da BGS releases 10K maps through updated maps portal - British Geological Survey By news.google.com Published On :: Tue, 16 May 2023 07:00:00 GMT BGS releases 10K maps through updated maps portal British Geological Survey Full Article
da BGS updates national CO2 storage database - Agg-Net By news.google.com Published On :: Tue, 30 Jan 2024 08:00:00 GMT BGS updates national CO2 storage database Agg-Net Full Article
da BGS leads update to maps of the Earth’s magnetic field - British Geological Survey By news.google.com Published On :: Thu, 04 Apr 2024 07:00:00 GMT BGS leads update to maps of the Earth’s magnetic field British Geological Survey Full Article
da BGS launches project to enhance value of ground investigation data - Ground Engineering By news.google.com Published On :: Fri, 05 Apr 2024 07:00:00 GMT BGS launches project to enhance value of ground investigation data Ground Engineering Full Article
da Ordnance Survey adds geological data to its Data Hub - Geographical Magazine By news.google.com Published On :: Wed, 29 May 2024 07:00:00 GMT Ordnance Survey adds geological data to its Data Hub Geographical Magazine Full Article
da BGS geological data sets now available on Ordnance Survey hub - Ground Engineering By news.google.com Published On :: Mon, 03 Jun 2024 07:00:00 GMT BGS geological data sets now available on Ordnance Survey hub Ground Engineering Full Article
da BGS data product licence fees to rise - British Geological Survey By news.google.com Published On :: Fri, 01 Mar 2024 08:00:00 GMT BGS data product licence fees to rise British Geological Survey Full Article
da Spotlight on BGS coastal erosion data - British Geological Survey By news.google.com Published On :: Thu, 18 Jul 2024 07:00:00 GMT Spotlight on BGS coastal erosion data British Geological Survey Full Article
da Update released for BGS open-source database software, ETL Helper - British Geological Survey By news.google.com Published On :: Tue, 09 Jul 2024 07:00:00 GMT Update released for BGS open-source database software, ETL Helper British Geological Survey Full Article
da Update to BGS’s AGS file utilities tool released - British Geological Survey By news.google.com Published On :: Wed, 19 Jun 2024 07:00:00 GMT Update to BGS’s AGS file utilities tool released British Geological Survey Full Article
da Forty years and counting: new topsoil data provides most extensive snapshot of environmental pollution effects - British Geological Survey By news.google.com Published On :: Tue, 01 Oct 2024 07:00:00 GMT Forty years and counting: new topsoil data provides most extensive snapshot of environmental pollution effects British Geological Survey Full Article
da BGS Open Day 2024 - British Geological Survey By news.google.com Published On :: Tue, 27 Feb 2024 14:35:15 GMT BGS Open Day 2024 British Geological Survey Full Article
da Seabed geology data: stakeholder consultation - British Geological Survey By news.google.com Published On :: Wed, 25 Sep 2024 15:58:38 GMT Seabed geology data: stakeholder consultation British Geological Survey Full Article
da BGS to update geological maps of Strathmore - British Geological Survey By news.google.com Published On :: Mon, 10 Jun 2024 07:00:00 GMT BGS to update geological maps of Strathmore British Geological Survey Full Article
da Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study By journals.iucr.org Published On :: The structure of Ni3V2O8 was studied using X-ray diffraction at temperatures of 299 and 1323 K. No phase transition at high temperature is observed. The variation in V—O bond length is small as compared with the Ni—O bond due to its high rigidity. Full Article text
da Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability By journals.iucr.org Published On :: Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances. Full Article text
da Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study By journals.iucr.org Published On :: 2024-10-23 Nickel orthovanadate is a promising material with potential applications in energy storage and photocatalytic devices. The crystal structure of Ni3V2O8 at 299 (3) K and 1323 (8) K was studied using X-ray powder diffraction. The sample was a single-phase orthorhombic kagome-staircase-Ni3(VO4)2-type structure (space group Cmca) at both temperatures. The phase purity and morphology was studied using energy-dispersive X-ray spectroscopy and scanning electron microscopy. The refined unit-cell parameters at 299 (3) K are a = 5.93384 (4) Å, b = 11.38318 (7) Å and c = 8.23818 (5) Å, and at 1323 (8) K are a = 6.02077 (7) Å, b = 11.48838 (7) Å and c = 8.32611 (9) Å. The obtained results indicate thermal expansion anisotropy, with a largest expansivity along a. Variations in Ni—O and V—O bonds with temperature are observed. The variation in the Ni—O bond is about one order higher in magnitude than that of the V—O bond, signifying the high rigidity of V—O bonds. The unit-cell size variations with rising effective ionic volume of the divalent A ion in the A3B2O8 family [A = Ni, Mg, Zn, Co, Mn (experimental data) and also A = Cu, Cd (theoretical data), B = V or As] are analyzed. Based on experimental and theoretical data, trends within the family are observed and the unit-cell size for reported solid solution of nickel (87%) and copper (13%) mixture in (Ni1–xCux)3V2O8 are predicted. Predictions are also provided for some hypothetical A3B2O8 ternary compound and solid solutions. Full Article text
da Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning By journals.iucr.org Published On :: 2024-02-29 Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data. Full Article text
da ClusterFinder: a fast tool to find cluster structures from pair distribution function data By journals.iucr.org Published On :: 2024-02-29 A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal–oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters. Full Article text
da Online carbohydrate 3D structure validation with the Privateer web app By journals.iucr.org Published On :: 2024-01-24 Owing to the difficulties associated with working with carbohydrates, validating glycan 3D structures prior to deposition into the Protein Data Bank has become a staple of the structure-solution pipeline. The Privateer software provides integrative methods for the validation, analysis, refinement and graphical representation of 3D atomic structures of glycans, both as ligands and as protein modifiers. While Privateer is free software, it requires users to install any of the structural biology software suites that support it or to build it from source code. Here, the Privateer web app is presented, which is always up to date and available to be used online (https://privateer.york.ac.uk) without installation. This self-updating tool, which runs locally on the user's machine, will allow structural biologists to simply and quickly analyse carbohydrate ligands and protein glycosylation from a web browser whilst retaining all confidential information on their devices. Full Article text
da Crystallographic fragment screen of the c-di-AMP-synthesizing enzyme CdaA from Bacillus subtilis By journals.iucr.org Published On :: 2024-08-23 Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA. Full Article text
da Multi-species cryoEM calibration and workflow verification standard By journals.iucr.org Published On :: 2024-10-31 Cryogenic electron microscopy (cryoEM) is a rapidly growing structural biology modality that has been successful in revealing molecular details of biological systems. However, unlike established biophysical and analytical techniques with calibration standards, cryoEM has lacked comprehensive biological test samples. Here, a cryoEM calibration sample consisting of a mixture of compatible macromolecules is introduced that can not only be used for resolution optimization, but also provides multiple reference points for evaluating instrument performance, data quality and image-processing workflows in a single experiment. This combined test specimen provides researchers with a reference point for validating their cryoEM pipeline, benchmarking their methodologies and testing new algorithms. Full Article text
da Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources By journals.iucr.org Published On :: Fixed targets (`chips') offer efficient, high-throughput microcrystal delivery for serial crystallography at synchrotrons and X-ray free-electron lasers (XFELs). Within this family, sheet-on-sheet (SOS) chips offer noteworthy advantages in cost, adaptability, universality and ease of crystal loading. We describe our latest generation of SOS devices, which are now in active use at both synchrotrons and XFELs. Full Article text
da Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction By journals.iucr.org Published On :: Direct measurements have been taken of nanoscale domain structure in ferroelectric lead zirconate titanate around a grain boundary. Characterizing the evolution of this structure under an electric field is critical for predicting dielectric and piezoelectric response. Full Article text
da Understanding secondary order parameters in perovskites with tilted octahedra By journals.iucr.org Published On :: A symmetry guide for the secondary structural degrees of freedom and related physical properties generated by tilts of BX6 octahedra in perovskites is proposed. Full Article text
da Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: A new processing technique for synchrotron scanning 3D X-ray diffraction data is introduced, utilizing symmetric Bragg reflections hkl and hkl, known as Friedel pairs. This technique is designed to tackle the difficulties associated with large, highly deformed, polyphase materials, especially geological samples. Full Article text
da Towards expansion of the MATTS data bank with heavier elements: the influence of the wavefunction basis set on the multipole model derived from the wavefunction By journals.iucr.org Published On :: This study examines the quality of charge density obtained by fitting the multipole model to wavefunctions in different basis sets. The complex analysis reveals that changing the basis set quality from double- to triple-zeta can notably improve the charge density related properties of a multipole model. Full Article text
