structures of four gold(I) complexes [AuL2]+[AuX2]− and a by-product (L·LH+)[AuBr2]− (L = substituted pyridine, X = Cl or Br)

Bis(2-methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C6H7N)2][AuBr2], (1), crystallizes in space group C2/c with Z = 4. Both gold atoms lie on twofold axes and are connected by an aurophilic contact. A second aurophilic contact leads to infinite chains of alternating cations and anions parallel to the b axis, and the residues are further connected by a short H⋯Au contact and a borderline Br⋯Br contact. Bis(3-methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C6H7N)2][AuBr2], (2), crystallizes in space group C2/m with Z = 2. Both gold atoms lie on special positions with symmetry 2/m and are connected by an aurophilic contact; all other atoms except for one methyl hydrogen lie in mirror planes. The extended structure is closely analogous to that of 1, although the structures are formally not isotypic. Bis(3,5-di­methyl­pyridine)­gold(I) di­chlor­ido­aurate(I), [Au(C7H9N)2][AuCl2], (3) crystallizes in space group Poverline{1} with Z = 2. The cation lies on a general position, and there are two independent anions in which the gold atoms lie on inversion centres. The cation and one anion associate via three short H⋯Cl contacts to form a ribbon structure parallel to the b axis; aurophilic contacts link adjacent ribbons. Bis(3,5-di­methyl­pyridine)­gold(I) di­bromido­aurate(I), [Au(C7H9N)2][AuBr2], (4) is isotypic to 3. Attempts to make similar compounds involving 2-bromo­pyridine led instead to 2-bromopyridinium di­bromido­aurate(I)–2-bromo­pyridine (1/1), (C5H5BrN)[AuBr2]·C5H4BrN, (5), which crystallizes in space group Poverline{1} with Z = 2; all atoms lie on general positions. The 2-bromo­pyridinium cation is linked to the 2-bromo­pyridine mol­ecule by an N—H⋯N hydrogen bond. Two formula units aggregate to form inversion-symmetric dimers involving Br⋯Br, Au⋯Br and H⋯Br contacts.




id

Crystal structure of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III)

The synthesis, crystal structure, and a Hirshfeld surface analysis of tris­{N,N-diethyl-N'-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III) conducted at 180 K are presented. The complex consists of three N,N-diethyl-N'-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ato ligands, threefold sym­metric­ally bonded about the CoIII ion, in approximately octa­hedral coordination, which generates a triple of individually near planar metallacyclic (Co—S—C—N—C—O) rings. The overall geometry of the complex is determined by the mutual orientation of each metallacycle about the crystallographically imposed threefold axis [dihedral angles = 81.70 (2)°] and by the dihedral angles between the various planar groups within each asymmetric unit [metallacycle to benzene ring = 13.83 (7)°; benzene ring to nitro group = 17.494 (8)°]. The complexes stack in anti-parallel columns about the overline{3} axis of the space group (Poverline{3}), generating solvent-accessible channels along [001]. These channels contain ill-defined, multiply disordered, partial-occupancy solvent. Atom–atom contacts in the crystal packing predominantly (∼96%) involve hydrogen, the most abundant types being H⋯H (36.6%), H⋯O (31.0%), H⋯C (19.2%), H⋯N (4.8%), and H⋯S (4.4%).




id

Crystal structures of the isomeric dipeptides l-glycyl-l-me­thio­nine and l-me­thionyl-l-glycine

The oxidation of me­thionyl peptides can contribute to increased biological (oxidative) stress and development of various inflammatory diseases. The conformation of peptides has an important role in the mechanism of oxidation and the inter­mediates formed in the reaction. Herein, the crystal structures of the isomeric dipeptides Gly-Met (Gly = glycine and Met = me­thio­nine) and Met-Gly, both C7H14N2O3S, are reported. Both mol­ecules exist in the solid state as zwitterions with nominal proton transfer from the carb­oxy­lic acid to the primary amine group. The Gly-Met mol­ecule has an extended backbone structure, while Met-Gly has two nearly planar regions kinked at the C atom bearing the NH3 group. In the crystals, both structures form extensive three-dimensional hydrogen-bonding networks via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds having N⋯O distances in the range 2.6619 (13)–2.8513 (13) Å for Gly-Met and 2.6273 (8)–3.1465 (8) Å for Met-Gly.




id

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




id

Crystal structure of hexa­chloro­thallate within a caesium chloride–phospho­tungstate lattice Cs9(TlCl6)(PW12O40)2·9CsCl

