se

An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning. (arXiv:1811.02043v2 [cs.DS] UPDATED)

We investigate sparse matrix bipartitioning -- a problem where we minimize the communication volume in parallel sparse matrix-vector multiplication. We prove, by reduction from graph bisection, that this problem is $mathcal{NP}$-complete in the case where each side of the bipartitioning must contain a linear fraction of the nonzeros.

We present an improved exact branch-and-bound algorithm which finds the minimum communication volume for a given matrix and maximum allowed imbalance. The algorithm is based on a maximum-flow bound and a packing bound, which extend previous matching and packing bounds.

We implemented the algorithm in a new program called MP (Matrix Partitioner), which solved 839 matrices from the SuiteSparse collection to optimality, each within 24 hours of CPU-time. Furthermore, MP solved the difficult problem of the matrix cage6 in about 3 days. The new program is on average more than ten times faster than the previous program MondriaanOpt.

Benchmark results using the set of 839 optimally solved matrices show that combining the medium-grain/iterative refinement methods of the Mondriaan package with the hypergraph bipartitioner of the PaToH package produces sparse matrix bipartitionings on average within 10% of the optimal solution.




se

SilhoNet: An RGB Method for 6D Object Pose Estimation. (arXiv:1809.06893v4 [cs.CV] UPDATED)

Autonomous robot manipulation involves estimating the translation and orientation of the object to be manipulated as a 6-degree-of-freedom (6D) pose. Methods using RGB-D data have shown great success in solving this problem. However, there are situations where cost constraints or the working environment may limit the use of RGB-D sensors. When limited to monocular camera data only, the problem of object pose estimation is very challenging. In this work, we introduce a novel method called SilhoNet that predicts 6D object pose from monocular images. We use a Convolutional Neural Network (CNN) pipeline that takes in Region of Interest (ROI) proposals to simultaneously predict an intermediate silhouette representation for objects with an associated occlusion mask and a 3D translation vector. The 3D orientation is then regressed from the predicted silhouettes. We show that our method achieves better overall performance on the YCB-Video dataset than two state-of-the art networks for 6D pose estimation from monocular image input.




se

Identifying Compromised Accounts on Social Media Using Statistical Text Analysis. (arXiv:1804.07247v3 [cs.SI] UPDATED)

Compromised accounts on social networks are regular user accounts that have been taken over by an entity with malicious intent. Since the adversary exploits the already established trust of a compromised account, it is crucial to detect these accounts to limit the damage they can cause. We propose a novel general framework for discovering compromised accounts by semantic analysis of text messages coming out from an account. Our framework is built on the observation that normal users will use language that is measurably different from the language that an adversary would use when the account is compromised. We use our framework to develop specific algorithms that use the difference of language models of users and adversaries as features in a supervised learning setup. Evaluation results show that the proposed framework is effective for discovering compromised accounts on social networks and a KL-divergence-based language model feature works best.




se

Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity. (arXiv:1706.02205v4 [math.NA] UPDATED)

Dense kernel matrices $Theta in mathbb{R}^{N imes N}$ obtained from point evaluations of a covariance function $G$ at locations ${ x_{i} }_{1 leq i leq N} subset mathbb{R}^{d}$ arise in statistics, machine learning, and numerical analysis. For covariance functions that are Green's functions of elliptic boundary value problems and homogeneously-distributed sampling points, we show how to identify a subset $S subset { 1 , dots , N }^2$, with $# S = O ( N log (N) log^{d} ( N /epsilon ) )$, such that the zero fill-in incomplete Cholesky factorisation of the sparse matrix $Theta_{ij} 1_{( i, j ) in S}$ is an $epsilon$-approximation of $Theta$. This factorisation can provably be obtained in complexity $O ( N log( N ) log^{d}( N /epsilon) )$ in space and $O ( N log^{2}( N ) log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators; we further present numerical evidence that $d$ can be taken to be the intrinsic dimension of the data set rather than that of the ambient space. The algorithm only needs to know the spatial configuration of the $x_{i}$ and does not require an analytic representation of $G$. Furthermore, this factorization straightforwardly provides an approximate sparse PCA with optimal rate of convergence in the operator norm. Hence, by using only subsampling and the incomplete Cholesky factorization, we obtain, at nearly linear complexity, the compression, inversion and approximate PCA of a large class of covariance matrices. By inverting the order of the Cholesky factorization we also obtain a solver for elliptic PDE with complexity $O ( N log^{d}( N /epsilon) )$ in space and $O ( N log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators.




