ni

Safety and Pharmacokinetic Characterization of Nacubactam, a Novel {beta}-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers [Clinical Therapeutics]

Nacubactam is a novel β-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine β-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae. The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam was generally well tolerated, with the most frequently reported adverse events (AEs) being mild to moderate complications associated with intravenous access and headache. There was no apparent relationship between drug dose and the pattern, incidence, or severity of AEs. No clinically relevant dose-related trends were observed in laboratory safety test results. No serious AEs, dose-limiting AEs, or deaths were reported. After single or multiple doses, nacubactam pharmacokinetics appeared linear, and exposure increased in an approximately dose-proportional manner across the dose range investigated. Nacubactam was excreted largely unchanged into urine. Coadministration of nacubactam with meropenem did not significantly alter the pharmacokinetics of either drug. These findings support the continued clinical development of nacubactam and demonstrate the suitability of meropenem as a potential β-lactam partner for nacubactam. (The studies described in this paper have been registered at ClinicalTrials.gov under NCT02134834 [single ascending dose study] and NCT02972255 [multiple ascending dose study].)




ni

The Antifungal Drug Isavuconazole Is both Amebicidal and Cysticidal against Acanthamoeba castellanii [Experimental Therapeutics]

Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba. The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii. Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.




ni

Comparison of Treatment Outcomes between Analysis Populations in the RESTORE-IMI 1 Phase 3 Trial of Imipenem-Cilastatin-Relebactam versus Colistin plus Imipenem-Cilastatin in Patients with Imipenem-Nonsusceptible Bacterial Infections [Clinical Therapeutic

The RESTORE-IMI 1 phase 3 trial demonstrated the efficacy and safety of imipenem-cilastatin (IMI) combined with relebactam (REL) for treating imipenem-nonsusceptible infections. The objective of this analysis was to compare the outcomes among patients meeting eligibility requirements based on central laboratory susceptibility versus local laboratory susceptibility. Patients with serious infections caused by imipenem-nonsusceptible, colistin-susceptible, and imipenem-REL-susceptible pathogens were randomized 2:1 to IMI-REL plus placebo or colistin plus IMI for 5 to 21 days. The primary endpoint was a favorable overall response. Key endpoints included the clinical response and all-cause mortality. We compared outcomes between the primary microbiological modified intent-to-treat (mMITT) population, where eligibility was based on central laboratory susceptibility testing, and the supplemental mMITT (SmMITT) population, where eligibility was based on local, site-level testing. The SmMITT (n = 41) and MITT (n = 31) populations had similar baseline characteristics, including sex, age, illness severity, and renal function. In both analysis populations, favorable overall response rates in the IMI-REL treatment group were >70%. Favorable clinical response rates at day 28 were 71.4% for IMI-REL and 40.0% for colistin plus IMI in the mMITT population, whereas they were 75.0% for IMI-REL and 53.8% for colistin plus IMI in the SmMITT population. Day 28 all-cause mortality rates were 9.5% for IMI-REL and 30.0% for colistin plus IMI in the mMITT population, whereas they were 10.7% for IMI-REL and 23.1% for colistin plus IMI in the SmMITT population. The outcomes in the SmMITT population were generally consistent with those in the mMITT population, suggesting that outcomes may be applicable to the real-world use of IMI-REL for treating infections caused by imipenem-nonsusceptible Gram-negative pathogens. (This study has been registered at ClinicalTrials.gov under identifier NCT02452047.)




ni

Population Pharmacokinetics of Amikacin Administered Once Daily in Patients with Different Renal Functions [Clinical Therapeutics]

The aim of this work was to evaluate the pharmacokinetics of amikacin in Mexican patients with different renal functions receiving once-daily dosing regimens and the influence of clinical and demographical covariates that may influence the optimization of this antibiotic. A prospective study was performed in a total of 63 patients with at least one determination of amikacin plasma concentration. Population pharmacokinetic (PK) parameters were estimated by nonlinear mixed-effects modeling; validations were performed for dosing recommendation purposes based on PK/pharmacodynamic simulations. The concentration-versus-time data were best described by a one-compartment open model with proportional interindividual variability associated with amikacin clearance (CL) and volume of distribution (V); residual error followed a homoscedastic trend. Creatinine clearance (CLCR) and ideal body weight (IBW) demonstrated significant influence on amikacin CL and V, respectively. The final model [CL (liters/h) = 7.1 x (CLCR/130)0.84 and V (liters) = 20.3 x (IBW/68)2.9] showed a mean prediction error of 0.11 mg/liter (95% confidence interval, –3.34, 3.55) in the validation performed in a different group of patients with similar characteristics. There is a wide variability in amikacin PK parameters in Mexican patients. This leads to inadequate dosing regimens, especially in patients with augmented renal clearance (CLCR of >130 ml/min). Optimization based on the final population PK model in Mexican patients may be useful, since reliability and clinical applicability have been demonstrated in this study.




