n

Poly[[μ3-2-(benzotriazol-1-yl)acetato-κ3O:O':N3]chlorido­(ethanol-κO)cobalt(II)]

In the title compound, [Co(C8H6N3O2)Cl(C2H5OH)]n, the CoII atoms adopt octa­hedral trans-CoN2O4 and tetra­hedral CoCl2O2 coordination geometries (site symmetries overline{1} and m, respectively). The bridging μ3-O:O:N 2-(benzotriazol-1-yl)acetato ligands connect the octa­hedral cobalt nodes into (010) sheets and the CoCl2 fragments link the sheets into a tri-periodic network. The structure displays O—H⋯O hydrogen bonding and the ethanol mol­ecule is disordered over two orientations.




n

Pinaverium bromide

The structure of pinaverium bromide (systematic name: 4-[(2-bromo-4,5-di­meth­oxy­phen­yl)meth­yl]-4-{2-[2-(6,6-dimethyl-2-bi­cyclo­[3.1.1]hepta­nyl)eth­oxy]eth­yl}morpholin-4-ium bromide; C26H41Br2NO4), was determined at 110 K. It has monoclinic (P21) symmetry. It is of inter­est with respect to its anti-inflammatory properties. The asymmetric unit contains two independent mol­ecules, one of which exhibits disorder of the bi­cyclo terminal group (occupancy factors: 0.78 and 0.22).




n

Dicarbonyl-1κ2C-μ-chlorido-2:3κ2Cl:Cl-penta­chlorido-2κ2Cl,3κ3Cl-[1(η6)-toluene]digallium(III)ruthenium(I)(Ru—Ga)

The title compound, [RuGa2Cl6(C7H8)(CO)2] or [(CO)2(GaCl2)(η6-toluene)Ru]+[GaCl4]−, was isolated from the reaction of Ga2Cl4 with di­phenyl­silanediol in toluene, followed by the addition of Ru3(CO)12. The compound contains a ruthenium–gallium metal–metal bond with a length of 2.4575 (2) Å.




n

[1-(Anthracen-9-ylmeth­yl)-1,4,7,10-tetra­aza­cyclododeca­ne]chlorido­zinc(II) nitrate

In the title salt, [ZnCl(C23H30N4)]NO3, the central ZnII atom of the complex cation is coordinated in a square-pyramidal arrangement by four nitro­gen atoms from cyclen (1,4,7,10-tetra­aza­cyclo­dodeca­ne) in the basal plane and one chlorido ligand in the apical position. The anthracene group attached to cyclen contributes to the crystal packing through inter­molecular T-shaped π inter­actions. Additionally, the nitrate anion participates in inter­molecular N—H⋯O hydrogen bonds with cyclen.




n

Bis(ethyl­enedi­ammonium) μ-ethyl­enedi­aminetetra­acetato-1κ3O,N,O':2κ3O'',N',O'''-bis­[tri­oxidomolybdate(VI)] tetra­hydrate

The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethyl­enedi­amine and ethyl­enedi­amine­tetra­acetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordin­ated by a nitro­gen atom and two carboxyl­ate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octa­hedral coordination environment. In the three-dimensional supra­molecular crystal structure, the dinuclear anions, the organo­ammonium counter-ions and the solvent water mol­ecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds.




n

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)rhodium(I)

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter­molecular non-standard hydrogen-bonding inter­action exists between the chlorido and NHC ligands.




n

(η6-Benzene)­chlorido­[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato]ruthenium(II)

The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the ortho­rhom­bic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octa­hedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of −0.056.




n

Diisobutyl­ammonium tri­phenyl(2-thiolato­acetato-κ2O,S)stannate(IV)

Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutyl­ammonium cations and mercapto­acetato­tri­phenyl­stannate(IV) anions. The bidentate binding mode of the mercapto­acetate ligand gives rise to a five-coordinated, ionic tri­phenyl­tin complex with a distorted cis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).




