ic On the Asymptotic $u_0$-Expected Flooding Time of Stationary Edge-Markovian Graphs. (arXiv:2004.03660v4 [math.PR] UPDATED) By arxiv.org Published On :: Consider that $u_0$ nodes are aware of some piece of data $d_0$. This note derives the expected time required for the data $d_0$ to be disseminated through-out a network of $n$ nodes, when communication between nodes evolves according to a graphical Markov model $overline{ mathcal{G}}_{n,hat{p}}$ with probability parameter $hat{p}$. In this model, an edge between two nodes exists at discrete time $k in mathbb{N}^+$ with probability $hat{p}$ if this edge existed at $k-1$, and with probability $(1-hat{p})$ if this edge did not exist at $k-1$. Each edge is interpreted as a bidirectional communication link over which data between neighbors is shared. The initial communication graph is assumed to be an Erdos-Renyi random graph with parameters $(n,hat{p})$, hence we consider a emph{stationary} Markov model $overline{mathcal{G}}_{n,hat{p}}$. The asymptotic "$u_0$-expected flooding time" of $overline{mathcal{G}}_{n,hat{p}}$ is defined as the expected number of iterations required to transmit the data $d_0$ from $u_0$ nodes to $n$ nodes, in the limit as $n$ approaches infinity. Although most previous results on the asymptotic flooding time in graphical Markov models are either emph{almost sure} or emph{with high probability}, the bounds obtained here are emph{in expectation}. However, our bounds are tighter and can be more complete than previous results. Full Article
ic Output feedback stochastic MPC with packet losses. (arXiv:2004.02591v2 [math.OC] UPDATED) By arxiv.org Published On :: The paper considers constrained linear systems with stochastic additive disturbances and noisy measurements transmitted over a lossy communication channel. We propose a model predictive control (MPC) law that minimizes a discounted cost subject to a discounted expectation constraint. Sensor data is assumed to be lost with known probability, and data losses are accounted for by expressing the predicted control policy as an affine function of future observations, which results in a convex optimal control problem. An online constraint-tightening technique ensures recursive feasibility of the online optimization and satisfaction of the expectation constraint without bounds on the distributions of the noise and disturbance inputs. The cost evaluated along trajectories of the closed loop system is shown to be bounded by the optimal predicted cost. A numerical example is given to illustrate these results. Full Article
ic Set-Theoretical Problems in Asymptology. (arXiv:2004.01979v3 [math.GN] UPDATED) By arxiv.org Published On :: In this paper we collect some open set-theoretic problems that appear in the large-scale topology (called also Asymptology). In particular we ask problems about critical cardinalities of some special (large, indiscrete, inseparated) coarse structures on $omega$, about the interplay between properties of a coarse space and its Higson corona, about some special ultrafilters ($T$-points and cellular $T$-points) related to finitary coarse structures on $omega$, about partitions of coarse spaces into thin pieces, and also about coarse groups having some extremal properties. Full Article
ic Set theoretic Yang-Baxter & reflection equations and quantum group symmetries. (arXiv:2003.08317v3 [math-ph] UPDATED) By arxiv.org Published On :: Connections between set theoretic Yang-Baxter and reflection equations and quantum integrable systems are investigated. We show that set theoretic $R$-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for $R$-matrices being Baxterized solutions of the $A$-type Hecke algebra ${cal H}_N(q=1)$. We show in the case of the reflection algebra that there exists a "boundary" finite sub-algebra for some special choice of "boundary" elements of the $B$-type Hecke algebra ${cal B}_N(q=1, Q)$. We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the $B$-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the $B$-type Hecke algebra. These are universal statements that largely generalize previous relevant findings, and also allow the investigation of the symmetries of the double row transfer matrix. Full Article
ic Weak-strong uniqueness for an elastic plate interacting with the Navier Stokes equation. (arXiv:2003.04049v2 [math.AP] UPDATED) By arxiv.org Published On :: We show weak-strong uniqueness and stability results for the motion of a two or three dimensional fluid governed by the Navier-Stokes equation interacting with a flexible, elastic plate of Koiter type. The plate is situated at the top of the fluid and as such determines the variable part of a time changing domain (that is hence a part of the solution) containing the fluid. The uniqueness result is a consequence of a stability estimate where the difference of two solutions is estimated by the distance of the initial values and outer forces. For that we introduce a methodology that overcomes the problem that the two (variable in time) domains of the fluid velocities and pressures are not the same. The estimate holds under the assumption that one of the two weak solutions possesses some additional higher regularity. The additional regularity is exclusively requested for the velocity of one of the solutions resembling the celebrated Ladyzhenskaya-Prodi-Serrin conditions in the framework of variable domains. Full Article