ni

Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients [Mechanisms of Resistance]

Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.




ni

Effects of Tenofovir on the Single-Dose Pharmacokinetics of Intravenous Morinidazole in Healthy Chinese Subjects [Pharmacology]

The effects of multiple-dose administration of tenofovir disoproxil fumarate (TDF) on the pharmacokinetics of morinidazole (MOR) were compared in healthy subjects. MOR exposure was similar, with an area under the curve from 0 h to infinity (AUC0-) treatment ratio for MOR+TDF/MOR of 1.01 (90% confidence interval, 0.97 to 1.06). No relevant differences were observed regarding plasma exposure of metabolites. Renal clearances of MOR and its metabolites were not affected by TDF. No unexpected safety or tolerability issues were observed.




ni

Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae [Epidemiology and Surveillance]

In this study, the plasmid content of clinical and commensal strains was analyzed and compared. The replicon profile was similar in both populations, except for L, M, A/C, and N (detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and F were the most frequent replicons, only IncI1, sequence type 12 (ST12) was associated with blaCMY-2 in both populations. In contrast, the widespread resistant IncF plasmids were not linked to a single epidemic plasmid.




ni

Early Bactericidal Activity Trial of Nitazoxanide for Pulmonary Tuberculosis [Clinical Therapeutics]

This study was conducted in treatment-naive adults with drug-susceptible pulmonary tuberculosis in Port-au-Prince, Haiti, to assess the safety, bactericidal activity, and pharmacokinetics of nitazoxanide (NTZ). This was a prospective phase II clinical trial in 30 adults with pulmonary tuberculosis. Twenty participants received 1 g of NTZ orally twice daily for 14 days. A control group of 10 participants received standard therapy over 14 days. The primary outcome was the change in time to culture positivity (TTP) in an automated liquid culture system. The most common adverse events seen in the NTZ group were gastrointestinal complaints and headache. The mean change in TTP in sputum over 14 days in the NTZ group was 3.2 h ± 22.6 h and was not statistically significant (P = 0.56). The mean change in TTP in the standard therapy group was significantly increased, at 134 h ± 45.2 h (P < 0.0001). The mean NTZ MIC for Mycobacterium tuberculosis isolates was 12.3 μg/ml; the mean NTZ maximum concentration (Cmax) in plasma was 10.2 μg/ml. Negligible NTZ levels were measured in sputum. At the doses used, NTZ did not show bactericidal activity against M. tuberculosis. Plasma concentrations of NTZ were below the MIC, and its negligible accumulation in pulmonary sites may explain the lack of bactericidal activity. (This study has been registered at ClinicalTrials.gov under identifier NCT02684240.)




ni

Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress [Experimental Therapeutics]

We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum. First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.




ni

Adduct Formation of Delamanid with NAD in Mycobacteria [Mechanisms of Action]

Delamanid (DLM), a nitro-dihydroimidazooxazole derivative currently approved for pulmonary multidrug-resistant tuberculosis (TB) therapy, is a prodrug activated by mycobacterial 7,8-didemethyl-8-hydroxy 5-deazaflavin electron transfer coenzyme (F420)-dependent nitroreductase (Ddn). Despite inhibiting the biosynthesis of a subclass of mycolic acids, the active DLM metabolite remained unknown. Comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM metabolites revealed covalent binding of reduced DLM with a nicotinamide ring of NAD derivatives (oxidized form) in DLM-treated Mycobacterium tuberculosis var. Bacille de Calmette et Guérin. Isoniazid-resistant mutations in the type II NADH dehydrogenase gene (ndh) showed a higher intracellular NADH/NAD ratio and cross-resistance to DLM, which were restored by complementation of the mutants with wild-type ndh. Our data demonstrated for the first time the adduct formation of reduced DLM with NAD in mycobacterial cells and its importance in the action of DLM.