n

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

A new, cationic N-heterocyclic carbene RhI complex with a tetra­fluorido­borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding inter­actions between the ions. One of the tetra­fluorido­borate anions shows statistical disorder of the F atoms.




n

4-[(2-Phenyl­eth­yl)amino]­benzoic acid

The title compound, C15H15NO2, crystallizes with two mol­ecules in the asymmetric unit. In the crystal, the two mol­ecules associate to form an acid–acid dimer by pairwise O—H⋯O hydrogen bonds.




n

Redetermined structure of 4-(benz­yloxy)benzoic acid

In the title compound, C14H14O3, the dihedral angle between the aromatic rings is 39.76 (9)°. In the crystal, the mol­ecules associate to form centrosymmetric acid–acid dimers linked by pairwise O—H⋯O hydrogen bonds. The precision of the geometric parameters in the present single-crystal study is about an order of magnitude better than the previous powder diffraction study [Chattopadhyay et al. (2013). CrystEngComm, 15, 1077–1085].




n

Di­chloridotetra­kis­(3-meth­oxy­aniline)nickel(II)

The reaction of nickel(II) chloride with 3-meth­oxy­aniline yielded di­chlorido­tetra­kis­(3-meth­oxy­aniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octa­hedral with the chloride ions trans to each other. The four 3-meth­oxy­aniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Inter­molecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between mol­ecules link them into chains parallel to the b axis.




n

Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-yl­idene]­hydrazinecarbodi­thio­ate

The title compound, C10H8BrN3OS2, a brominated di­thio­carbazate imine deriv­ative, was obtained from the condensation reaction of S-methyl­dithio­carbazate (SMDTC) and 5-bromo­isatin. The essentially planar mol­ecule exhibits a Z configuration, with the di­thio­carbazate and 5-bromo­isatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intra­molecular N—H⋯Ob (b = bromo­isatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers characterized by an R22(8) loop motif. In the extended structure, mol­ecules are linked into a three-dimensional network by C—H⋯S and C—H⋯Br hydrogen bonds, C—Br⋯S halogen bonds and aromatic π–π stacking.




n

Bis[μ-3-(pyridin-2-yl)pyrazolato]bis­[acetato­(3,5-dimethyl-1H-pyrazole)­nickel(II)]

The title compound, [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] or [Ni(μ-OOCCH3)(2-PyPz)(Me2PzH)]2 (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; Me2PzH = 3,5-dimethyl pyrazole] was synthesized from Ni(OOCCH3)2·4H2O, 2-PyPzH, Me2PzH and tri­ethyl­amine as a base. Compound 1 {[Ni2(C30H34N10Ni2O4)]} at 100 K has monoclinic (P21/n) symmetry and the mol­ecules have crystallographic inversion symmetry. Mol­ecules of 1 comprise an almost planar dinuclear NiII core with an N4O2 coordination environment. The equatorial plane consists of N3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitro­gen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intra­molecular C—H⋯O and N—H⋯O hydrogen bonds.




n

Norfloxacinium nitrate

In the title salt [systematic name: 4-(3-carb­oxy-1-ethyl-6-fluoro-4-oxo-1,4-di­hydro­quin­olin-7-yl)piperazin-1-ium nitrate], C16H19FN3O3+·NO3−, proton transfer from nitric acid to the N atom of the piperazine ring of norfloxacin has occurred to form a mol­ecular salt. In the extended structure, N—H⋯O hydrogen bonds link alternating cations and anions into [100] chains, which are reinforced by aromatic π–π stacking inter­actions between the quinoline moieties of the norfloxacinium cations.




n

Bis(2-carb­oxy­quinolinium) hexa­chlorido­stan­nate(IV) dihydrate

In the hydrated title salt, (C10H8NO2)2[SnCl6]·2H2O, the tin(IV) atom is located about a center of inversion. In the crystal structure, the organic cation, the octa­hedral inorganic anion and the water mol­ecule of crystallization inter­act through O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonds, supplemented by weak π–π stacking between neighboring cations, and C—Cl⋯π inter­actions.




