ni

Geospatial assessment methods for geotechnical asset management of legacy railway embankments

Most British railway embankments were constructed between 120 and 180 years ago without the benefit of modern design and construction methods. This can result in undesirable load-deformation characteristics and consequent disruption to present-day railway operations, for which there is unprecedented demand. Annual rail passenger kilometres have approximately doubled in the last 20 years and freight has increased by 60% over the same period. Whereas elements such as rails or bridges can be refurbished or replaced to meet increasing demand, the same is not usually feasible for embankments. Development of techniques to assess embankment performance risks posed by operational capacity enhancements is therefore of increasing significance to railway geotechnical asset management. The two case studies presented in this paper demonstrate how geospatial analysis and data management techniques may be applied to this challenge at both strategic (regional or national) and tactical (site-specific) scales for embankments incorporating plastic clay fill. The case studies also demonstrate, in a world of ever more abundant data, the growing need for engineering geologists and geotechnical engineers to augment their traditional knowledge with comprehensive data management and geospatial analysis skills, these being essential for modern infrastructure asset management.

Thematic collection: This article is part of the ‘Ground-related risk to transportation infrastructure’ collection available at: https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




ni

Strategic geotechnical asset management

Strategic geotechnical asset management considers the whole of an organization's earthworks portfolio and is concerned with setting an overall earthworks asset management policy with long-term objectives related to asset performance, safety and condition, and identifying how those objectives can best be met, now and into the future. A risk-based approach is adopted that requires an understanding of the likelihood that any of the earthworks may fail, combined with a knowledge of the consequences should they fail. Procedures are required to identify those earthworks that are most vulnerable to failure under the influence of triggering events, such as extreme weather. The risks are managed through a mix of interventions to reduce the likelihood of failure and mitigations to reduce the impact of failure. Many of the challenges of implementing a strategic earthworks policy have, or are, being met by the main UK transportation infrastructure organizations.

Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




ni

A case study for identification of organic-silt bottom sediments in an artificial lake formed in gravel alluvium in the geotourism locality of Slnecne Jazera in Senec (Bratislava, Slovakia)

This case study aims to identify the cubic capacity and geometry of the geological body of silt–organic sediments in the environment of a former gravel pit situated in a drainless depression of the alluvium of the Čierna voda River. It is located in the well-known geotourism locality of Slnečné Jazera in Senec, in the SW of Slovakia. To identify the body, electrical resistivity tomography was combined with the use of sonar. The research shows that this approach is appropriate for a number of activities that are subjects of engineering-geological investigations. The cubic capacity and geometry of specific aqueous engineering-geological environments must be determined in connection with the need for the management, control, quantification and extraction of selected sedimentary bodies. In addition, the management of sustainable development of reservoirs, sedimentation basins, industrial ponds, settling pits and natural pools for recreation (the subject of the case study) is important to control the limit amounts of sediments in such environments. The results of this study may be applied in analogous engineering-geological conditions. The drainless depression Slnečné Jazera contained a body of silt–organic sediments amounting to 23 000 m3 (41 Olympic-size pools of 25 m x 12.5 m x 1.8 m). The maximum thickness of the bottom sediments was about 6.3 m on the alluvium with an articulated morphology owing to the submerged digging of gravel. The proposed approach improved the control of extraction of the sedimentary body and optimized the engineering-geological conditions in this geotourism locality.




ni

Groundwater chemical characteristics and circulation mode in the Suixiao coal-mining district

Groundwater recharge and runoff conditions are ascertained in the Suixiao coal-mining district using the hydrogen and oxygen isotopes and the trace elements in the unconsolidated pore aquifer of the Cenozoic group, the fissured sandstone aquifer of the Permian system, and the karst fissured limestone aquifer of the Carboniferous Taiyuan Formation and the Ordovician system, which are the main recharge aquifers during coal mining. The main water–rock interactions are pyrite oxidation, cation exchange and adsorption, and carbonate acidification, which are educed by principal component analysis of conventional ions. These results combined with geological conditions prove that hydraulic connection exists generally between the main recharge aquifers, and the groundwater circulation is controlled by faults in the sandstone and limestone aquifers. The water–rock interaction is very weak in the east of the district, which is proved to be a recharge area by Fisher discriminant analysis. This study provides the theoretical basis for the hydrochemistry exploration and the establishment of a water-inrush warning system in a concealed coalfield.




ni

Backfill mining alternatives and strategies for mitigating shallow coal mining hazards in the western mining area of China