ic $5$-rank of ambiguous class groups of quintic Kummer extensions. (arXiv:2003.00761v2 [math.NT] UPDATED) By arxiv.org Published On :: Let $k ,=, mathbb{Q}(sqrt[5]{n},zeta_5)$, where $n$ is a positive integer, $5^{th}$ power-free, whose $5-$class group is isomorphic to $mathbb{Z}/5mathbb{Z} imesmathbb{Z}/5mathbb{Z}$. Let $k_0,=,mathbb{Q}(zeta_5)$ be the cyclotomic field containing a primitive $5^{th}$ root of unity $zeta_5$. Let $C_{k,5}^{(sigma)}$ the group of the ambiguous classes under the action of $Gal(k/k_0)$ = $<sigma>$. The aim of this paper is to determine all integers $n$ such that the group of ambiguous classes $C_{k,5}^{(sigma)}$ has rank $1$ or $2$. Full Article
ic A stochastic approach to the synchronization of coupled oscillators. (arXiv:2002.04472v2 [nlin.AO] UPDATED) By arxiv.org Published On :: This paper deals with an optimal control problem associated to the Kuramoto model describing the dynamical behavior of a network of coupled oscillators. Our aim is to design a suitable control function allowing us to steer the system to a synchronized configuration in which all the oscillators are aligned on the same phase. This control is computed via the minimization of a given cost functional associated with the dynamics considered. For this minimization, we propose a novel approach based on the combination of a standard Gradient Descent (GD) methodology with the recently-developed Random Batch Method (RBM) for the efficient numerical approximation of collective dynamics. Our simulations show that the employment of RBM improves the performances of the GD algorithm, reducing the computational complexity of the minimization process and allowing for a more efficient control calculation. Full Article
ic Stationary Gaussian Free Fields Coupled with Stochastic Log-Gases via Multiple SLEs. (arXiv:2001.03079v3 [math.PR] UPDATED) By arxiv.org Published On :: Miller and Sheffield introduced a notion of an imaginary surface as an equivalence class of pairs of simply connected proper subdomains of $mathbb{C}$ and Gaussian free fields (GFFs) on them under conformal equivalence. They considered the situation in which the conformal transformations are given by a chordal Schramm--Loewner evolution (SLE). In the present paper, we construct processes of GFF on $mathbb{H}$ (the upper half-plane) and $mathbb{O}$ (the first orthant of $mathbb{C}$) by coupling zero-boundary GFFs on these domains with stochastic log-gases defined on parts of boundaries of the domains, $mathbb{R}$ and $mathbb{R}_+$, called the Dyson model and the Bru--Wishart process, respectively, using multiple SLEs evolving in time. We prove that the obtained processes of GFF are stationary. The stationarity defines an equivalence relation between GFFs, and the pairs of time-evolutionary domains and stationary processes of GFF will be regarded as generalizations of the imaginary surfaces studied by Miller and Sheffield. Full Article
ic EMSx: A Numerical Benchmark for Energy Management Systems. (arXiv:2001.00450v2 [math.OC] UPDATED) By arxiv.org Published On :: Inserting renewable energy in the electric grid in a decentralized manneris a key challenge of the energy transition. However, at local scale, both production and demand display erratic behavior, which makes it delicate to match them. It is the goal of Energy Management Systems (EMS) to achieve such balance at least cost. We present EMSx, a numerical benchmark for testing control algorithms for the management of electric microgrids equipped with a photovoltaic unit and an energy storage system. EMSx is made of three key components: the EMSx dataset, provided by Schneider Electric, contains a diverse pool of realistic microgrids with a rich collection of historical observations and forecasts; the EMSx mathematical framework is an explicit description of the assessment of electric microgrid control techniques and algorithms; the EMSx software EMSx.jl is a package, implemented in the Julia language, which enables to easily implement a microgrid controller and to test it. All components of the benchmark are publicly available, so that other researchers willing to test controllers on EMSx may reproduce experiments easily. Eventually, we showcase the results of standard microgrid control methods, including Model Predictive Control, Open Loop Feedback Control and Stochastic Dynamic Programming. Full Article
ic Quasistatic evolution for dislocation-free finite plasticity. (arXiv:1912.10118v2 [math.AP] UPDATED) By arxiv.org Published On :: We investigate quasistatic evolution in finite plasticity under the assumption that the plastic strain is compatible. This assumption is well-suited to describe the special case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic deformation map. The total deformation can be then seen as the composition of a plastic and an elastic deformation. This opens the way to an existence theory for the quasistatic evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of the result is that it does not require second-order gradients. Full Article
ic A homotopy BV algebra for Yang-Mills and color-kinematics. (arXiv:1912.03110v2 [math-ph] UPDATED) By arxiv.org Published On :: Yang-Mills gauge theory on Minkowski space supports a Batalin-Vilkovisky-infinity algebra structure, all whose operations are local. To make this work, the axioms for a BV-infinity algebra are deformed by a quadratic element, here the Minkowski wave operator. This homotopy structure implies BCJ/color-kinematics duality; a cobar construction yields a strict algebraic structure whose Feynman expansion for Yang-Mills tree amplitudes complies with the duality. It comes with a `syntactic kinematic algebra'. Full Article