ni

Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus [Minireviews]

Currently, the expansion of the novel human respiratory coronavirus (known as SARS-CoV-2 [severe acute respiratory syndrome coronavirus 2], COVID-2019 [coronavirus disease 2019], or 2019-nCoV [2019 novel coronavirus]) has stressed the need for therapeutic alternatives to alleviate and stop this new epidemic. The previous epidemics of infections by high-morbidity human coronaviruses, such as SARS-CoV in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, prompted the characterization of compounds that could be potentially active against the currently emerging novel coronavirus, SARS-CoV-2. The most promising compound is remdesivir (GS-5734), a nucleotide analog prodrug currently in clinical trials for treating Ebola virus infections. Remdesivir inhibited the replication of SARS-CoV and MERS-CoV in tissue cultures, and it displayed efficacy in nonhuman animal models. In addition, a combination of the human immunodeficiency virus type 1 (HIV-1) protease inhibitors lopinavir/ritonavir and interferon beta (LPV/RTV–IFN-β) was shown to be effective in patients infected with SARS-CoV. LPV/RTV–IFN-β also improved clinical parameters in marmosets and mice infected with MERS-CoV. Remarkably, the therapeutic efficacy of remdesivir appeared to be superior to that of LPV/RTV–IFN-β against MERS-CoV in a transgenic humanized mouse model. The relatively high mortality rates associated with these three novel human coronavirus infections, SARS-CoV, MERS-CoV, and SARS-CoV-2, have suggested that proinflammatory responses might play a role in the pathogenesis. It remains unknown whether the generated inflammatory state should be targeted. Therapeutics that target the coronavirus alone might not be able to reverse highly pathogenic infections. This minireview aims to provide a summary of therapeutic compounds that have shown potential in fighting SARS-CoV-2 infections.




ni

Distinct Mechanisms of Dissemination of NDM-1 Metallo-{beta}-Lactamase in Acinetobacter Species in Argentina [Epidemiology and Surveillance]

A 4-year surveillance of carbapenem-resistant Acinetobacter spp. isolates in Argentina identified 40 strains carrying blaNDM-1. Genome sequencing revealed that most were Acinetobacter baumannii, whereas seven represented other Acinetobacter spp. The A. baumannii genomes were closely related, suggesting recent spread. blaNDM-1 was located in the chromosome of A. baumannii strains and on a plasmid in non-A. baumannii strains. A resistance gene island carrying blaPER-7 and other resistance determinants was found on a plasmid in some A. baumannii strains.




ni

Enhanced Efflux Pump Expression in Candida Mutants Results in Decreased Manogepix Susceptibility [Mechanisms of Resistance]

Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. In C. parapsilosis, a mitochondrial deletion activated expression of the major facilitator superfamily transporter gene MDR1.




ni

Dose Optimization of Cefpirome Based on Population Pharmacokinetics and Target Attainment during Extracorporeal Membrane Oxygenation [Clinical Therapeutics]

To obtain the optimal dosage regimen in patients receiving extracorporeal membrane oxygenation (ECMO), we developed a population pharmacokinetics model for cefpirome and performed pharmacodynamic analyses. This prospective study included 15 patients treated with cefpirome during ECMO. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF) at predose and 0.5 to 1, 2 to 3, 4 to 6, 8 to 10, and 12 h after cefpirome administration. The population pharmacokinetic model was developed using nonlinear mixed effects modeling and stepwise covariate modeling. Monte Carlo simulation was used to assess the probability of target attainment (PTA) and cumulative fraction of response (CFR) according to the MIC distribution. Cefpirome pharmacokinetics were best described by a two-compartment model. Covariate analysis indicated that serum creatinine concentration (SCr) was negatively correlated with clearance, and the presence of ECMO increased clearance and the central volume of distribution. The simulations showed that patients with low SCr during ECMO-ON had lower PTA than patients with high SCr during ECMO-OFF; so, a higher dosage of cefpirome was required. Cefpirome of 2 g every 8 h for intravenous bolus injection or 2 g every 12 h for extended infusion over 4 h was recommended with normal kidney function receiving ECMO. We established a population pharmacokinetic model for cefpirome in patients with ECMO, and appropriate cefpirome dosage regimens were recommended. The impact of ECMO could be due to the change in patient status on consideration of the small population and uncertainty in covariate relationships. Dose optimization of cefpirome may improve treatment success and survival in patients receiving ECMO. (This study has been registered at ClinicalTrials.gov under identifier NCT02581280.)