Crystal formation of caesium thallium chloride phospho­tungstates, Cs9(TlCl6)(PW12O40)2·9CsCl showcases the ability to capture and crystallize octa­hedral complexes via the use of polyoxometalates (POMs). The large number of caesium chlorides allows for the POM [α-PW12O40]3− to arrange itself in a cubic close-packing lattice extended framework, in which the voids created enable the capture of the [TlCl6]3− complex.




id

Crystal structure and Hirshfeld surface analysis of 2-bromo­ethyl­ammonium bromide – a possible side product upon synthesis of hybrid perovskites

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter­actions, which constitute 62.6% of the overall close atom contacts.




id

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).




id

Crystal structure and Hirshfeld surface analysis of dimeth­yl(phen­yl)phosphine sulfide

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).




id

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene

The crystal structure of the title 2:1 mol­ecular complex between 2-(allyl­thio)­pyridine and 1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.




id

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydroquinolin-4-yl]pyrrolidin-2-one

In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect mol­ecules into ribbons along the b-axis direction, consolidating the mol­ecular packing. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.




id

Synthesis, crystal structure and thermal properties of catena-poly[[bis­(4-methyl­pyridine)­nickel(II)]-di-μ-thio­cyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octa­hedra (p = 4-me

The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methyl­pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio­cyanate anions and two independent 4-methyl­pyridine co­ligands in general positions. Each NiII cation is octa­hedrally coordinated by two 4-methyl­pyridine coligands as well as two N- and two S-bonded thio­cyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thio­cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl­pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thio­cyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains.




id

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




id

Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline

A new quinoline derivative, namely, 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-di­chlorido-1κCl,2κCl-bis­[6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water mol­ecule, resulting in a distorted octa­hedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell. These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.




id

A monoclinic polymorph of chloro­thia­zide

A new polymorph of the diuretic chloro­thia­zide, 6-chloro-1,1-dioxo-2H-1,2,4-benzo­thia­zine-7-sulfonamide, C7H6ClN3O4S2, is described. Crystallized from basic aqueous solution, this monoclinic polymorph is found to be less thermodynamically favoured than the known triclinic polymorph and to feature only N—H⋯O type inter­molecular hydrogen bonds as opposed to the N—H⋯O and N—H⋯N type hydrogen bonds found in the P1 form.




id

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




id

Crystal structure of polymeric bis­(3-amino-1H-pyrazole)­cadmium diiodide

The reaction of cadmium iodide with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­iodido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N2:N3;κ2N3:N2], [CdI2(C3H5N3)2]n or [CdI2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and iodide anions of neighboring chains are linked through inter­chain hydrogen bonds into a di-periodic network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.




id

Crystal structures of four thio­glycosides involving carbamimido­thio­ate groups

The compounds 2',3',4',6'-tetra-O-acetyl-β-d-gluco­pyranosyl N'-cyano-N-phenyl­carbamimido­thio­ate (C22H25N3O9S, 5a), 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-phenyl­carbamimido­thio­ate, (C22H25N3O9S, 5b), 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-methyl­carbamimido­thio­ate (C17H23N3O9S, 5c), and 2',3',4',6'-tetra-O-acetyl-β-d-galacto­pyranosyl N'-cyano-N-p-tolyl­carbamimido­thio­ate (C23H27N3O9S, 5d) all crystallize in P212121 with Z = 4. For all four structures, the configuration across the central (formal) C=N(CN) double bond of the carbamimido­thio­ate group is Z. The torsion angles C5—O1—C1—S (standard sugar numbering) are all close to 180°, confirming the β position of the substituent. Compound 5b involves an intra­molecular hydrogen bond N—H⋯O1; in 5c this contact is the weaker branch of a three-centre inter­action, whereas in 5a and 5d the H⋯O distances are much longer and do not represent significant inter­actions. The C—N bond lengths at the central carbon atom of the carbamimido­thio­ate group are almost equal. All C—O—C=O torsion angles of the acetyl groups correspond to a synperiplanar geometry, but otherwise all four mol­ecules display a high degree of conformational flexibility, with many widely differing torsion angles for equivalent groups. In the crystal packing, 5a, 5c and 5d form layer structures involving the classical hydrogen bond N—H⋯Ncyano and a variety of ‘weak’ hydrogen bonds C—H⋯O or C—H⋯S. The packing of 5b is almost featureless and involves a large number of borderline ‘weak’ hydrogen bonds. In an appendix, a potted history of wavelength preferences for structure determination is presented and it is recommended that, even for small organic crystals in non-centrosymmetric space groups, the use of Mo radiation should be considered.




id

Crystal structure of the 1:1 co-crystal 4-(di­methylamino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate–N,N-di­methyl­pyridin-4-amine