ic Unbounded Kobayashi hyperbolic domains in $mathbb C^n$. (arXiv:1911.05632v2 [math.CV] UPDATED) By arxiv.org Published On :: We first give a sufficient condition, issued from pluripotential theory, for an unbounded domain in the complex Euclidean space $mathbb C^n$ to be Kobayashi hyperbolic. Then, we construct an example of a rigid pseudoconvex domain in $mathbb C^3$ that is Kobayashi hyperbolic and has a nonempty core. In particular, this domain is not biholomorphic to a bounded domain in $mathbb C^3$ and the mentioned above sufficient condition for Kobayashi hyperbolicity is not necessary. Full Article
ic Compact manifolds of dimension $ngeq 12$ with positive isotropic curvature. (arXiv:1909.12265v4 [math.DG] UPDATED) By arxiv.org Published On :: We prove the following result: Let $(M,g_0)$ be a compact manifold of dimension $ngeq 12$ with positive isotropic curvature. Then $M$ is diffeomorphic to a spherical space form, or a compact quotient manifold of $mathbb{S}^{n-1} imes mathbb{R}$ by diffeomorphisms, or a connected sum of a finite number of such manifolds. This extends a recent work of Brendle, and implies a conjecture of Schoen in dimensions $ngeq 12$. The proof uses Ricci flow with surgery on compact orbifolds with isolated singularities. Full Article
ic Topology Identification of Heterogeneous Networks: Identifiability and Reconstruction. (arXiv:1909.11054v2 [math.OC] UPDATED) By arxiv.org Published On :: This paper addresses the problem of identifying the graph structure of a dynamical network using measured input/output data. This problem is known as topology identification and has received considerable attention in recent literature. Most existing literature focuses on topology identification for networks with node dynamics modeled by single integrators or single-input single-output (SISO) systems. The goal of the current paper is to identify the topology of a more general class of heterogeneous networks, in which the dynamics of the nodes are modeled by general (possibly distinct) linear systems. Our two main contributions are the following. First, we establish conditions for topological identifiability, i.e., conditions under which the network topology can be uniquely reconstructed from measured data. We also specialize our results to homogeneous networks of SISO systems and we will see that such networks have quite particular identifiability properties. Secondly, we develop a topology identification method that reconstructs the network topology from input/output data. The solution of a generalized Sylvester equation will play an important role in our identification scheme. Full Article
ic Monochromatic Equilateral Triangles in the Unit Distance Graph. (arXiv:1909.09856v2 [math.CO] UPDATED) By arxiv.org Published On :: Let $chi_{Delta}(mathbb{R}^{n})$ denote the minimum number of colors needed to color $mathbb{R}^{n}$ so that there will not be a monochromatic equilateral triangle with side length $1$. Using the slice rank method, we reprove a result of Frankl and Rodl, and show that $chi_{Delta}left(mathbb{R}^{n} ight)$ grows exponentially with $n$. This technique substantially improves upon the best known quantitative lower bounds for $chi_{Delta}left(mathbb{R}^{n} ight)$, and we obtain [ chi_{Delta}left(mathbb{R}^{n} ight)>(1.01446+o(1))^{n}. ] Full Article
ic Poisson Dixmier-Moeglin equivalence from a topological point of view. (arXiv:1908.06542v2 [math.RA] UPDATED) By arxiv.org Published On :: In this paper, we provide some topological criteria for the Poisson Dixmier-Moeglin equivalence for $A$ in terms of the poset $({ m P. spec A}, subseteq)$ and the symplectic leaf or core stratification on its maximal spectrum. In particular, we prove that the Zariski topology of the Poisson prime spectrum and of each symplectic leaf or core can detect the Poisson Dixmier-Moeglin equivalence for any complex affine Poisson algebra. Moreover, we generalize the weaker version of the Poisson Dixmier-Moeglin equivalence for a complex affine Poisson algebra proved in [J. Bell, S. Launois, O.L. S'anchez, and B. Moosa, Poisson algebras via model theory and differential algebraic geometry, J. Eur. Math. Soc. (JEMS), 19(2017), no. 7, 2019-2049] to the general context of a commutative differential algebra. Full Article
ic Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED) By arxiv.org Published On :: This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator. Full Article
ic Representations of the Infinite-Dimensional $p$-Adic Affine Group. (arXiv:1906.08964v2 [math.RT] UPDATED) By arxiv.org Published On :: We introduce an infinite-dimensional $p$-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However it is possible to define its action on some classes of functions. Full Article
ic Decentralized and Parallelized Primal and Dual Accelerated Methods for Stochastic Convex Programming Problems. (arXiv:1904.09015v10 [math.OC] UPDATED) By arxiv.org Published On :: We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal number of communication steps takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique we show that all proposed methods with stochastic oracle can be additionally parallelized at each node. Full Article