This study addresses the major geo-environmental hazards caused by shallow coal mining in China's western eco-environment frangible area. These hazards are related to the high overburden pressure, surface subsidence, soil and water losses, and land desertification, with consequent vegetation and wildlife losses. To mitigate these hazards, three alternative backfill mining methods are proposed, for three typical shallow coal mining conditions, using aeolian sand-based backfilling materials, which are readily available in this area. The main influencing factor is the backfill material compaction ratio. Its effect on aquiclude deformation and water-conducting fracture evolution are assessed by numerical and physical simulation methods. The potential application of the proposed backfill coal mining alternatives is evaluated and discussed in detail. The results obtained are considered to be valuable for developing a strategy for the coordinated exploitation of coal resources and environmental protection in China's western frangible eco-environment area.




ni

Differentiation of Community-Associated and Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates and Identification of spa Types by Use of PCR and High-Resolution Melt Curve Analysis [Clinical Veterinary Microbiology]

Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are present worldwide and represent a major public health concern. The capability of PCR followed by high-resolution melt (HRM) curve analysis for the detection of community-associated and livestock-associated MRSA strains and the identification of staphylococcal protein A (spa) locus was evaluated in 74 MRSA samples which were isolated from the environment, humans, and pigs on a single piggery. PCR-HRM curve analysis identified four spa types among MRSA samples and differentiated MRSA strains accordingly. A nonsubjective differentiation model was developed according to genetic confidence percentage values produced by tested samples, which did not require visual interpretation of HRM curve results. The test was carried out at different settings, and result data were reanalyzed and confirmed with DNA sequencing. PCR-HRM curve analysis proved to be a robust and reliable test for spa typing and can be used as a tool in epidemiological studies.




ni

High-Content Screening, a Reliable System for Coxiella burnetii Isolation from Clinical Samples [Bacteriology]

Q fever, caused by Coxiella burnetii, is a worldwide zoonotic disease that may cause severe forms in humans and requires a specific and prolonged antibiotic treatment. Although current serological and molecular detection tools allow a reliable diagnosis of the disease, culture of C. burnetii strains is mandatory to assess their susceptibility to antibiotics and sequence their genome in order to optimize patient management and epidemiological studies. However, cultivating this fastidious microorganism is difficult and restricted to reference centers, as it requires biosafety level 3 laboratories and relies on cell culture performed by experienced technicians. In addition, the culture yield is low, which results in a small number of isolates being available. In this work, we developed a novel high-content screening (HCS) isolation strategy based on optimized high-throughput cell culture and automated microscopic detection of infected cells with specifically designed algorithms targeting cytopathic effects. This method was more efficient than the shell vial assay, at the level of time dependency, when applied to both frozen specimens (7 isolates recovered by HCS only, sensitivity 91% versus 78% for shell vial) and fresh samples (1 additional isolate using HCS, sensitivity 7% versus 5% for shell vial), for which most strains were recovered more rapidly with the new technique. In addition, detecting positive cultures by an automated microscope reduced the need for expertise and saved 24% of technician working time. Application of HCS to antibiotic susceptibility testing of 12 strains demonstrated that it was as efficient as the standard procedure that combines shell vial culture and quantitative PCR.




ni

Genomic Investigation Reveals Contaminated Detergent as the Source of an Extended-Spectrum-{beta}-Lactamase-Producing Klebsiella michiganensis Outbreak in a Neonatal Unit [Bacteriology]

Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-β-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis. Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses.




ni

Pooling Pharyngeal, Anorectal, and Urogenital Samples for Screening Asymptomatic Men Who Have Sex with Men for Chlamydia trachomatis and Neisseria gonorrhoeae [Bacteriology]

Screening for Chlamydia trachomatis and Neisseria gonorrhoeae at the pharyngeal, urogenital, and anorectal sites is recommended for men who have sex with men (MSM). Combining the three individual-site samples into a single pooled sample could result in significant cost savings, provided there is no significant sensitivity reduction. The aim of this study was to examine the sensitivity of pooled samples for detecting chlamydia and gonorrhea in asymptomatic MSM using a nucleic acid amplification test. Asymptomatic MSM who tested positive for chlamydia or gonorrhoea were invited to participate. Paired samples were obtained from participants prior to administration of treatment. To form the pooled sample, the anorectal swab was agitated in the urine specimen transport tube and then discarded. The pharyngeal swab and 2 ml of urine sample were then added to the tube. The difference in sensitivity between testing of pooled samples and individual-site testing was calculated against an expanded gold standard, where an individual is considered positive if either pooled-sample or individual-site testing returns a positive result. All samples were tested using the Aptima Combo 2 assay. A total of 162 MSM were enrolled in the study. Sensitivities of pooled-sample testing were 86% (94/109; 95% confidence interval [CI], 79 to 92%]) for chlamydia and 91% (73/80; 95% CI, 83 to 96%) for gonorrhea. The sensitivity reduction was significant for chlamydia (P = 0.02) but not for gonorrhea (P = 0.34). Pooling caused 22 infections (15 chlamydia and 7 gonorrhoea) to be missed, and the majority were single-site infections (19/22). Pooling urogenital and extragenital samples from asymptomatic MSM reduced the sensitivity of detection by approximately 10% for chlamydia but not for gonorrhea.