da Small-angle scattering and dark-field imaging for validation of a new neutron far-field interferometer By journals.iucr.org Published On :: A neutron far-field interferometer is under development at NIST with the aim of enabling a multi-scale measurement combining the best of small-angle neutron scattering (SANS) and neutron imaging and tomography. We use the close relationship between SANS, ultra-SANS, spin-echo SANS and dark-field imaging and measurements of monodisperse spheres as a validation metric, highlighting the strengths and weaknesses of each of these neutron techniques. Full Article text
da Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier By journals.iucr.org Published On :: This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications. Full Article text
da TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing By journals.iucr.org Published On :: Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival. Full Article text
da Multimodal reconstruction of TbCo thin-film structure with Bayesian analysis of polarized neutron reflectivity By journals.iucr.org Published On :: For the first time, a multimodal reconstruction of a magnetic thin-film structure has been found using polarised neutron reflectivity. This has been achieved by implementing the Bayesian approach in combination with error correction based on the maximum likelihood method and instrument function optimization. Full Article text
da Specific radiation damage to halogenated inhibitors and ligands in protein–ligand crystal structures By journals.iucr.org Published On :: This article reports an investigation into the effects of specific radiation damage to halogenated ligands in crystal structures of protein-inhibitor complexes. Full Article text
da Small-angle scattering and dark-field imaging for validation of a new neutron far-field interferometer By journals.iucr.org Published On :: 2024-11-08 The continued advancement of complex materials often requires a deeper understanding of the structure–function relationship across many length scales, which quickly becomes an arduous task when multiple measurements are required to characterize hierarchical and inherently heterogeneous materials. Therefore, there are benefits in the simultaneous characterization of multiple length scales. At the National Institute of Standards and Technology, a new neutron far-field interferometer is under development that aims to enable a multi-scale measurement combining the best of small-angle neutron scattering (SANS) and neutron imaging and tomography. Spatially resolved structural information on the same length scales as SANS (0.001–1 µm) and ultra-small-angle neutron scattering (USANS, 0.1–10 µm) will be collected via dark-field imaging simultaneously with regular attenuation radiography (>10 µm). The dark field is analogous to the polarization loss measured in spin-echo SANS (SESANS) and is related to isotropic SANS through a Hankel transform. Therefore, we use this close relationship and analyze results from SANS, USANS, SESANS and dark-field imaging of monodisperse spheres as a validation metric for the interferometry measurements. The results also highlight the strengths and weaknesses of these neutron techniques for both steady-state and pulsed neutron sources. Finally, we present an example of the value added by the spatial resolution enabled by dark-field imaging in the study of more complex heterogeneous materials. This information would otherwise be lost in other small-angle scattering measurements averaged over the sample. Full Article text
da Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: 2024-11-08 The present study introduces a processing strategy for synchrotron scanning 3D X-ray diffraction (s3DXRD) data, aimed at addressing the challenges posed by large, highly deformed, polyphase materials such as crystalline rocks. Leveraging symmetric Bragg reflections known as Friedel pairs, our method enables diffraction events to be precisely located within the sample volume. This method allows for fitting the phase, crystal structure and unit-cell parameters at the intra-grain scale on a voxel grid. The processing workflow incorporates several new modules, designed to (i) efficiently match Friedel pairs in large s3DXRD datasets containing up to 108 diffraction peaks; (ii) assign phases to each pixel or voxel, resolving potential ambiguities arising from overlap in scattering angles between different crystallographic phases; and (iii) fit the crystal orientation and unit cell locally on a point-by-point basis. We demonstrate the effectiveness of our technique on fractured granite samples, highlighting the ability of the method to characterize complex geological materials and show their internal structure and mineral composition. Additionally, we include the characterization of a metal gasket made of a commercial aluminium alloy, which surrounded the granite sample during experiments. The results show the effectiveness of the technique in recovering information about the internal texture and residual strain of materials that have undergone high levels of plastic deformation. Full Article text
da Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction By journals.iucr.org Published On :: 2024-10-29 The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(Zr0.2Ti0.8)O3 bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO3-coated (001) SrTiO3 24° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm−1 electric field were reconstructed. In the vicinity of the tilt grain boundary, the distributions of densities of c-type tetragonal domains with the c axis aligned with the film normal were calculated on the basis of diffracted intensity ratios of c- and a-type domains and reference powder diffraction data. Diffracted intensity was averaged along the grain boundary, and it was shown that the density of c-type tetragonal domains dropped to ∼50% of that of the bulk of the film over a range ±150 nm from the grain boundary. This work complements previous results acquired by band excitation piezoresponse force microscopy, suggesting that reduced nonlinear piezoelectric response around grain boundaries may be related to the change in domain structure, as well as to the possibility of increased pinning of domain wall motion. The implications of the results and analysis in terms of understanding the role of grain boundaries in affecting the nonlinear piezoelectric and dielectric responses of ferroelectric materials are discussed. Full Article text
da Understanding secondary order parameters in perovskites with tilted octahedra By journals.iucr.org Published On :: 2024-10-16 In the family of perovskite materials, the tilts of BX6 octahedra are the most common type of structural distortion. Conventionally, the formation of low-symmetry perovskite phases with tilted octahedra is analyzed by considering only primary order parameters. However, octahedral tilting also gives rise to secondary order parameters which contribute to additional atomic displacements, ordering and lattice distortions. Our study highlights the significant impact of secondary order parameters on the structural formation and emergent physical properties of perovskites. Through group-theoretical and crystallographic analyses, we have identified all secondary order parameters within Glazer-type tilt systems and clarified their physical manifestations. We explore the fundamental symmetry relationships among various structural degrees of freedom in perovskites, including tilt-induced ferroelasticity, correlations between displacements and ordering of atoms occupying different positions, and the potential for rigid unit rotations and unconventional octahedral tilts. Particular emphasis is placed on the emergence of secondary order parameters and their coupling with primary order parameters, as well as their symmetry-based hierarchy, illustrated through a modified Bärnighausen tree. We applied our theoretical insights to elucidate phase transitions in well known perovskites such as CaTiO3 and RMnO3 (where R = La and lanthanide ions), thereby demonstrating the significant influence of secondary order parameters on crystal structure formation. Our results serve as a symmetry-based guide for the design, identification and structural characterization of perovskites with tilted octahedra, and for understanding tilt-induced physical properties. Full Article text
da Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources By journals.iucr.org Published On :: 2024-10-16 Serial crystallography (SX) efficiently distributes over many crystals the radiation dose absorbed during diffraction data acquisition, enabling structure determination of samples at ambient temperature. SX relies on the rapid and reliable replacement of X-ray-exposed crystals with fresh crystals at a rate commensurate with the data acquisition rate. `Solid supports', also known as `fixed targets' or `chips', offer one approach. These are microscopically thin solid panes into or onto which crystals are deposited to be individually interrogated by an X-ray beam. Solid supports are generally patterned using photolithography methods to produce a regular array of features that trap single crystals. A simpler and less expensive alternative is to merely sandwich the microcrystals between two unpatterned X-ray-transparent polymer sheets. Known as sheet-on-sheet (SOS) chips, these offer significantly more versatility. SOS chips place no constraint on the size or size distribution of the microcrystals or their growth conditions. Crystals ranging from true nanocrystals up to microcrystals can be investigated, as can crystals grown in media ranging from low viscosity (aqueous solution) up to high viscosity (such as lipidic cubic phase). Here, we describe our two SOS devices. The first is a compact and lightweight version designed specifically for synchrotron use. It incorporates a standard SPINE-type magnetic base for mounting on a conventional macromolecular crystallography goniometer. The second and larger chip is intended for both X-ray free-electron laser and synchrotron use and is fully compatible with the fast-scanning XY-raster stages developed for data collection with patterned chips. Full Article text