ic On the automorphic sheaves for GSp_4. (arXiv:1901.04447v6 [math.RT] UPDATED) By arxiv.org Published On :: In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward' functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X. Full Article
ic Bernoulli decomposition and arithmetical independence between sequences. (arXiv:1811.11545v2 [math.NT] UPDATED) By arxiv.org Published On :: In this paper we study the following set[A={p(n)+2^nd mod 1: ngeq 1}subset [0.1],] where $p$ is a polynomial with at least one irrational coefficient on non constant terms, $d$ is any real number and for $ain [0,infty)$, $a mod 1$ is the fractional part of $a$. By a Bernoulli decomposition method, we show that the closure of $A$ must have full Hausdorff dimension. Full Article
ic Optimal construction of Koopman eigenfunctions for prediction and control. (arXiv:1810.08733v3 [math.OC] UPDATED) By arxiv.org Published On :: This work presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a rich set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [12] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples with code available online demonstrate the approach, both for prediction and feedback control. Full Article
ic Exotic Springer fibers for orbits corresponding to one-row bipartitions. (arXiv:1810.03731v2 [math.RT] UPDATED) By arxiv.org Published On :: We study the geometry and topology of exotic Springer fibers for orbits corresponding to one-row bipartitions from an explicit, combinatorial point of view. This includes a detailed analysis of the structure of the irreducible components and their intersections as well as the construction of an explicit affine paving. Moreover, we compute the ring structure of cohomology by constructing a CW-complex homotopy equivalent to the exotic Springer fiber. This homotopy equivalent space admits an action of the type C Weyl group inducing Kato's original exotic Springer representation on cohomology. Our results are described in terms of the diagrammatics of the one-boundary Temperley-Lieb algebra (also known as the blob algebra). This provides a first step in generalizing the geometric versions of Khovanov's arc algebra to the exotic setting. Full Article
ic On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED) By arxiv.org Published On :: We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight. Full Article
ic Conservative stochastic 2-dimensional Cahn-Hilliard equation. (arXiv:1802.04141v2 [math.PR] UPDATED) By arxiv.org Published On :: We consider the stochastic 2-dimensional Cahn-Hilliard equation which is driven by the derivative in space of a space-time white noise. We use two different approaches to study this equation. First we prove that there exists a unique solution $Y$ to the shifted equation (see (1.4) below), then $X:=Y+{Z}$ is the unique solution to stochastic Cahn-Hilliard equaiton, where ${Z}$ is the corresponding O-U process. Moreover, we use Dirichlet form approach in cite{Albeverio:1991hk} to construct the probabilistically weak solution the the original equation (1.1) below. By clarifying the precise relation between the solutions obtained by the Dirichlet forms aprroach and $X$, we can also get the restricted Markov uniquness of the generator and the uniqueness of martingale solutions to the equation (1.1). Full Article
ic Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED) By arxiv.org Published On :: The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations. Full Article
ic Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED) By arxiv.org Published On :: In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion. Full Article
ic Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. (arXiv:1706.09490v2 [math.DG] UPDATED) By arxiv.org Published On :: We use Ricci flow to obtain a local bi-Holder correspondence between Ricci limit spaces in three dimensions and smooth manifolds. This is more than a complete resolution of the three-dimensional case of the conjecture of Anderson-Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must be homeomorphic to manifolds, and we obtain this in the most general, locally non-collapsed case. The proofs build on results and ideas from recent papers of Hochard and the current authors. Full Article
ic The classification of Rokhlin flows on C*-algebras. (arXiv:1706.09276v6 [math.OA] UPDATED) By arxiv.org Published On :: We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory for Rokhlin flows on C*-algebras satisfying certain technical properties, which hold for many C*-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimoto's conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, strongly purely infinite C*-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable $KK$-contractible C*-algebras: Two Rokhlin flows on such a C*-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate. Full Article
ic Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED) By arxiv.org Published On :: Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic. Full Article