n

Pyridinium tosyl­ate

The title compound (systematic name: pyridinium 4-methyl­benzene­sulfonate), C5H6N+·C7H7O3S−, is the pyridinium salt of para-toluene­sulfonic acid. In the crystal, classical N—H⋯O hydrogen bonds as well as C—H⋯O contacts connect the cationic and anionic entities into sheets lying parallel to the ab plane.




n

Poly[tris­(2-amino­butan-1-ol)copper(II) [hexa­kis-μ2-cyanido-κ12C:N-tetra­copper(I)] bis­(2-amino­butan-1-olato)aqua­copper(II) monohydrate]

The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coord­inate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water mol­ecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.




n

catena-Poly[[(8-amino­quinoline)­cobalt(II)]-di-μ-azido]

The title coordination polymer, [Co(N3)2(C9H8N2)]n, was synthesized solvothermally. The CoII atom exhibits a distorted octa­hedral [CoN6] coordination geometry with a bidentate 8-amino­quinoline ligand and four azide ligands. Bridging azide ligands result in chains extending along [100]. N—H⋯N hydrogen bonds join the chains to give an extended structure with sheets parallel to (002).




n

μ-Chlorido-bis­{[1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene-κC]silver(I)} chloride 1,2-di­chloro­ethane hemisolvate

The title compound, [Ag2(C19H20N2)4]Cl·0.5C2H4Cl2, can be readily generated by treatment of (1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with sodium bis­(tri­methyl­sil­yl)amide followed by silver chloride. The mol­ecular structure of the compound was confirmed using NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structure of the title compound at 110 K has monoclinic (P21/c) symmetry. The represented silver compound is of inter­est with respect to anti­bacterial properties and the structure displays a series of weak inter­molecular hydrogen-bonding inter­actions with the chloride counter-anion.




n

Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexa­fluorido­phosphate methanol monosolvate

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa­fluorido­phosphate anion, and one methanol solvent mol­ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.




n

(E)-1-(3,4-Di­meth­oxy­phen­yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-one

In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate R22(20) inversion dimers.




n

Redetermined structure of methyl 3-{4,4-di­fluoro-2-[2-(methoxy­car­bon­yl)­ethyl]-1,3,5,7-tetra­methyl-4-bora-3a,4a-di­aza-s-in­da­cen-6-yl}pro­pion­ate

In the title compound, C21H27BF2N2O4, a highly fluorescent boron–dipyrromethene dye, the methyl­propionate moieties have different conformations. In the crystal, weak C—H⋯F and C—H⋯O inter­actions link the mol­ecules. Some optical properties are presented.




n

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hy­droxy­propano­yl)-1,3,6,8-tetra­methyl-1,2,4a,5,6,7,8,8a-octa­hydronaphthalene-2-carb­oxy­lic acid

The mol­ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol­ecule in the asymmetric unit.




n

Δ-Bis[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexa­fluorido­phosphate

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6− counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.




n

Di-μ-adipato-κ4O1,O1':O6,O6'-bis­[(2,2'-di­pyridyl­amine-κ2N,N')zinc(II)] trihydrate

The title compound, [Zn2(C6H8O4)2(C10H9N3)2]·3H2O or {Zn2[(C5H4N)2NH]2[μ-(CH2)4(COO)2]2}·3H2O, was separ­ated from the solvothermal reaction of zinc(II) sulfate hepta­hydrate, 2,2'-di­pyridyl­amine and sodium adipate. The dinuclear metal complex has a centrosymmetric structure, with the ZnII atom adopting a highly distorted octa­hedral coordination sphere composed of four oxygen atoms from bridging adipato ligands and two pyridine nitro­gen atoms. In the crystal, the title compound aggregates into a tri-periodic supra­molecular structure through inter­molecular hydrogen-bonding networks of the form O—H⋯O and N—H⋯O.




n

1,4-Di­methyl­piperazine-2,3-dione

In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets.