se

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




se

The Zhou Ordinal of Labelled Markov Processes over Separable Spaces. (arXiv:2005.03630v1 [cs.LO])

There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou's probabilistic bisimilarity, while the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $mathcal{O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the "Zhou ordinal" of $mathbb{S}$, $mathfrak{Z}(mathbb{S})$. When $mathfrak{Z}(mathbb{S})=0$, $mathbb{S}$ satisfies the Hennessy-Milner property. The second author proved the existence of an LMP $mathbb{S}$ with $mathfrak{Z}(mathbb{S}) geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $mathbb{S}$ over separable metrizable spaces having arbitrary large countable $mathfrak{Z}(mathbb{S})$ and that it is consistent with the axioms of $mathit{ZFC}$ that there is such a process with an uncountable Zhou ordinal.




se

Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV])

Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation.




se

Learning Robust Models for e-Commerce Product Search. (arXiv:2005.03624v1 [cs.CL])

Showing items that do not match search query intent degrades customer experience in e-commerce. These mismatches result from counterfactual biases of the ranking algorithms toward noisy behavioral signals such as clicks and purchases in the search logs. Mitigating the problem requires a large labeled dataset, which is expensive and time-consuming to obtain. In this paper, we develop a deep, end-to-end model that learns to effectively classify mismatches and to generate hard mismatched examples to improve the classifier. We train the model end-to-end by introducing a latent variable into the cross-entropy loss that alternates between using the real and generated samples. This not only makes the classifier more robust but also boosts the overall ranking performance. Our model achieves a relative gain compared to baselines by over 26% in F-score, and over 17% in Area Under PR curve. On live search traffic, our model gains significant improvement in multiple countries.




se

Delayed approximate matrix assembly in multigrid with dynamic precisions. (arXiv:2005.03606v1 [cs.MS])

The accurate assembly of the system matrix is an important step in any code that solves partial differential equations on a mesh. We either explicitly set up a matrix, or we work in a matrix-free environment where we have to be able to quickly return matrix entries upon demand. Either way, the construction can become costly due to non-trivial material parameters entering the equations, multigrid codes requiring cascades of matrices that depend upon each other, or dynamic adaptive mesh refinement that necessitates the recomputation of matrix entries or the whole equation system throughout the solve. We propose that these constructions can be performed concurrently with the multigrid cycles. Initial geometric matrices and low accuracy integrations kickstart the multigrid, while improved assembly data is fed to the solver as and when it becomes available. The time to solution is improved as we eliminate an expensive preparation phase traditionally delaying the actual computation. We eliminate algorithmic latency. Furthermore, we desynchronise the assembly from the solution process. This anarchic increase of the concurrency level improves the scalability. Assembly routines are notoriously memory- and bandwidth-demanding. As we work with iteratively improving operator accuracies, we finally propose the use of a hierarchical, lossy compression scheme such that the memory footprint is brought down aggressively where the system matrix entries carry little information or are not yet available with high accuracy.




se

A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL])

In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively.




se

VM placement over WDM-TDM AWGR PON Based Data Centre Architecture. (arXiv:2005.03590v1 [cs.NI])