ni

Multicenter Evaluation of the BD Phoenix CPO Detect Test for Detection and Classification of Carbapenemase-Producing Organisms in Clinical Isolates [Bacteriology]

Limited treatment options contribute to high morbidity/mortality rates with carbapenem-resistant, Gram-negative bacterial infections. New approaches for carbapenemase-producing organism (CPO) detection may help inform clinician decision-making on patient treatment and infection control. BD Phoenix CPO detect (CPO detect) detects and classifies carbapenemases in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa during susceptibility testing. The clinical performance of CPO detect is reported here. Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa isolates were evaluated across three sites using CPO detect and a composite reference method (RM); the latter was comprised of the modified carbapenem inactivation method and a MIC screen for ertapenem, imipenem, and meropenem. Multiplex PCR testing was also utilized for Ambler class determination. Positive and negative percentages of agreement (PPA and NPA, respectively) between CPO detect and the RM were determined. The PPA and NPA for Enterobacterales were 98.5% (confidence intervals, 96.6%, 99.4%) and 97.2% (95.8%, 98.2%), respectively. The A. baumannii PPA and NPA, respectively, were 97.1% (90.2%, 99.2%) and 97.1% (89.9%, 99.2%). The P. aeruginosa PPA and NPA, respectively, were 95.9% (88.6%, 98.6%) and 92.3% (86.7%, 95.6%). The PPA values for carbapenemase class designations for all organisms combined and Enterobacterales alone, respectively, were 95.3% (90.2%, 97.8%) and 94.6% (88.8%, 97.5%) for class A, 94.0% (88.7%, 96.6%) and 96.4% (90.0%, 98.8%) for class B, and 95.0% (90.1%, 97.6%) and 99.0% (94.4%, 99.8%) for class D carbapenemases. NPA values for all organisms and Enterobacterales alone ranged from 98.5% to 100%. CPO detect provided accurate detection and classification of CPOs for the majority of isolates of Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa tested.




ni

Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results [Bacteriology]

Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.




ni

Impact of Changes in Clinical Microbiology Laboratory Location and Ownership on the Practice of Infectious Diseases [Epidemiology]

The number of onsite clinical microbiology laboratories in hospitals is decreasing, likely related to the business model for laboratory consolidation and labor shortages, and this impacts a variety of clinical practices, including that of banking isolates for clinical or epidemiologic purposes. To determine the impact of these trends, infectious disease (ID) physicians were surveyed regarding their perceptions of offsite services. Clinical microbiology practices for retention of clinical isolates for future use were also determined. Surveys were sent to members of the Infectious Diseases Society of America’s (IDSA) Emerging Infections Network (EIN). The EIN is a sentinel network of ID physicians who care for adult and/or pediatric patients in North America and who are members of IDSA. The response rate was 763 (45%) of 1,680 potential respondents. Five hundred forty (81%) respondents reported interacting with the clinical microbiology laboratory. Eighty-six percent of respondents thought an onsite laboratory very important for timely diagnostic reporting and ongoing communication with the clinical microbiologist. Thirty-five percent practiced in institutions where the core microbiology laboratory has been moved offsite, and an additional 7% (n = 38) reported that movement of core laboratory functions offsite was being considered. The respondents reported that only 24% of laboratories banked all isolates, with the majority saving isolates for less than 30 days. Based on these results, the trend toward centralized core laboratories negatively impacts the practice of ID physicians, potentially delays effective implementation of prompt and targeted care for patients with serious infections, and similarly adversely impacts infection control epidemiologic investigations.




ni

Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens [Immunoassays]

Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.




ni

Closing the Brief Case: Mold Infection of an Indwelling Cranial Device--a Perplexing Combination of "Classic" Laboratory Findings [The Brief Case]




ni

The Brief Case: Mold Infection of an Indwelling Cranial Device--a Perplexing Combination of "Classic" Laboratory Findings [The Brief Case]




ni

Pharmacy-Based Infectious Disease Management Programs Incorporating CLIA-Waived Point-of-Care Tests [Minireviews]

There are roughly 48,000 deaths caused by influenza annually and an estimated 200,000 people who have undiagnosed human immunodeficiency virus (HIV). These are examples of acute and chronic illnesses that can be identified by employing a CLIA-waived test. Pharmacies across the country have been incorporating CLIA-waived point-of-care tests (POCT) into disease screening and management programs offered in the pharmacy. The rationale behind these programs is discussed. Additionally, a summary of clinical data for some of these programs in the infectious disease arena is provided. Finally, we discuss the future potential for CLIA-waived POCT-based programs in community pharmacies.