n

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate di­chloro­methane hemisolvate

A new triazole-based N-heterocyclic carbene IrI cationic complex with a tetra­fluorido­borate counter-anion and hemi-solvating di­chloro­methane, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4·0.5CH2Cl2, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit and one di­chloro­methane solvent mol­ecule per two ion pairs. The cationic complex exhibits a distorted square-planar conformation around the IrI atom, formed by a bidentate cyclo­octa-1,5,diene (COD) ligand, a tri­phenyl­phosphane ligand, and an N-heterocyclic carbene (NHC). There are several close non-standard H⋯F hydrogen-bonding inter­actions that orient the tetra­fluorido­borate anions with respect to the IrI complex mol­ecules. The complex shows promising catalytic activity in transfer hydrogenation reactions. The structure was refined as a non-merohedral twin, and one of the COD mol­ecules is statistically disordered.




n

4-Bromo-N,N'-di­phenyl­benzimidamide N'-oxide

The title compound, C19H15BrN2O, crystallizes with two similar mol­ecules in the asymmetric unit. The extended structure features dimers linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds. The HNCNO moiety of the title compound shows delocalization over the N—C—N part, as evidenced by the similar C—N bond distances.




n

Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-yl­idene]hydrazinecarbodi­thio­ate

The title di­thio­carbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyl­dithio­carbazate (SMDTC) and 5-methyl­isatin. It shows a Z configuration about the imine C=N bond, which is associated with an intra­molecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbon­yl–carbonyl (C=O⋯C=O) inter­actions.




n

(Z)-N-(2,6-Diiso­propyl­phen­yl)-1-[(2-meth­oxyphen­yl)amino]­methanimine oxide

The mol­ecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer meth­oxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the mol­ecule. In the crystal, inter­molecular C—H⋯O inter­actions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane.




n

(Z)-N-(2,6-Di­methyl­phen­yl)-1-[(2-meth­oxy­phen­yl)amino]­methanimine oxide methanol monosolvate

In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-meth­oxy­phenyl and 2,6-di­methyl­phenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supra­molecular chain that extends along the crystallographic a-axis direction.




n

(1H-Benzo­diazol-2-ylmeth­yl)di­ethyl­amine

In the crystal of the title compound, C12H17N3, the mol­ecules are linked by N—H⋯N hydrogen bonds, generating a C(4) chain extending along the c-axis direction. One of the ethyl groups is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15).




n

2-Chloro-N-(4-hy­droxy­phen­yl)acetamide

The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hy­droxy­benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra­molecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].




n

3aH,4H,5H,8H,9H,9aH-Cyclo­octa­[d][1,3]dioxole-2-thione

The thio­nocarbonate of trans-cyclo­octenediol, C9H12O2S, crystallizes with a 9/1 disorder in the position of the R,R and S,S-enanti­omers. As a result of trans-annulation, both rings adopt a twist conformation.




n

meso-5,15-Bis[3-(iso­propyl­idenegalacto­pyran­oxy)phen­yl]-10,20-bis­(4-methyl­phen­yl)porphyrin

The crystal structure of a glycosyl­ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso­propyl­idene protected galactose moieties are attached to the meso position of a substituted tetra­aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin–porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C—H⋯O and C—H⋯π inter­actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π–π inter­actions with the delocalized π-systems of neighboring porphyrins.




n

1-Eth­oxy-3-[4-(eth­oxy­carbon­yl)phen­yl]-3-hy­droxy-1-oxopropan-2-aminium chloride

The title compound, C14H20NO5+·Cl−, was prepared as a racemate of R,R- and S,S-enanti­omers by reduction of the corresponding hy­droxy­imino­ketone. In the crystal, layers are formed via hydrogen bridges of four ammonium groups to chloride ions; these lamellae are connected via inter­digitated benzoic ester groups.