da An alternative method to the Takagi–Taupin equations for studying dark-field X-ray microscopy of deformed crystals By journals.iucr.org Published On :: 2024-09-26 This study introduces an alternative method to the Takagi–Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi–Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi–Taupin equations. Full Article text
da Efficient boundary-guided scanning for high-resolution X-ray ptychography By journals.iucr.org Published On :: 2024-01-01 In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines. Full Article text
da Finback: a web-based data collection system at SSRF biological macromolecular crystallography beamlines By journals.iucr.org Published On :: 2024-01-19 An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database. Full Article text
da DOMAS: a data management software framework for advanced light sources By journals.iucr.org Published On :: 2024-02-01 In recent years, China's advanced light sources have entered a period of rapid construction and development. As modern X-ray detectors and data acquisition technologies advance, these facilities are expected to generate massive volumes of data annually, presenting significant challenges in data management and utilization. These challenges encompass data storage, metadata handling, data transfer and user data access. In response, the Data Organization Management Access Software (DOMAS) has been designed as a framework to address these issues. DOMAS encapsulates four fundamental modules of data management software, including metadata catalogue, metadata acquisition, data transfer and data service. For light source facilities, building a data management system only requires parameter configuration and minimal code development within DOMAS. This paper firstly discusses the development of advanced light sources in China and the associated demands and challenges in data management, prompting a reconsideration of data management software framework design. It then outlines the architecture of the framework, detailing its components and functions. Lastly, it highlights the application progress and effectiveness of DOMAS when deployed for the High Energy Photon Source (HEPS) and Beijing Synchrotron Radiation Facility (BSRF). Full Article text
da ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials By journals.iucr.org Published On :: 2024-02-22 The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research. Full Article text
da A distributed data processing scheme based on Hadoop for synchrotron radiation experiments By journals.iucr.org Published On :: 2024-04-24 With the development of synchrotron radiation sources and high-frame-rate detectors, the amount of experimental data collected at synchrotron radiation beamlines has increased exponentially. As a result, data processing for synchrotron radiation experiments has entered the era of big data. It is becoming increasingly important for beamlines to have the capability to process large-scale data in parallel to keep up with the rapid growth of data. Currently, there is no set of data processing solutions based on the big data technology framework for beamlines. Apache Hadoop is a widely used distributed system architecture for solving the problem of massive data storage and computation. This paper presents a set of distributed data processing schemes for beamlines with experimental data using Hadoop. The Hadoop Distributed File System is utilized as the distributed file storage system, and Hadoop YARN serves as the resource scheduler for the distributed computing cluster. A distributed data processing pipeline that can carry out massively parallel computation is designed and developed using Hadoop Spark. The entire data processing platform adopts a distributed microservice architecture, which makes the system easy to expand, reduces module coupling and improves reliability. Full Article text