Passive optical networks (PON) can play a vital role in data centres and access fog solutions by providing scalable, cost and energy efficient architectures. This paper proposes a Mixed Integer Linear Programming (MILP) model to optimize the placement of virtual machines (VMs) over an energy efficient WDM-TDM AWGR PON based data centre architecture. In this optimization, the use of VMs and their requirements affect the optimum number of servers utilized in the data centre when minimizing the power consumption and enabling more efficient utilization of servers is considered. Two power consumption minimization objectives were examined for up to 20 VMs with different computing and networking requirements. The results indicate that considering the minimization of the processing and networking power consumption in the allocation of VMs in the WDM-TDM AWGR PON can reduce the networking power consumption by up to 70% compared to the minimization of the processing power consumption.




se

Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. (arXiv:2005.03572v1 [cs.CV])

Deep learning-based object detection and instance segmentation have achieved unprecedented progress. In this paper, we propose Complete-IoU (CIoU) loss and Cluster-NMS for enhancing geometric factors in both bounding box regression and Non-Maximum Suppression (NMS), leading to notable gains of average precision (AP) and average recall (AR), without the sacrifice of inference efficiency. In particular, we consider three geometric factors, i.e., overlap area, normalized central point distance and aspect ratio, which are crucial for measuring bounding box regression in object detection and instance segmentation. The three geometric factors are then incorporated into CIoU loss for better distinguishing difficult regression cases. The training of deep models using CIoU loss results in consistent AP and AR improvements in comparison to widely adopted $ell_n$-norm loss and IoU-based loss. Furthermore, we propose Cluster-NMS, where NMS during inference is done by implicitly clustering detected boxes and usually requires less iterations. Cluster-NMS is very efficient due to its pure GPU implementation, , and geometric factors can be incorporated to improve both AP and AR. In the experiments, CIoU loss and Cluster-NMS have been applied to state-of-the-art instance segmentation (e.g., YOLACT), and object detection (e.g., YOLO v3, SSD and Faster R-CNN) models. Taking YOLACT on MS COCO as an example, our method achieves performance gains as +1.7 AP and +6.2 AR$_{100}$ for object detection, and +0.9 AP and +3.5 AR$_{100}$ for instance segmentation, with 27.1 FPS on one NVIDIA GTX 1080Ti GPU. All the source code and trained models are available at https://github.com/Zzh-tju/CIoU




se

QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol. (arXiv:2005.03564v1 [cs.CR])

To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols may face vulnerability to fully adaptive corruptions. In literature, researchers address this issue at the cost of performance.

In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions without compromising on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality.




se

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




se

MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis. (arXiv:2005.03545v1 [cs.CL])

Multimodal Sentiment Analysis is an active area of research that leverages multimodal signals for affective understanding of user-generated videos. The predominant approach, addressing this task, has been to develop sophisticated fusion techniques. However, the heterogeneous nature of the signals creates distributional modality gaps that pose significant challenges. In this paper, we aim to learn effective modality representations to aid the process of fusion. We propose a novel framework, MISA, which projects each modality to two distinct subspaces. The first subspace is modality invariant, where the representations across modalities learn their commonalities and reduce the modality gap. The second subspace is modality-specific, which is private to each modality and captures their characteristic features. These representations provide a holistic view of the multimodal data, which is used for fusion that leads to task predictions. Our experiments on popular sentiment analysis benchmarks, MOSI and MOSEI, demonstrate significant gains over state-of-the-art models. We also consider the task of Multimodal Humor Detection and experiment on the recently proposed UR_FUNNY dataset. Here too, our model fares better than strong baselines, establishing MISA as a useful multimodal framework.




se

Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC])

This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience.




se

CounQER: A System for Discovering and Linking Count Information in Knowledge Bases. (arXiv:2005.03529v1 [cs.IR])

Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting predicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo.




se

An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT])

In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative.




se

Sunny Pointer: Designing a mouse pointer for people with peripheral vision loss. (arXiv:2005.03504v1 [cs.HC])