ni

Antimicrobial Activity of Ceftolozane-Tazobactam and Comparators against Clinical Isolates of Haemophilus influenzae from the United States and Europe [Susceptibility]

Nine hundred Haemophilus influenzae clinical isolates from 83 U.S. and European medical centers were tested for susceptibility by reference broth microdilution methods against ceftolozane-tazobactam and comparators. Results were stratified by β-lactamase production and infection type. Overall, ceftolozane-tazobactam MIC50/90 values were 0.12/0.25 mg/liter, and 99.0% of isolates were inhibited at the susceptible breakpoint of ≤0.5 mg/liter; the highest MIC value was only 2 mg/liter. Our results support using ceftolozane-tazobactam to treat H. influenzae infections.




ni

Characterization of blaCTX-M-27/F1:A2:B20 Plasmids Harbored by Escherichia coli Sequence Type 131 Sublineage C1/H30R Isolates Spreading among Elderly Japanese in Nonacute-Care Settings [Mechanisms of Resistance]

We characterized 29 blaCTX-M-27-harboring plasmids of Escherichia coli sequence type 131 (ST131) sublineage C1/H30R isolates from healthy individuals and long-term-care facility (LTCF) residents. Most (27/29) plasmids were of the FIA, FIB, and FII multireplicon type with the same plasmid multilocus sequence typing (pMLST). Several plasmids (7/23) from LTCF residents harbored only blaCTX-M-27 as the resistance gene; however, their fundamental structures were very similar to those of previously isolated blaCTX-M-27/F1:A2:B20 plasmids, suggesting their prevalence as a newly arising public health concern.




ni

Predominant Distribution of OXA-48-Like Carbapenemase in Fecal Colonization [Letters]




ni

Molecular and Clinical Characterization of Multidrug-Resistant and Hypervirulent Klebsiella pneumoniae Strains from Liver Abscess in Taiwan [Epidemiology and Surveillance]

Hypervirulent Klebsiella pneumoniae strains are the major cause of liver abscesses throughout East Asia, and these strains are usually antibiotic susceptible. Recently, multidrug-resistant and hypervirulent (MDR-HV) K. pneumoniae strains have emerged due to hypervirulent strains acquiring antimicrobial resistance determinants or the transfer of a virulence plasmid into a classic MDR strain. In this study, we characterized the clinical and microbiological properties of K. pneumoniae liver abscess (KPLA) caused by MDR-HV strains in Taiwan. Patients with community onset KPLA were retrospectively identified at Taipei Veterans General Hospital during January 2013 to May 2018. Antimicrobial resistance mechanisms, capsular types, and sequence types were determined. MDR-HV strains and their parental antimicrobial-susceptible strains further underwent whole-genome sequencing (WGS) and in vivo mice lethality tests. Thirteen MDR-HV strains were identified from a total of 218 KPLA episodes. MDR-HV strains resulted in similar outcomes to antimicrobial-susceptible strains. All MDR-HV strains were traditional hypervirulent clones carrying virulence capsular types. The major resistance mechanisms were the overexpression of efflux pumps and/or the acquisition of ESBL or AmpC β-lactamase genes. WGS revealed that two hypervirulent strains had evolved to an MDR phenotype due to mutation in the ramR gene and the acquisition of an SHV-12-bearing plasmid, respectively. Both these MDR-HV strains retained high virulence compared to their parental strains. The spread of MDR-HV K. pneumoniae strains in the community raises significant public concerns, and measures should be taken to prevent the further acquisition of carbapenemase and other resistance genes among these strains in order to avoid the occurrence of untreatable KPLA.




ni

The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus [Mechanisms of Resistance]

Chromosomal resistance islands containing the methicillin resistance gene mecD (McRImecD) have been reported in Macrococcus caseolyticus. Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRImsr. These elements were also integrated into the 3' end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5' end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRImsr elements in M. canis, M. caseolyticus, and Staphylococcus aureus. Another McRImsr-like element identified in an M. canis strain lacked the classical att site at the 3' end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRImsr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRImsr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family.