da Soft X-ray wavefront sensing at an ellipsoidal mirror shell By journals.iucr.org Published On :: 2024-06-06 A reliable `in situ' method for wavefront sensing in the soft X-ray domain is reported, developed for the characterization of rotationally symmetric optical elements, like an ellipsoidal mirror shell. In a laboratory setup, the mirror sample is irradiated by an electron-excited (4.4 keV), micrometre-sized (∼2 µm) fluorescence source (carbon Kα, 277 eV). Substantially, the three-dimensional intensity distribution I(r) is recorded by a CCD camera (2048 × 512 pixels of 13.5 µm) at two positions along the optical axis, symmetrically displaced by ±21–25% from the focus. The transport-of-intensity equation is interpreted in a geometrical sense from plane to plane and implemented as a ray tracing code, to retrieve the phase Φ(r) from the radial intensity gradient on a sub-pixel scale. For reasons of statistical reliability, five intra-/extra-focal CCD image pairs are evaluated and averaged to an annular two-dimensional map of the wavefront error {cal W}. In units of the test wavelength (C Kα), an r.m.s. value sigma_{cal{W}} = ±10.9λ0 and a peak-to-valley amplitude of ±31.3λ0 are obtained. By means of the wavefront, the focus is first reconstructed with a result for its diameter of 38.4 µm, close to the direct experimental observation of 39.4 µm (FWHM). Secondly, figure and slope errors of the ellipsoid are characterized with an average of ±1.14 µm and ±8.8 arcsec (r.m.s.), respectively, the latter in reasonable agreement with the measured focal intensity distribution. The findings enable, amongst others, the precise alignment of axisymmetric X-ray mirrors or the design of a wavefront corrector for high-resolution X-ray science. Full Article text
da StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data By journals.iucr.org Published On :: 2024-07-15 StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/WAXS) data analysis workflow platform with graphical user interface (GUI). It aims to provide an interactive and user-friendly tool for analysis of both batch data files and real-time data streams. Users can easily create customizable workflows through the GUI to meet their specific needs. One characteristic of StreamSAXS is its plug-in framework, which enables developers to extend the built-in workflow tasks. Another feature is the support for both already acquired and real-time data sources, allowing StreamSAXS to function as an offline analysis platform or be integrated into large-scale acquisition systems for end-to-end data management. This paper presents the core design of StreamSAXS and provides user cases demonstrating its utilization for SAXS/WAXS data analysis in offline and online scenarios. Full Article text
da Study on the UV FEL single-shot damage threshold of an Au thin film By journals.iucr.org Published On :: 2024-07-23 The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS. Full Article text
da MuscleX: data analysis software for fiber diffraction patterns from muscle By journals.iucr.org Published On :: 2024-07-30 MuscleX is an integrated, open-source computer software suite for data reduction of X-ray fiber diffraction patterns from striated muscle and other fibrous systems. It is written in Python and runs on Linux, Microsoft Windows or macOS. Most modules can be run either from a graphical user interface or in a `headless mode' from the command line, suitable for incorporation into beamline control systems. Here, we provide an overview of the general structure of the MuscleX software package and describe the specific features of the individual modules as well as examples of applications. Full Article text
da Controlling cantilevered adaptive X-ray mirrors By journals.iucr.org Published On :: 2024-08-05 Modeling the behavior of a prototype cantilevered X-ray adaptive mirror (held from one end) demonstrates its potential for use on high-performance X-ray beamlines. Similar adaptive mirrors are used on X-ray beamlines to compensate optical aberrations, control wavefronts and tune mirror focal distances at will. Controlled by 1D arrays of piezoceramic actuators, these glancing-incidence mirrors can provide nanometre-scale surface shape adjustment capabilities. However, significant engineering challenges remain for mounting them with low distortion and low environmental sensitivity. Finite-element analysis is used to predict the micron-scale full actuation surface shape from each channel and then linear modeling is applied to investigate the mirrors' ability to reach target profiles. Using either uniform or arbitrary spatial weighting, actuator voltages are optimized using a Moore–Penrose matrix inverse, or pseudoinverse, revealing a spatial dependence on the shape fitting with increasing fidelity farther from the mount. Full Article text
da Vibrational stability improvement of a mirror system using active mass damping By journals.iucr.org Published On :: 2024-08-08 Addressing the demand for high stability of beamline instruments at the SHINE facility, a high stability mirror regulating mechanism has been developed for mirror adjustments. Active mass damping was adopted to attenuate pitch angle vibrations of mirrors caused by structural vibrations. An internal absolute velocity feedback was used to reduce the negative impact of spillover effects and to improve performance. The experiment was conducted on a prototype structure of a mirror regulating mechanism, and results showed that the vibration RMS of the pitch angle was effectively attenuated from 47 nrad to 27 nrad above 1 Hz. Full Article text