ic A Class of Functional Inequalities and their Applications to Fourth-Order Nonlinear Parabolic Equations. (arXiv:1612.03508v3 [math.AP] UPDATED) By arxiv.org Published On :: We study a class of fourth order nonlinear parabolic equations which include the thin-film equation and the quantum drift-diffusion model as special cases. We investigate these equations by first developing functional inequalities of the type $ int_Omega u^{2gamma-alpha-eta}Delta u^alphaDelta u^eta dx geq cint_Omega|Delta u^gamma |^2dx $, which seem to be of interest on their own right. Full Article
ic A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC]) By arxiv.org Published On :: We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle. Full Article
ic On the asymptotic behavior of solutions to the Vlasov-Poisson system. (arXiv:2005.03617v1 [math.AP]) By arxiv.org Published On :: We prove small data modified scattering for the Vlasov-Poisson system in dimension $d=3$ using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass. Full Article
ic On Harmonic and Asymptotically harmonic Finsler manifolds. (arXiv:2005.03616v1 [math.DG]) By arxiv.org Published On :: In this paper we introduce various types of harmonic Finsler manifolds and study the relation between them. We give several characterizations of such spaces in terms of the mean curvature and Laplacian. In addition, we prove that some harmonic Finsler manifolds are of Einstein type and a technique to construct harmonic Finsler manifolds of Rander type is given. Moreover, we provide many examples of non-Riemmanian Finsler harmonic manifolds of constant flag curvature and constant $S$-curvature. Finally, we analyze Busemann functions in a general Finsler setting and in certain kind of Finsler harmonic manifolds, namely asymptotically harmonic Finsler manifolds along with studying some applications. In particular, we show the Busemann function is smooth in asymptotically harmonic Finsler manifolds and the total Busemann function is continuous in $C^{infty}$ topology. Full Article
ic A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC]) By arxiv.org Published On :: We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path. Full Article
ic Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th]) By arxiv.org Published On :: Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes. Full Article
ic On products of groups and indices not divisible by a given prime. (arXiv:2005.03608v1 [math.GR]) By arxiv.org Published On :: Let the group $G = AB$ be the product of subgroups $A$ and $B$, and let $p$ be a prime. We prove that $p$ does not divide the conjugacy class size (index) of each $p$-regular element of prime power order $xin Acup B$ if and only if $G$ is $p$-decomposable, i.e. $G=O_p(G) imes O_{p'}(G)$. Full Article
ic Groups up to congruence relation and from categorical groups to c-crossed modules. (arXiv:2005.03601v1 [math.CT]) By arxiv.org Published On :: We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to c-groups and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules. Full Article
ic On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph]) By arxiv.org Published On :: We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described. Full Article
ic Minimal acceleration for the multi-dimensional isentropic Euler equations. (arXiv:2005.03570v1 [math.AP]) By arxiv.org Published On :: Among all dissipative solutions of the multi-dimensional isentropic Euler equations there exists at least one that minimizes the acceleration, which implies that the solution is as close to being a weak solution as possible. The argument is based on a suitable selection procedure. Full Article
ic Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG]) By arxiv.org Published On :: Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections. Full Article
ic Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients. (arXiv:2005.03516v1 [math.CA]) By arxiv.org Published On :: In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$. Full Article
ic Twisted quadrics and algebraic submanifolds in R^n. (arXiv:2005.03509v1 [math-ph]) By arxiv.org Published On :: We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of [Aschieri et al.,Class. Quantum Gravity 23 (2006), 1883], whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfel'd twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2,AdS_2$]. Full Article
ic Toric Sasaki-Einstein metrics with conical singularities. (arXiv:2005.03502v1 [math.DG]) By arxiv.org Published On :: We show that any toric K"ahler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics. Full Article
ic A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE]) By arxiv.org Published On :: A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown. Full Article
ic Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG]) By arxiv.org Published On :: In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field. Full Article
ic Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG]) By arxiv.org Published On :: We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression. Full Article
ic $k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO]) By arxiv.org Published On :: Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable. In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest. Full Article
ic The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc]) By arxiv.org Published On :: Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term. Full Article
ic Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT]) By arxiv.org Published On :: In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind. Full Article