We present a new mouse cursor designed to facilitate the use of the mouse by people with peripheral vision loss. The pointer consists of a collection of converging straight lines covering the whole screen and following the position of the mouse cursor. We measured its positive effects with a group of participants with peripheral vision loss of different kinds and we found that it can reduce by a factor of 7 the time required to complete a targeting task using the mouse. Using eye tracking, we show that this system makes it possible to initiate the movement towards the target without having to precisely locate the mouse pointer. Using Fitts' Law, we compare these performances with those of full visual field users in order to understand the relation between the accuracy of the estimated mouse cursor position and the index of performance obtained with our tool.




se

Subtle Sensing: Detecting Differences in the Flexibility of Virtually Simulated Molecular Objects. (arXiv:2005.03503v1 [cs.HC])

During VR demos we have performed over last few years, many participants (in the absence of any haptic feedback) have commented on their perceived ability to 'feel' differences between simulated molecular objects. The mechanisms for such 'feeling' are not entirely clear: observing from outside VR, one can see that there is nothing physical for participants to 'feel'. Here we outline exploratory user studies designed to evaluate the extent to which participants can distinguish quantitative differences in the flexibility of VR-simulated molecular objects. The results suggest that an individual's capacity to detect differences in molecular flexibility is enhanced when they can interact with and manipulate the molecules, as opposed to merely observing the same interaction. Building on these results, we intend to carry out further studies investigating humans' ability to sense quantitative properties of VR simulations without haptic technology.




se

Heidelberg Colorectal Data Set for Surgical Data Science in the Sensor Operating Room. (arXiv:2005.03501v1 [cs.CV])

Image-based tracking of medical instruments is an integral part of many surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the methods proposed still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on robustness and generalization capabilities of the methods. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all frames in the videos as well as instance-wise segmentation masks for surgical instruments in more than 10,000 individual frames. The data has successfully been used to organize international competitions in the scope of the Endoscopic Vision Challenges (EndoVis) 2017 and 2019.




se

Subquadratic-Time Algorithms for Normal Bases. (arXiv:2005.03497v1 [cs.SC])

For any finite Galois field extension $mathsf{K}/mathsf{F}$, with Galois group $G = mathrm{Gal}(mathsf{K}/mathsf{F})$, there exists an element $alpha in mathsf{K}$ whose orbit $Gcdotalpha$ forms an $mathsf{F}$-basis of $mathsf{K}$. Such an $alpha$ is called a normal element and $Gcdotalpha$ is a normal basis. We introduce a probabilistic algorithm for testing whether a given $alpha in mathsf{K}$ is normal, when $G$ is either a finite abelian or a metacyclic group. The algorithm is based on the fact that deciding whether $alpha$ is normal can be reduced to deciding whether $sum_{g in G} g(alpha)g in mathsf{K}[G]$ is invertible; it requires a slightly subquadratic number of operations. Once we know that $alpha$ is normal, we show how to perform conversions between the working basis of $mathsf{K}/mathsf{F}$ and the normal basis with the same asymptotic cost.




se

Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG])

Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293.




se

Brain-like approaches to unsupervised learning of hidden representations -- a comparative study. (arXiv:2005.03476v1 [cs.NE])

Unsupervised learning of hidden representations has been one of the most vibrant research directions in machine learning in recent years. In this work we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The saliency and separability of the hidden representations when trained on MNIST dataset is studied using an external classifier, and compared with other unsupervised learning methods that include restricted Boltzmann machines and autoencoders.




se

Indexing Metric Spaces for Exact Similarity Search. (arXiv:2005.03468v1 [cs.DB])

With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes.




se

Predictions and algorithmic statistics for infinite sequence. (arXiv:2005.03467v1 [cs.IT])