ni

ISEcp1-Mediated Transposition Leads to Fosfomycin and Broad-Spectrum Cephalosporin Resistance in Klebsiella pneumoniae [Mechanisms of Resistance]

A fosfomycin-resistant and carbapenemase (OXA-48)-producing Klebsiella pneumoniae isolate was recovered, and whole-genome sequencing revealed ISEcp1-blaCTX-M-14b tandemly inserted upstream of the chromosomally encoded lysR-fosA locus. Quantitative evaluation of the expression of lysR and fosA genes showed that this insertion brought a strong hybrid promoter leading to overexpression of the fosA gene, resulting in fosfomycin resistance. This work showed the concomitant acquisition of resistance to broad-spectrum cephalosporins and fosfomycin due to a single genetic event.




ni

Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3 [Experimental Therapeutics]

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.




ni

Encephalitozoon cuniculi Genotype III Evinces a Resistance to Albendazole Treatment in both Immunodeficient and Immunocompetent Mice [Experimental Therapeutics]

Of four genotypes of Encephalitozoon cuniculi, E. cuniculi genotype II is considered to represent a parasite that occurs in many host species in a latent asymptomatic form, whereas E. cuniculi genotype III seems to be more aggressive, and infections caused by this strain can lead to the death of even immunocompetent hosts. Although albendazole has been considered suitable for treatment of Encephalitozoon species, its failure in control of E. cuniculi genotype III infection has been reported. This study determined the effect of a 100x recommended daily dose of albendazole on an Encephalitozoon cuniculi genotype III course of infection in immunocompetent and immunodeficient mice and compared the results with those from experiments performed with a lower dose of albendazole and E. cuniculi genotype II. The administration of the regular dose of abendazole during the acute phase of infection reduced the number of affected organs in all strains of mice and absolute counts of spores in screened organs. However, the effect on genotype III was minor. Surprisingly, no substantial effect was recorded after the use of a 100x dose of albendazole, with larger reductions seen only in the number of affected organs and absolute counts of spores in all strains of mice, implying variations in albendazole resistance between these Encephalitozoon cuniculi genotypes. These results imply that differences in the course of infection and the response to treatment depend not only on the immunological status of the host but also on the genotype causing the infection. Understanding how microsporidia survive in hosts despite targeted antimicrosporidial treatment could significantly contribute to research related to human health.




ni

ARGONAUT II Study of the In Vitro Activity of Plazomicin against Carbapenemase-Producing Klebsiella pneumoniae [Mechanisms of Resistance]

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.




ni

Tuning the Antigen Density Requirement for CAR T-cell Activity [Research Articles]

Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28) outperforms that in tisagenlecleucel (CD19-4-1BB) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BB CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BB-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence.

Significance:

Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28-CARs outperform 4-1BB-CARs when antigen density is low. However, 4-1BB-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence.

This article is highlighted in the In This Issue feature, p. 627




ni

Pan-Cancer Efficacy of Vemurafenib in BRAFV600-Mutant Non-Melanoma Cancers [Research Briefs]

BRAFV600 mutations occur in a wide range of tumor types, and RAF inhibition has become standard in several of these cancers. Despite this progress, BRAFV600 mutations have historically been considered a clear demonstration of tumor lineage context–dependent oncogene addiction, based predominantly on the insensitivity to RAF inhibition in colorectal cancer. However, the true broader activity of RAF inhibition pan-cancer remains incompletely understood. To address this, we conducted a multicohort "basket" study of the BRAF inhibitor vemurafenib in non-melanoma BRAFV600 mutation–positive solid tumors. In total, 172 patients with 26 unique cancer types were treated, achieving an overall response rate of 33% and median duration of response of 13 months. Responses were observed in 13 unique cancer types, including historically treatment-refractory tumor types such as cholangiocarcinoma, sarcoma, glioma, neuroendocrine carcinoma, and salivary gland carcinomas. Collectively, these data demonstrate that single-agent BRAF inhibition has broader clinical activity than previously recognized.

Significance:

These data suggest that BRAFV600 mutations lead to oncogene addiction and are clinically actionable in a broad range of non-melanoma cancers, including tumor types in which RAF inhibition is not currently considered standard of care.