ni

Targeting Asymptomatic Bacteriuria in Antimicrobial Stewardship: the Role of the Microbiology Laboratory [Minireviews]

This minireview focuses on the microbiologic evaluation of patients with asymptomatic bacteriuria, as well as indications for antibiotic treatment. Asymptomatic bacteriuria is defined as two consecutive voided specimens (preferably within 2 weeks) with the same bacterial species, isolated in quantitative counts of ≥105 CFU/ml in women, including pregnant women; a single voided urine specimen with one bacterial species isolated in a quantitative count ≥105 CFU/ml in men; and a single catheterized urine specimen with one or more bacterial species isolated in a quantitative count of ≥105 CFU/ml in either women or men (or ≥102 CFU/ml of a single bacterial species from a single catheterized urine specimen). Any urine specimen with ≥104 CFU/ml group B Streptococcus is significant for asymptomatic bacteriuria in a pregnant woman. Asymptomatic bacteriuria occurs, irrespective of pyuria, in the absence of signs or symptoms of a urinary tract infection. The two groups with the best evidence of adverse outcomes in the setting of untreated asymptomatic bacteriuria include pregnant women and patients who undergo urologic procedures with risk of mucosal injury. Screening and treatment of asymptomatic bacteriuria is not recommended in the following patient populations: pediatric patients, healthy nonpregnant women, older patients in the inpatient or outpatient setting, diabetic patients, patients with an indwelling urethral catheter, patients with impaired voiding following spinal cord injury, patients undergoing nonurologic surgeries, and nonrenal solid-organ transplant recipients. Renal transplant recipients beyond 1 month posttransplant should not undergo screening and treatment for asymptomatic bacteriuria. There is insufficient evidence to recommend for or against screening of renal transplant recipients within 1 month, patients with high-risk neutropenia, or patients with indwelling catheters at the time of catheter removal. Unwarranted antibiotics place patients at increased risk of adverse effects (including Clostridioides difficile diarrhea) and contribute to antibiotic resistance. Methods to reduce unnecessary screening for and treatment of asymptomatic bacteriuria aid in antibiotic stewardship.




ni

Pathogen or Bystander: Clinical Significance of Detecting Human Herpesvirus 6 in Pediatric Cerebrospinal Fluid [Virology]

Human herpesvirus 6 (HHV-6) is an important cause of meningitis and meningoencephalitis. As testing for HHV-6 in cerebrospinal fluid (CSF) is more readily available using the FilmArray Meningitis/Encephalitis panel (FA-ME; BioFire Diagnostics, Salt Lake City, UT), we aimed to determine the clinical significance of detecting HHV-6 in order to identify true infections and to ensure appropriate antiviral initiation. Chart review on 25 patients positive for HHV-6 by FA-ME was performed to determine clinical presentation, comorbidity, treatment, and outcome. The presence of chromosomally integrated HHV-6 (ciHHV-6) DNA was also investigated. Of 1,005 children tested by FA-ME, HHV-6 was detected in 25 (2.5%). Five patients were diagnosed with either HHV-6 meningitis or meningoencephalitis based on HHV-6 detection in CSF, clinical presentation, and radiographic findings. Detection of HHV-6 by FA-ME led to discontinuation of acyclovir within 12.0 h in all 12 patients empirically treated with acyclovir. Six of the 12 patients were started on ganciclovir therapy within 6.8 h; 4 of these were treated specifically for HHV-6 infection, whereas therapy was discontinued in the remaining 2 patients. CSF parameters were not generally predictive of HHV-6 positivity. The presence of ciHHV-6 was confirmed in 3 of 18 patients who could be tested. Five of the 25 patients included in the study were diagnosed with HHV-6 meningitis/meningoencephalitis. FA-ME results led to discontinuation of empirical antiviral treatment in 12 patients and appropriate initiation of ganciclovir in 4 patients. In our institution, detection of HHV-6 using FA-ME led to faster establishment of disease etiology and optimization of antimicrobial therapy.




ni

Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens [Virology]