Consider the following prediction problem. Assume that there is a block box that produces bits according to some unknown computable distribution on the binary tree. We know first $n$ bits $x_1 x_2 ldots x_n$. We want to know the probability of the event that that the next bit is equal to $1$. Solomonoff suggested to use universal semimeasure $m$ for solving this task. He proved that for every computable distribution $P$ and for every $b in {0,1}$ the following holds: $$sum_{n=1}^{infty}sum_{x: l(x)=n} P(x) (P(b | x) - m(b | x))^2 < infty .$$ However, Solomonoff's method has a negative aspect: Hutter and Muchnik proved that there are an universal semimeasure $m$, computable distribution $P$ and a random (in Martin-L{"o}f sense) sequence $x_1 x_2ldots$ such that $lim_{n o infty} P(x_{n+1} | x_1ldots x_n) - m(x_{n+1} | x_1ldots x_n) rightarrow 0$. We suggest a new way for prediction. For every finite string $x$ we predict the new bit according to the best (in some sence) distribution for $x$. We prove the similar result as Solomonoff theorem for our way of prediction. Also we show that our method of prediction has no that negative aspect as Solomonoff's method.




se

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




se

How Can CNNs Use Image Position for Segmentation?. (arXiv:2005.03463v1 [eess.IV])

Convolution is an equivariant operation, and image position does not affect its result. A recent study shows that the zero-padding employed in convolutional layers of CNNs provides position information to the CNNs. The study further claims that the position information enables accurate inference for several tasks, such as object recognition, segmentation, etc. However, there is a technical issue with the design of the experiments of the study, and thus the correctness of the claim is yet to be verified. Moreover, the absolute image position may not be essential for the segmentation of natural images, in which target objects will appear at any image position. In this study, we investigate how positional information is and can be utilized for segmentation tasks. Toward this end, we consider {em positional encoding} (PE) that adds channels embedding image position to the input images and compare PE with several padding methods. Considering the above nature of natural images, we choose medical image segmentation tasks, in which the absolute position appears to be relatively important, as the same organs (of different patients) are captured in similar sizes and positions. We draw a mixed conclusion from the experimental results; the positional encoding certainly works in some cases, but the absolute image position may not be so important for segmentation tasks as we think.




se

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




se

AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing. (arXiv:2005.03409v1 [cs.RO])

Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable.




se

Joint Prediction and Time Estimation of COVID-19 Developing Severe Symptoms using Chest CT Scan. (arXiv:2005.03405v1 [eess.IV])

With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the time that patients might convert to the severe stage, for designing effective treatment plan and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time, and if yes, predict the possible conversion time that the patient would spend to convert to the severe stage. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of high-dimensional data and learn the shared information across the classification task and the regression task. To our knowledge, this study is the first work to predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 422 chest computed tomography (CT) scans, where 52 cases were converted to severe on average 5.64 days and 34 cases were severe at admission. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.




se

A LiDAR-based real-time capable 3D Perception System for Automated Driving in Urban Domains. (arXiv:2005.03404v1 [cs.RO])

We present a LiDAR-based and real-time capable 3D perception system for automated driving in urban domains. The hierarchical system design is able to model stationary and movable parts of the environment simultaneously and under real-time conditions. Our approach extends the state of the art by innovative in-detail enhancements for perceiving road users and drivable corridors even in case of non-flat ground surfaces and overhanging or protruding elements. We describe a runtime-efficient pointcloud processing pipeline, consisting of adaptive ground surface estimation, 3D clustering and motion classification stages. Based on the pipeline's output, the stationary environment is represented in a multi-feature mapping and fusion approach. Movable elements are represented in an object tracking system capable of using multiple reference points to account for viewpoint changes. We further enhance the tracking system by explicit consideration of occlusion and ambiguity cases. Our system is evaluated using a subset of the TUBS Road User Dataset. We enhance common performance metrics by considering application-driven aspects of real-world traffic scenarios. The perception system shows impressive results and is able to cope with the addressed scenarios while still preserving real-time capability.




se

Datom: A Deformable modular robot for building self-reconfigurable programmable matter. (arXiv:2005.03402v1 [cs.RO])