See related commentary by Ribas and Lo, p. 640.

This article is highlighted in the In This Issue feature, p. 627




ni

Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment [Mini Review]

The poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) impels an improved understanding of disease biology to facilitate the development of better therapies. PDAC typically features a remarkably dense stromal reaction, featuring and established by a prominent population of cancer-associated fibroblasts (CAF). Genetically engineered mouse models and increasingly sophisticated cell culture techniques have demonstrated important roles for fibroblasts in PDAC progression and therapy response, but these roles are complex, with strong evidence for both tumor-supportive and tumor-suppressive or homeostatic functions. Here, we review the recent literature that has improved our understanding of heterogeneity in fibroblast fate and function in this disease including the existence of distinct fibroblast populations, and highlight important avenues for future study.

Significance:

Although the abundant stromal reaction associated with pancreatic cancer has long been appreciated, the functions of the CAF cells that establish this stromal reaction remain unclear. An improved understanding of the transcriptional and functional heterogeneity of pancreatic CAFs, as well as their tumor-supportive versus tumor-suppressive capacity, may facilitate the development of effective therapies for this disease.




ni

Oncogene-Induced Senescence Uniquely Alters Genome Architecture [Senescence]

Unlike replicative senescence, oncogene-induced senescence caused heterochromatin-body formation.




ni

Pemigatinib Is Active in Some FGFR2-Altered Cholangiocarcinomas [Clinical Trials]

Pemigatinib was effective in patients with cholangiocarcinomas with FGFR2 fusions or rearrangements.




ni

Bemarituzumab Is Active in FGFR2b-High Gastroesophageal Adenocarcinoma [Clinical Trials]

The FGFR2b inhibitor bemarituzumab was effective in high-FGFR2b gastroesophageal adenocarcinoma.




ni

Strong HPV Vaccine Response Predicts Better Survival with Chemotherapy [Clinical Trials]

Patients with HPV16+ cervical cancer and high T-cell responses to an HPV16 vaccine survived longer.




ni

Neoantigens Elicit Protumorigenic Immune Responses in Pancreatic Cancer [Pancreatic Cancer]

Neoantigen-expressing pancreatic cancers had hastened progression and poor immunotherapy response.




ni

Clinical Research Slows as COVID-19 Surges [News in Brief]

As the COVID-19 pandemic worsens, the clinical cancer community is grappling with how to continue providing access to experimental but potentially lifesaving therapies while keeping immunocompromised patients safe. To that end, cancer centers are making changes to their clinical trial programs, while pharmaceutical companies are deciding how—or whether—trials should continue.




ni

Method Enables Nanoscale Mapping of Protein Interactions on Live Cells [Techniques]

A new method called MicroMapping can identify nanoscale protein–protein interactions on live cells.




ni

Ubiquitination Causes Fanconi Anemia-Linked ID Complex Ring Formation [Structural Biology]

Monoubiquitinated FANCI and FANCD2 constitute the ID complex, which forms a sliding clamp on DNA.




ni

Engagement of T Cell-Expressed PD-L1 Weakens Antitumor Immunity [Immunology]

T cell–expressed PD-L1 exerts tolerogenic effects on tumor immunity in pancreatic cancer.




ni

Study Finds Underreporting of Clinical Data [News in Brief]

Since 2018, the FDA has required that U.S. clinical trial results be reported to clinicaltrials.gov within a year of trial completion, but this mandate is often ignored. A recent study found that less than half of U.S. trials submitted results to the site by the deadline. Industry-led trials were the most likely to be reported on time.




ni

Defining an embryonal rhabdomyosarcoma endotype [RESEARCH ARTICLE]

Rhabdomyosarcoma (RMS) is the most common childhood soft-tissue sarcoma. The largest subtype of RMS is embryonal rhabdomyosarcoma (ERMS) and accounts for 53% of all RMS. ERMS typically occurs in the head and neck region, bladder, or reproductive organs and portends a promising prognosis when localized; however, when metastatic the 5-yr overall survival rate is ~43%. The genomic landscape of ERMS demonstrates a range of putative driver mutations, and thus the recognition of the pathological mechanisms driving tumor maintenance should be critical for identifying effective targeted treatments at the level of the individual patients. Here, we report genomic, phenotypic, and bioinformatic analyses for a case of a 3-yr-old male who presented with bladder ERMS. Additionally, we use an unsupervised agglomerative clustering analysis of RNA and whole-exome sequencing data across ERMS and undifferentiated pleomorphic sarcoma (UPS) tumor samples to determine several major endotypes inferring potential targeted treatments for a spectrum of pediatric ERMS patient cases.