On 31 December 2019, the World Health Organization was informed of a cluster of cases of pneumonia of unknown etiology in Wuhan, China. Subsequent investigations identified a novel coronavirus, now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from the affected patients. Highly sensitive and specific laboratory diagnostics are important for controlling the rapidly evolving SARS-CoV-2-associated coronavirus disease 2019 (COVID-19) epidemic. In this study, we developed and compared the performance of three novel real-time reverse transcription-PCR (RT-PCR) assays targeting the RNA-dependent RNA polymerase (RdRp)/helicase (Hel), spike (S), and nucleocapsid (N) genes of SARS-CoV-2 with that of the reported RdRp-P2 assay, which is used in >30 European laboratories. Among the three novel assays, the COVID-19-RdRp/Hel assay had the lowest limit of detection in vitro (1.8 50% tissue culture infective doses [TCID50]/ml with genomic RNA and 11.2 RNA copies/reaction with in vitro RNA transcripts). Among 273 specimens from 15 patients with laboratory-confirmed COVID-19 in Hong Kong, 77 (28.2%) were positive by both the COVID-19-RdRp/Hel and RdRp-P2 assays. The COVID-19-RdRp/Hel assay was positive for an additional 42 RdRp-P2-negative specimens (119/273 [43.6%] versus 77/273 [28.2%]; P < 0.001), including 29/120 (24.2%) respiratory tract specimens and 13/153 (8.5%) non-respiratory tract specimens. The mean viral load of these specimens was 3.21 x 104 RNA copies/ml (range, 2.21 x 102 to 4.71 x 105 RNA copies/ml). The COVID-19-RdRp/Hel assay did not cross-react with other human-pathogenic coronaviruses and respiratory pathogens in cell culture and clinical specimens, whereas the RdRp-P2 assay cross-reacted with SARS-CoV in cell culture. The highly sensitive and specific COVID-19-RdRp/Hel assay may help to improve the laboratory diagnosis of COVID-19.




ni

Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options [Minireviews]

The new decade of the 21st century (2020) started with the emergence of a novel coronavirus known as SARS-CoV-2 that caused an epidemic of coronavirus disease (COVID-19) in Wuhan, China. It is the third highly pathogenic and transmissible coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in humans. The source of origin, transmission to humans, and mechanisms associated with the pathogenicity of SARS-CoV-2 are not yet clear, however, its resemblance to SARS-CoV and several other bat coronaviruses was recently confirmed through genome sequencing-related studies. The development of therapeutic strategies is necessary in order to prevent further epidemics and cure infections. In this review, we summarize current information about the emergence, origin, diversity, and epidemiology of three pathogenic coronaviruses with a specific focus on the current outbreak in Wuhan, China. Furthermore, we discuss the clinical features and potential therapeutic options that may be effective against SARS-CoV-2.




ni

Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: a Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Intensive Care Unit [Epidemiology]

The IR Biotyper is a new automated typing system based on Fourier-transform infrared (FT-IR) spectroscopy that gives results within 4 h. We aimed (i) to use the IR Biotyper to retrospectively analyze an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) in a neonatal intensive care unit and to compare results to BOX-PCR and whole-genome sequencing (WGS) results as the gold standard and (ii) to assess how the cutoff values used to define clusters affect the discriminatory power of the IR Biotyper. The sample consisted of 18 isolates from 14 patients. Specimens were analyzed in the IR Biotyper using the default analysis settings, and spectra were analyzed using OPUS 7.5 software. The software contains a feature that automatically proposes a cutoff value to define clusters; the cutoff value defines up to which distance the spectra are considered to be in the same cluster. Based on FT-IR, the outbreak represented 1 dominant clone, 1 secondary clone, and several unrelated clones. FT-IR results, using the cutoff value generated by the accompanying software after 4 replicates, were concordant with WGS for all but 1 isolate. BOX-PCR was underdiscriminatory compared to the other two methods. Using the cutoff value generated after 12 replicates, the results of FT-IR and WGS were completely concordant. The IR Biotyper can achieve the same typeability and discriminatory power as genome-based methods. However, to attain this high performance requires either previous, strain-dependent knowledge about the optimal technical parameters to be used or validation by a second method.




ni

2020 American Society for Microbiology Awards Program Honorees in Clinical Microbiology [Editorial]




ni

Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics [METHOD]

Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ~37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ~12,000 co-abundant gene groups (CAGs), encompassing ~7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.




ni

Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia [RESEARCH]

Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to obtain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of human phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neurons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schizophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin interaction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.




ni

Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control [RESEARCH]

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.




ni

A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer

Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer.

Implications:

We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer.




ni

Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress

Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.

Implications:

HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.




ni

Pharmacological Characterization of the Novel and Selective {alpha}7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375 [Neuropharmacology]

Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases.

SIGNIFICANCE STATEMENT

BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.




ni

Distinct Regulation of {sigma}1 Receptor Multimerization by Its Agonists and Antagonists in Transfected Cells and Rat Liver Membranes [Cellular and Molecular]