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate (HDMAP+·HqSA−, C7H11N2+·C9H6NO4S−) and neutral N,N-di­methyl­pyridin-4-amine mol­ecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA−:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA− in the crystal. In the cation layer, there are inter­molecular N—H⋯N hydrogen bonds between the protonated HDMAP+ mol­ecule and the neutral DMAP mol­ecule. In the anion layer, each HqSA− is surrounded by other six HqSA−, where the planar network structure is formed by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.




id

Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluoro­lactonization products from the reaction of oleanolic acid with SelectfluorTM

The X-ray crystal structure data of 12-α-fluoro-3β-hy­droxy­olean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hy­droxy­taraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluoro­lactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13.




id

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O']

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and π–π inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.




id

Pyrazine-bridged polymetallic copper–iridium clusters

Single crystals of the mol­ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis­(2,4,6-trimethylphen­yl)imidazol-2-yl­idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol­ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca­metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. The crystal contains two disordered methanol solvent mol­ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s).




id

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8.




id

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




id

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




id

Crystal structure of bis­(β-alaninium) tetra­bromidoplumbate

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.




id

Puckering effects of 4-hy­droxy-l-proline isomers on the conformation of ornithine-free Gramicidin S

The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hy­droxy­prolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anti­cipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by inter­actions between the hydroxyl groups of hy­droxy­proline, the solvent mol­ecules, and peptides.




id

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




id

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




id

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




id

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




id

Crystal structure of a tris(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.




id

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




id

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




id

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




id

Mol­ecular structure of tris­[(6-bromo­pyridin-2-yl)meth­yl]amine

Coordination compounds of polydentate nitro­gen ligands with metals are used extensively in research areas such as catalysis, and as models of complex active sites of enzymes in bioinorganic chemistry. Tris(2-pyridyl­meth­yl)amine (TPA) is a tripodal tetra­dentate ligand that is known to form coordination compounds with metals, including copper, iron and zinc. The related compound, tris­[(6-bromo­pyridin-2-yl)meth­yl]amine (TPABr3), C18H15Br3N4, which possesses a bromine atom on the 6-position of each of the three pyridyl moieties, is also known but has not been heavily investigated. The mol­ecular structure of TPABr3 as determined by X-ray diffraction is reported here. The TPABr3 molecule belongs to the triclinic, Poverline{1} space group and displays interesting intermolecular Br⋯Br interactions that provide a stabilizing influence within the molecule.




id

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.




id

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C inter­actions.




id

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.




id

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




id

Crystal structures of the (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh­yl)anthra­quinone ligands

When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) tri-μ-chlorido-bis­({3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O inter­actions. The stronger inter­molecular attractions are likely the offset parallel π–π inter­actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra­quinone moieties, the latter of which are capped by toluene solvate mol­ecules, making for π-stacks of four mol­ecules each. The related ligand, 2-(di-tert-butyl­phosphinometh­yl)-anthra­quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro­form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis­(carbon­yl{3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π inter­actions between anthra­quinone groups of adjacent mol­ecules link the mol­ecules in one dimension.




id

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




id

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.




id

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




id

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




id

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.




id

8-Hy­droxy­quinolinium tri­chlorido­(pyridine-2,6-di­carb­oxy­lic acid-κ3O,N,O')copper(II) dihydrate

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hy­droxy­quinoline (8-HQ), and solid pyridine-2,6-di­carb­oxy­lic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro­chloric acid. The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry, coordinating two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand and three chloride atoms; the nitro­gen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water mol­ecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak inter­actions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.




id

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




id

Mercury(II) halide complex of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]

The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2λ5,4λ5-di­aza­diphosphetidine-2,4-diselone-κ2Se,Se']di­iodido­mercury(II) N,N-di­methyl­formamide monosolvate, [HgI2(C16H38N4P2Se2)]·C3H7NO or (1)HgI2, 2, containing cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1) was synthesized and structurally characterized. The crystal structure of 2 confirms the chelation of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2)°. The coordination geometry around mercury is distorted tetra­hedral as indicated by the τ4 geometry index parameter (τ4 = 0.90). In the mercury complex, the exocyclic tert-butyl­amido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N—H⋯O hydrogen-bonding inter­actions with the solvent N,N-di­methyl­formamide. These inter­actions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr2 analogue containing cis-[(tBuNH)(S)P(μ-NtBu)2P(S)(NHtBu)] was also synthesized and structurally characterized, CIF data for the compound being presented as supporting information.




id

Structure of 2,3,5-tri­phenyl­tetra­zol-3-ium chloride hemi­penta­hydrate

The title hydrated mol­ecular salt, C19H15N4+·Cl−·2.5H2O, has two tri­phenyl­tetra­zolium cations, two chloride anions and five water mol­ecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water mol­ecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water mol­ecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π inter­action and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.




id

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).