ni

The diagnostic challenges and clinical course of a myeloid/lymphoid neoplasm with eosinophilia and ZBTB20-JAK2 gene fusion presenting as B-lymphoblastic leukemia [RESEARCH REPORT]

We report the diagnostic challenges and the clinical course of a patient with an extraordinary presentation of B-lymphoblastic leukemia (B-ALL) with eosinophilia. We identified a novel ZBTB20-JAK2 gene fusion as a chimeric RNA transcript using the Archer platform. This gene fusion from the same patient was recently identified by Peterson et al. (2019) at the genomic level using a different sequencing technology platform. The configuration of this gene fusion predicts the production of a kinase-activating JAK2 fusion protein, which would normally lead to a diagnosis of Philadelphia chromosome–like B-ALL (Ph-like B-ALL). However, the unusual presentation of eosinophilia led us to demonstrate the presence of this gene fusion in nonlymphoid hematopoietic cells by fluorescence in situ hybridization (FISH) studies with morphologic correlation. Therefore, we believe this disease, in fact, represents blast crisis arising from an underlying myeloid neoplasm with JAK2 rearrangements. This case illustrates the difficulty in differentiating Ph-like B-ALL and myeloid/lymphoid neoplasm with eosinophilia and gene rearrangements (MLN-EGR) in blast crisis. As currently defined, the diagnosis of MLN-EGR relies on the hematologic presentations and the identification of marker gene fusions (including PCM1-JAK2, ETV6-JAK2, and BCR-JAK2). However, these same gene fusions, when limited to B-lymphoblasts, also define Ph-like B-ALL. Yet, our case does not conform to either condition. Therefore, the assessment for lineage restriction of gene rearrangements to reflect the pathophysiologic difference between B-ALL and MLN-EGR in blast crisis is likely a more robust diagnostic approach and allows the inclusion of MLN-EGR with novel gene fusions.




ni

[CORRIGENDUM] Corrigendum: Niche Cells and Signals that Regulate Lung Alveolar Stem Cells In Vivo




ni

Erratum. Therapeutic Inertia Is a Problem for All of Us. Clinical Diabetes 2019;37:105-106 (DOI: 10.2337/cd19-0009)




ni

Erratum. Diabetes Is Primary: Timely News and Notes for Primary Care Providers. Clinical Diabetes 2020;38:4-8 (DOI: 10.2337/cd20-dp01)




ni

A Case of Euglycemic Diabetic Ketoacidosis Triggered by a Ketogenic Diet in a Patient With Type 2 Diabetes Using a Sodium-Glucose Cotransporter 2 Inhibitor




ni

Optimizing Diabetes Care With the Standardized Continuous Glucose Monitoring Report




ni

Cleveland Clinic Foundation Internal Medicine Residency Program

Quality Improvement Success Stories are published by the American Diabetes Association in collaboration with the American College of Physicians, Inc. (ACP), and the National Diabetes Education Program. This series is intended to highlight best practices and strategies from programs and clinics that have successfully improved the quality of care for people with diabetes or related conditions. Each article in the series is reviewed and follows a standard format developed by the editors of Clinical Diabetes. The following article describes an initiative of the Cleveland Clinic’s internal medicine residents to improve diabetes care and outcomes within an underserved patient population at an East Cleveland, OH, health center.




ni

Primary Care Providers in California and Florida Report Low Confidence in Providing Type 1 Diabetes Care

People with type 1 diabetes may receive a significant portion of their care from primary care providers (PCPs). To understand the involvement of PCPs in delivering type 1 diabetes care, we performed surveys in California and Florida, two of the most populous and diverse states in the United States. PCPs fill insulin prescriptions but report low confidence in providing type 1 diabetes care and difficulty accessing specialty referrals to endocrinologists.




ni

Flash Continuous Home Glucose Monitoring to Improve Adherence to Self-Monitoring of Blood Glucose and Self-Efficacy in Adolescents With Type 1 Diabetes