Extensive studies have shown that the 1 receptor (1R) interacts with and modulates the activity of multiple proteins with important biological functions. Recent crystal structures of 1R as a homotrimer differ from a dimer-tetramer model postulated earlier. It remains inconclusive whether ligand binding regulates 1R oligomerization. Here, novel nondenaturing gel methods and mutational analysis were used to examine 1R oligomerization. In transfected cells, 1R exhibited as multimers, dimers, and monomers. Overall, 1R agonists decreased, whereas 1R antagonists increased 1R multimers, suggesting that agonists and antagonists differentially affect the stability of 1R multimers. Endogenous 1R in rat liver membranes also showed similar regulation of oligomerization as in cells. Mutations at key residues lining the trimerization interface (Arg119, Asp195, Phe191, Trp136, and Gly91) abolished multimerization without disrupting dimerization. Intriguingly, truncation of the N terminus reduced 1R to apparent monomer. These results demonstrate that multiple domains play crucial roles in coordinating high-order quaternary organization of 1R. The E102Q 1R mutant implicated in juvenile amyotrophic lateral sclerosis formed dimers only, suggesting that dysregulation of 1R multimeric assembly may impair its function. Interestingly, oligomerization of 1R was pH-dependent and correlated with changes in [3H](+)-pentazocine binding affinity and Bmax. Combined with mutational analysis, it is reasoned that 1R multimers possess high-affinity and high-capacity [3H](+)-pentazocine binding, whereas monomers likely lack binding. These results suggest that 1R may exist in interconvertible oligomeric states in a dynamic equilibrium. Further exploration of ligand-regulated 1R multimerization may provide novel approaches to modulate the function of 1R and its interacting proteins.

SIGNIFICANCE STATEMENT

The 1 receptor (1R) modulates the activities of various partner proteins. Recently, crystal structures of 1R were elucidated as homotrimers. This study used novel nondenaturing gel methods to examine 1R oligomerization in transfected cells and rat liver membranes. Overall, agonist binding decreased, whereas antagonist binding increased 1R multimers, which comprised trimers and larger units. 1R multimers were shown to bind [3H](+)-pentazocine with high affinity and high capacity. Furthermore, mutational analysis revealed a crucial role of its N-terminal domain in 1R multimerization.




ni

Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss [Behavioral Pharmacology]

Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible.

SIGNIFICANCE STATEMENT

Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.




ni

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




ni

Inner Ear Arginine Vasopressin-Vasopressin Receptor 2-Aquaporin 2 Signaling Pathway Is Involved in the Induction of Motion Sickness [Drug Discovery and Translational Medicine]

It has been identified that arginine vasopressin (AVP), vasopressin receptor 2(V2R), and the aquaporin 2 (AQP2) signaling pathway in the inner ear play important roles in hearing and balance functions through regulating the endolymph equilibrium; however, the contributions of this signaling pathway to the development of motion sickness are unclear. The present study was designed to investigate whether the activation of the AVP-V2R-AQP2 signaling pathway in the inner ear is involved in the induction of motion sickness and whether mozavaptan, a V2R antagonist, could reduce motion sickness. We found that both rotatory stimulus and intraperitoneal AVP injection induced conditioned taste aversion (a confirmed behavioral index for motion sickness) in rats and activated the AVP-V2R-AQP2 signaling pathway with a responsive V2R downregulation in the inner ears, and AVP perfusion in cultured epithelial cells from rat endolymphatic sacs induced similar changes in this pathway signaling. Vestibular training, V2R antagonist mozavaptan, or PKA inhibitor H89 blunted these changes in the V2R-AQP2 pathway signaling while reducing rotatory stimulus– or DDAVP (a V2R agonist)-induced motion sickness in rats and dogs. Therefore, our results suggest that activation of the inner ear AVP-V2R-AQP2 signaling pathway is potentially involved in the development of motion sickness; thus, mozavaptan targeting AVP V2Rs in the inner ear may provide us with a new application option to reduce motion sickness.

SIGNIFICANCE STATEMENT

Motion sickness affects many people traveling or working. In the present study our results showed that activation of the inner ear arginine vasopressin-vaspopressin receptor 2 (V2R)-aquaporin 2 signaling pathway was potentially involved in the development of motion sickness and that blocking V2R with mozavaptan, a V2R antagonist, was much more effective in reducing motion sickness in both rat and dog; therefore, we demonstrated a new mechanism to underlie motion sickness and a new candidate drug to reduce motion sickness.




ni

KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal]

Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB.

SIGNIFICANCE STATEMENT

TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder.




ni

NO-Releasing Nanoparticles Ameliorate Detrusor Overactivity in Transgenic Sickle Cell Mice via Restored NO/ROCK Signaling [Cellular and Molecular]