Moving a module in a modular robot is a very complex and error-prone process. Unlike in swarm, in the modular robots we are targeting, the moving module must keep the connection to, at least, one other module. In order to miniaturize each module to few millimeters, we have proposed a design which is using electrostatic actuator. However, this movement is composed of several attachment, detachment creating the movement and each small step can fail causing a module to break the connection. The idea developed in this paper consists in creating a new kind of deformable module allowing a movement which keeps the connection between the moving and the fixed modules. We detail the geometry and the practical constraints during the conception of this new module. We then validate the possibility of movement for a module in an existing configuration. This implies the cooperation of some of the modules placed along the path and we show in simulation that it exists a motion process to reach every free positions of the surface for a given configuration.




se

Simultaneous topology and fastener layout optimization of assemblies considering joint failure. (arXiv:2005.03398v1 [cs.CE])

This paper provides a method for the simultaneous topology optimization of parts and their corresponding joint locations in an assembly. Therein, the joint locations are not discrete and predefined, but continuously movable. The underlying coupling equations allow for connecting dissimilar meshes and avoid the need for remeshing when joint locations change. The presented method models the force transfer at a joint location not only by using single spring elements but accounts for the size and type of the joints. When considering riveted or bolted joints, the local part geometry at the joint location consists of holes that are surrounded by material. For spot welds, the joint locations are filled with material and may be smaller than for bolts. The presented method incorporates these material and clearance zones into the simultaneously running topology optimization of the parts. Furthermore, failure of joints may be taken into account at the optimization stage, yielding assemblies connected in a fail-safe manner.




se

Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation. (arXiv:2005.03393v1 [cs.CL])

In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.




se

Semantic Signatures for Large-scale Visual Localization. (arXiv:2005.03388v1 [cs.CV])

Visual localization is a useful alternative to standard localization techniques. It works by utilizing cameras. In a typical scenario, features are extracted from captured images and compared with geo-referenced databases. Location information is then inferred from the matching results. Conventional schemes mainly use low-level visual features. These approaches offer good accuracy but suffer from scalability issues. In order to assist localization in large urban areas, this work explores a different path by utilizing high-level semantic information. It is found that object information in a street view can facilitate localization. A novel descriptor scheme called "semantic signature" is proposed to summarize this information. A semantic signature consists of type and angle information of visible objects at a spatial location. Several metrics and protocols are proposed for signature comparison and retrieval. They illustrate different trade-offs between accuracy and complexity. Extensive simulation results confirm the potential of the proposed scheme in large-scale applications. This paper is an extended version of a conference paper in CBMI'18. A more efficient retrieval protocol is presented with additional experiment results.




se

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR])

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.




se

2kenize: Tying Subword Sequences for Chinese Script Conversion. (arXiv:2005.03375v1 [cs.CL])

Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities.




se

Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI])

Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed.




se

Scoring Root Necrosis in Cassava Using Semantic Segmentation. (arXiv:2005.03367v1 [eess.IV])

Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.




se

Probabilistic Hyperproperties of Markov Decision Processes. (arXiv:2005.03362v1 [cs.LO])

We study the specification and verification of hyperproperties for probabilistic systems represented as Markov decision processes (MDPs). Hyperproperties are system properties that describe the correctness of a system as a relation between multiple executions. Hyperproperties generalize trace properties and include information-flow security requirements, like noninterference, as well as requirements like symmetry, partial observation, robustness, and fault tolerance. We introduce the temporal logic PHL, which extends classic probabilistic logics with quantification over schedulers and traces. PHL can express a wide range of hyperproperties for probabilistic systems, including both classical applications, such as differential privacy, and novel applications in areas such as robotics and planning. While the model checking problem for PHL is in general undecidable, we provide methods both for proving and for refuting a class of probabilistic hyperproperties for MDPs.




se

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation. (arXiv:2005.03361v1 [cs.CL])

Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.




se

Self-Supervised Human Depth Estimation from Monocular Videos. (arXiv:2005.03358v1 [cs.CV])

Previous methods on estimating detailed human depth often require supervised training with `ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.




se

Quantum correlation alignment for unsupervised domain adaptation. (arXiv:2005.03355v1 [quant-ph])