n

Benzilic acid: a monoclinic polymorph

The title compound, C14H12O3, is an α-hy­droxy­carb­oxy­lic acid whose ortho­rhom­bic polymorph has been reported earlier [Qiu et al. (2007). Inorg. Chim. Acta, 360, 1819–1824]. The asymmetric unit contains two complete mol­ecules. Classical hydrogen bonds, as well as C—H⋯O contacts, connect the mol­ecules to infinite chains along the crystallographic c-axis direction.




n

2-Amino-5-oxo-4-(thio­phen-2-yl)-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

The crystal structure of the title compound, C14H12N2O2S, reveals two symmetrically independent mol­ecules within the asymmetric unit. Each mol­ecule contains a chromenone core attached to a 2-thio­phene ring, cyano, and amino groups. The 2-thio­phene ring of one of the two mol­ecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.837 (2). The 2-thio­phene ring is nearly orthogonal to the fused 4H-pyran ring, with dihedral angles between the two sets of planes being 89.5 (5) and 89.63 (8)°. Inter­molecular hydrogen bonding, involving N—H⋯N and N—H⋯O inter­actions, creates two distinct motifs leading to the formation of a two-dimensional supra­molecular network along the crystallographic ac plane.




n

Tris(4-chloro­phen­yl) phosphate

The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chloro­phenol and phospho­ric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chloro­phenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual mol­ecules into sheets lying perpendicular to the crystallographic b axis.




n

Structural insights into 1,4-bis­(neopent­yloxy)pillar[5]arene and the pyridine host–guest system

The crystal structure of 1,4-bis­(neopent­yloxy)pillar[5]arene, C95H140N2O10 (TbuP), featuring two encapsulated pyridine mol­ecules, reveals significant host–guest inter­actions. Inter­estingly, the pyridine guests are positioned near the neopent­yloxy substituents instead of the electron-rich aromatic core of the pillar[5]arene. This spatial arrangement suggests a preference for the pyridine mol­ecules to engage with the aliphatic regions of the host. Detailed analysis of the structural characteristics of this host–guest system (TbuP·2Py), as well as its packing pattern within the crystal network, is presented and discussed.




n

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.




n

Crystal structure and analytical profile of 1,2-di­phenyl-2-pyrrolidin-1-yl­ethanone hydro­chloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol

A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant com­plete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hy­dro­chloride hemihydrate or 1-(2-oxo-1,2-di­phenyl­eth­yl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) inter­esting hydrogen bonding observed in pairwise inter­actions by the drug mol­ecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π inter­actions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques.




n

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




n

Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes

The structures of five ammonium salt forms of mono­sulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydro­phobic (organic) and hydro­philic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the mono­sulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different inter­action types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydro­phobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.




n

Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction

Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methyl­prop­yl)-1-oxa-4,7,10-tri­aza­cyclo­tridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclo­depsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclo­dep­si­peptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enanti­omorphs of beauveriolide I.




n

Synthesis, crystal structure and in-silico evaluation of aryl­sul­fon­amide Schiff bases for potential activity against colon cancer

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base com­pounds derived from benzene­sul­fon­amide. The synthesis process, involved the reaction between N-cyclo­amino-2-sulf­anil­amide and various substituted o-salicyl­aldehydes, resulted in a set of com­pounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized com­pounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substanti­ated by mol­ecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The ex­plor­ation of frontier mol­ecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyr­rol­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 20, em­erged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piper­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed re­marke­able inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluoro­uracil. The ex­plor­ation of mol­ecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of mol­ecules.




n

Absolute structure determination of Berkecoumarin by X-ray and electron diffraction

X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.




n

Borotropic shifting of the hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lan­tha­nide com­plexes

The coordination of hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lan­tha­nide(III) ions is achieved for the first time with the com­plex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accom­plished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydro­bis­[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We con­clude that the pres­ence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand.




n

Relationship between synthesis method–crystal structure–melting properties in co­crystals: the case of caffeine–citric acid

The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid co­crystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to com­pare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical inter­est, com­pared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one mol­ecule of caffeine and one mol­ecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations com­pared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the co­crystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known co­crystals.