Sickle cell disease (SCD) is associated with overactive bladder (OAB). Detrusor overactivity, a component of OAB, is present in an SCD mouse, but the molecular mechanisms for this condition are not well-defined. We hypothesize that nitric oxide (NO)/ ras homolog gene family (Rho) A/Rho-associated kinase (ROCK) dysregulation is a mechanism for detrusor overactivity and that NO-releasing nanoparticles (NO-nps), a novel NO delivery system, may serve to treat this condition. Male adult SCD transgenic, combined endothelial NO synthases (eNOSs) and neuronal NOS (nNOS) gene-deficient (dNOS–/–), and wild-type (WT) mice were used. Empty nanoparticle or NO-np was injected into the bladder, followed by cystometric studies. The expression levels of phosphorylated eNOS (Ser-1177), protein kinase B (Akt) (Ser-473), nNOS (Ser-1412), and myosin phosphatase target subunit 1 (MYPT1) (Thr-696) were assessed in the bladder. SCD and dNOS–/– mice had a greater (P < 0.05) number of voiding and nonvoiding contractions compared with WT mice, and they were normalized by NO-np treatment. eNOS (Ser-1177) and AKT (Ser-473) phosphorylation were decreased (P < 0.05) in the bladder of SCD compared with WT mice and reversed by NO-np. Phosphorylated MYPT1, a marker of the RhoA/ROCK pathway, was increased (P < 0.05) in the bladder of SCD mice compared with WT and reversed by NO-np. nNOS phosphorylation on positive (Ser-1412) regulatory site was decreased (P < 0.05) in the bladder of SCD mice compared with WT and was not affected by NO-np. NO-nps did not affect any of the measured parameters in WT mice. In conclusion, dysregulation of NO and RhoA/ROCK pathways is associated with detrusor overactivity in SCD mice; NO-np reverses these molecular derangements in the bladder and decreases detrusor overactivity.

SIGNIFICANCE STATEMENT

Voiding abnormalities commonly affect patients with sickle cell disease (SCD) but are problematic to treat. Clarification of the science for this condition in an animal model of SCD may lead to improved interventions for it. Our findings suggest that novel topical delivery of a vasorelaxant agent nitric oxide into the bladder of these mice corrects overactive bladder by improving deranged bladder physiology regulatory signaling.




ni

Glycoconjugation as a Promising Treatment Strategy for Psoriasis [Minireviews]

Despite the progress in the development of novel treatment modalities, a significant portion of patients with psoriasis remains undertreated relative to the severity of their disease. Recent evidence points to targeting the glucose transporter 1 and sugar metabolism as a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. In this review, we discuss glycoconjugation, an approach that facilitates the pharmacokinetics of cytotoxic molecules and ensures their preferential influx through glucose transporters. We propose pathways of glycoconjugate synthesis to increase effectiveness, cellular selectivity, and tolerability of widely used antipsoriatic drugs. The presented approach exploiting the heightened glucose requirement of proliferating keratinocytes bears the potential to revolutionize the management of psoriasis.

SIGNIFICANCE STATEMENT

Recent findings concerning the fundamental role of enhanced glucose metabolism and glucose transporter 1 overexpression in the pathogenesis of psoriasis brought to light approaches that proved successful in cancer treatment. Substantial advances in the emerging field of glycoconjugation highlight the rationale for the development of glucose-conjugated antipsoriatic drugs to increase their effectiveness, cellular selectivity, and tolerability. The presented approach offers a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases.




ni

Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine]

Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS.

SIGNIFICANCE STATEMENT

Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.




ni

A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine]

Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden.

SIGNIFICANCE STATEMENT

Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period.




ni

Mouse Colonic Epithelial Cells Functionally Express the Histamine H4 Receptor [Gastrointestinal, Hepatic, Pulmonary, and Renal]

We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow–chimeric mice were generated from H4R knockout (H4R–/–) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R–/– and WT mice using chopstick electrodes. Bone marrow–chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype.

SIGNIFICANCE STATEMENT

The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate–induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity.




ni

Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats [RESEARCH]

In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.




ni

Forget the stress: retrograde amnesia for the stress-induced impairment of extinction retrieval [BRIEF COMMUNICATIONS]

We investigated whether cycloheximide (CHX) would induce amnesia for the stress-induced impairment of extinction retrieval. First, a single restraint stress session was demonstrated to impair extinction retrieval, but not fear conditioning. A second experiment showed that when CHX was administered immediately after restraint, rats exhibited significant extinction retrieval at test (i.e., retrograde amnesia for the stress). In a third experiment, the stress session impaired various amounts of extinction durations, suggesting that the stress inhibited extinction retrieval rather than enhancing the original fear learning. These results suggest memories for acute stress are susceptible to disruption, which could have clinical implications.




ni

Learning & Memory




ni

STIM1 interacts with termini of Orai channels in a sequential manner [RESEARCH ARTICLE]

Liling Niu, Fuyun Wu, Kaili Li, Jing Li, Shenyuan L. Zhang, Junjie Hu, and Qian Wang

Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1.




ni

Regenerative responses following DNA damage - {beta}-catenin mediates head regrowth in the planarian Schmidtea mediterranea [RESEARCH ARTICLE]

Annelies Wouters, Jan-Pieter Ploem, Sabine A. S. Langie, Tom Artois, Aziz Aboobaker, and Karen Smeets

Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.




ni

Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1 [Articles]

Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity.