Adolescents with type 1 diabetes face self-management challenges that make it difficult for them to achieve good glycemic control. In our population of adolescents with poorly controlled type 1 diabetes, the use of continuous glucose monitoring (CGM) improved patients’ glycemic time in range (TIR) and identified hypoglycemia more frequently than with intermittent self-monitoring of blood glucose throughout a 4-week interval. However, the adolescents were unable to synthesize this information to problem-solve or reduce the frequency of hypoglycemic events. Setting SMART (specific, measurable, achievable, relevant, and time-bound) diabetes management goals and providing intensive diabetes education and support could increase adolescents’ TIR and prevent hypoglycemia.




ni

Continuous Glucose Monitoring As a Behavior Modification Tool

Real-time continuous glucose monitoring (CGM) use may lead to behavioral modifications in food selection and physical activity, but there are limited data on the utility of CGM in facilitating lifestyle changes. This article describes an 18-item survey developed to explore whether patients currently using CGM believe the technology has caused them to change their behavior.




ni

Clinical Diabetes




ni

Total Antioxidant Capacity and Pancreatic Cancer Incidence and Mortality in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

Background:

Total antioxidant capacity (TAC) reflects an individual's overall antioxidant intake. We sought to clarify whether higher TAC is associated with lower risks of pancreatic cancer incidence and mortality in the U.S. general population.

Methods:

A total of 96,018 American adults were identified from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. A ferric-reducing ability of plasma score was used to reflect an individual's TAC intake from diet and/or supplements. Cox regression was used to calculate hazard ratios (HR) for pancreatic cancer incidence, and competing risk regression was used to calculate subdistribution HRs for pancreatic cancer mortality. Restricted cubic spline regression was used to test nonlinearity.

Results:

A total of 393 pancreatic cancer cases and 353 pancreatic cancer–related deaths were documented. Total (diet + supplements) TAC was found to be inversely associated with pancreatic cancer incidence (HR quartile 4 vs. quartile 1 = 0.53; 95% confidence interval, 0.39–0.72; Ptrend = 0.0002) and mortality (subdistribution HR quartile 4 vs. quartile 1 = 0.52; 95% confidence interval 0.38–0.72; Ptrend = 0.0003) in a nonlinear dose–response manner (all Pnonlinearity < 0.01). Similar results were observed for dietary TAC. No association of supplemental TAC with pancreatic cancer incidence and mortality was found.

Conclusions:

In the U.S. general population, dietary but not supplemental TAC level is inversely associated with risks of pancreatic cancer incidence and mortality in a nonlinear dose–response pattern.

Impact:

This is the first prospective study indicating that a diet rich in antioxidants may be beneficial in decreasing pancreatic cancer incidence and mortality.




ni

Accuracy of Self-reported Colonic Polyps: Results from the Prostate, Lung, Colorectal, and Ovarian Screening Trial Study of Colonoscopy Utilization

Background:

Colonoscopy follow-up recommendations depend on the presence or absence of polyps, and if found, their number, size, and histology. Patients may be responsible for conveying results between primary and specialty care or providing medical information to family members; thus, accurate reporting is critical. This analysis assessed the accuracy of self-reported colonoscopy findings.

Methods:

3,986 participants from the Study of Colonoscopy Utilization, an ancillary study nested within the Prostate, Lung, Colorectal, and Ovarian Screening Trial, were included. Self-reports of polyp and adenoma were compared to medical records, and measures of sensitivity and specificity were calculated. Correlates of accurate self-report of polyp were assessed using logistic regression and weighted to account for study sampling.

Results:

The sensitivity and specificity of self-reported polyp findings were 88% and 85%, respectively, and for adenoma 11% and 99%, respectively. Among participants with a polyp, older age was associated with lower likelihood while polyp severity and non-white race were associated with increased likelihood of accurate recall. Among participants without a polyp, having multiple colonoscopies was associated with lower likelihood while family history of colorectal cancer was associated with increased likelihood of accurate recall. Among both groups, longer time since colonoscopy was associated with lower likelihood of accurate recall.

Conclusions:

Participants recalled with reasonable accuracy whether they had a prior polyp; however, recall of histology, specifically adenoma, was much less accurate.

Impact:

Identification of strategies to increase accurate self-report of colonic polyps are needed, particularly for patient–provider communications and patient reporting of results to family members.