Correlation alignment (CORAL), a representative domain adaptation (DA) algorithm, decorrelates and aligns a labelled source domain dataset to an unlabelled target domain dataset to minimize the domain shift such that a classifier can be applied to predict the target domain labels. In this paper, we implement the CORAL on quantum devices by two different methods. One method utilizes quantum basic linear algebra subroutines (QBLAS) to implement the CORAL with exponential speedup in the number and dimension of the given data samples. The other method is achieved through a variational hybrid quantum-classical procedure. In addition, the numerical experiments of the CORAL with three different types of data sets, namely the synthetic data, the synthetic-Iris data, the handwritten digit data, are presented to evaluate the performance of our work. The simulation results prove that the variational quantum correlation alignment algorithm (VQCORAL) can achieve competitive performance compared with the classical CORAL.




se

Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation. (arXiv:2005.03345v1 [cs.CV])

This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also, shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization, a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes, the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%, respectively. Although we automated all of the segmentation processes, segmentation results were superior to the other state-of-the-art methods in the Dice overlap.




se

Wavelet Integrated CNNs for Noise-Robust Image Classification. (arXiv:2005.03337v1 [cs.CV])

Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.




se

Global Distribution of Google Scholar Citations: A Size-independent Institution-based Analysis. (arXiv:2005.03324v1 [cs.DL])

Most currently available schemes for performance based ranking of Universities or Research organizations, such as, Quacarelli Symonds (QS), Times Higher Education (THE), Shanghai University based All Research of World Universities (ARWU) use a variety of criteria that include productivity, citations, awards, reputation, etc., while Leiden and Scimago use only bibliometric indicators. The research performance evaluation in the aforesaid cases is based on bibliometric data from Web of Science or Scopus, which are commercially available priced databases. The coverage includes peer reviewed journals and conference proceedings. Google Scholar (GS) on the other hand, provides a free and open alternative to obtaining citations of papers available on the net, (though it is not clear exactly which journals are covered.) Citations are collected automatically from the net and also added to self created individual author profiles under Google Scholar Citations (GSC). This data was used by Webometrics Lab, Spain to create a ranked list of 4000+ institutions in 2016, based on citations from only the top 10 individual GSC profiles in each organization. (GSC excludes the top paper for reasons explained in the text; the simple selection procedure makes the ranked list size-independent as claimed by the Cybermetrics Lab). Using this data (Transparent Ranking TR, 2016), we find the regional and country wise distribution of GS-TR Citations. The size independent ranked list is subdivided into deciles of 400 institutions each and the number of institutions and citations of each country obtained for each decile. We test for correlation between institutional ranks between GS TR and the other ranking schemes for the top 20 institutions.




se

Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR])

XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output.

Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners.

Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications.




se

Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIs. (arXiv:2005.03320v1 [cs.SE])

Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of nine analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.




se

A Review of Computer Vision Methods in Network Security. (arXiv:2005.03318v1 [cs.NI])

Network security has become an area of significant importance more than ever as highlighted by the eye-opening numbers of data breaches, attacks on critical infrastructure, and malware/ransomware/cryptojacker attacks that are reported almost every day. Increasingly, we are relying on networked infrastructure and with the advent of IoT, billions of devices will be connected to the internet, providing attackers with more opportunities to exploit. Traditional machine learning methods have been frequently used in the context of network security. However, such methods are more based on statistical features extracted from sources such as binaries, emails, and packet flows.

On the other hand, recent years witnessed a phenomenal growth in computer vision mainly driven by the advances in the area of convolutional neural networks. At a glance, it is not trivial to see how computer vision methods are related to network security. Nonetheless, there is a significant amount of work that highlighted how methods from computer vision can be applied in network security for detecting attacks or building security solutions. In this paper, we provide a comprehensive survey of such work under three topics; i) phishing attempt detection, ii) malware detection, and iii) traffic anomaly detection. Next, we review a set of such commercial products for which public information is available and explore how computer vision methods are effectively used in those products. Finally, we discuss existing research gaps and future research directions, especially focusing on how network security research community and the industry can leverage the exponential growth of computer vision methods to build much secure networked systems.