SIGNIFICANCE STATEMENT

Bortezomib and carfilzomib are two Food and Drug Administration–approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.




ni

Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids [Review Articles]

Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs.

Significance Statement

Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions.




ni

Response Prediction of 177Lu-PSMA-617 Radioligand Therapy Using Prostate-Specific Antigen, Chromogranin A, and Lactate Dehydrogenase

Neuroendocrinelike transdifferentiation of prostate cancer adenocarcinomas correlates with serum levels of chromogranin A (CgA) and drives treatment resistance. The aim of this work was to evaluate whether CgA can serve as a response predictor for 177Lu-prostate-specific membrane antigen 617 (PSMA) radioligand therapy (RLT) in comparison with the established tumor markers. Methods: One hundred consecutive patients with metastasized castration-resistant prostate cancer scheduled for PSMA RLT were evaluated for prostate-specific antigen (PSA), lactate dehydrogenase (LDH), and CgA at baseline and in follow-up of PSMA RLT. Tumor uptake of PSMA ligand, a known predictive marker for response, was assessed as a control variable. Results: From the 100 evaluated patients, 35 had partial remission, 16 stable disease, 15 mixed response, and 36 progression of disease. Tumor uptake above salivary gland uptake translated into partial remission, with an odds ratio (OR) of 60.265 (95% confidence interval [CI], 5.038–720.922). Elevated LDH implied a reduced chance for partial remission, with an OR of 0.094 (95% CI, 0.017–0.518), but increased the frequency of progressive disease (OR, 2.717; 95% CI, 1.391–5.304). All patients who achieved partial remission had a normal baseline LDH. Factor-2 elevation of CgA increased the risk for progression, with an OR of 3.089 (95% CI, 1.302–7.332). Baseline PSA had no prognostic value for response prediction. Conclusion: In our cohort, baseline PSA had no prognostic value for response prediction. LDH was the marker with the strongest prognostic value, and elevated LDH increased the risk for progression of disease under PSMA RLT. Elevated CgA demonstrated a moderate impact as a negative prognostic marker in general but was explicitly related to the presence of liver metastases. Well in line with the literature, sufficient tumor uptake is a prerequisite to achieve tumor response.




ni

ProPSMA: A Callout to the Nuclear Medicine Community to Change Practices with Prospective, High-Quality Data




ni

Early 18F-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab

Monoclonal antibodies (mAbs) against programmed cell death 1 (PD-1), such as nivolumab and pembrolizumab, are associated with high response rates in patients with relapsed or refractory classic Hodgkin lymphoma (HL). To date, no prognostic factor for overall survival (OS) has been established with these agents in HL. We examined whether the first early response assessment evaluated using 18F-FDG PET/CT may be associated with OS in this setting. Methods: This retrospective study included 45 patients from 34 institutions. In a masked, centralized review, 3 independent radiologists classified PET/CT scans obtained at a median of 2.0 mo (interquartile range, 1.7–3.7 mo) after nivolumab initiation using existing criteria (i.e., 2014 Lugano classification and 2016 LYRIC). Patients were classified according to 4 possible response categories: complete metabolic response (CMR), partial metabolic response (PMR), no metabolic response (NMR), or progressive metabolic disease (PMD). Because the OS of patients with NMR and PMR was similar, they were grouped together. OS was estimated using the Kaplan–Meier method and compared between groups using log-rank testing. Results: Eleven patients (24%) died after a median follow-up of 21.2 mo. The classification was identical between Lugano and LYRIC because all 16 progression events classified as indeterminate response per LYRIC were confirmed on subsequent evaluations. Both Lugano and LYRIC classified patients as CMR in 13 cases (29%), PMD in 16 (36%), NMR in 4 (9%), and PMR in 12 (27%). The 2-y OS probability was significantly different in patients with PMD (0.53; 95% confidence interval [95%CI], 0.32–0.87), NMR or PMR (0.80; 95%CI, 0.63–1.00), and CMR (1.00; 95%CI, 1.00–1.00) in the overall population (P = 0.02, 45 patients), as well as according to a landmark analysis at 3 mo (P = 0.05, 32 patients). Conclusion: In relapsed or refractory HL patients treated with anti-PD-1 mAbs, the first early PET/CT assessment using either Lugano or LYRIC predicted OS and allowed early risk stratification, suggesting that PET/CT might be used to develop risk-adapted strategies.




ni

Monitoring Radioisotope Production and Transport




ni

Getting started: altering promoter choice as a mechanism for cell type differentiation [Outlook]

In this issue of Genes & Development, Lu and colleagues (pp. 663–677) have discovered a key new mechanism of alternative promoter choice that is involved in differentiation of spermatocytes. Promoter choice has strong potential as mechanism for differentiation of many different cell types.