tom

Further evaluation of the shape of atomic Hirshfeld surfaces: M⋯H contacts and homoatomic bonds

It is well known that Hirshfeld surfaces provide an easy and straightforward way of analysing inter­molecular inter­actions in the crystal environment. The use of atomic Hirshfeld surfaces has also demonstrated that such surfaces carry information related to chemical bonds which allow a deeper evaluation of the structures. Here we briefly summarize the approach of atomic Hirshfeld surfaces while further evaluating the kind of information that can be retrieved from them. We show that the analysis of the metal-centre Hirshfeld surfaces from structures refined via Hirshfeld Atom Refinement (HAR) allow accurate evaluation of contacts of type M⋯H, and that such contacts can be related to the overall shape of the surfaces. The com­pounds analysed were tetra­aqua­bis­(3-carb­oxy­propionato)metal(II), [M(C4H3O4)2(H2O)4], for metal(II)/M = manganese/Mn, cobalt/Co, nickel/Ni and zinc/Zn. We also evaluate the sensitivity of the surfaces by an investigation of seemingly flat surfaces through analysis of the curvature functions in the direction of C—C bonds. The obtained values not only demonstrate variations in curvature but also show a correlation with the hybridization of the C atoms involved in the bond.




tom

Tomo Live: an on-the-fly reconstruction pipeline to judge data quality for cryo-electron tomography workflows

Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.




tom

STOPGAP: an open-source package for template matching, subtomogram alignment and classification

Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections and, in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image-processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species and classify different conformational states. Here, STOPGAP, an open-source package for subtomogram averaging that is designed to provide users with fine control over each of these steps, is described. In providing detailed descriptions of the image-processing algorithms that STOPGAP uses, this manuscript is also intended to serve as a technical resource to users as well as for further community-driven software development.




tom

What shapes template-matching performance in cryogenic electron tomography in situ?

The detection of specific biological macromolecules in cryogenic electron tomography data is frequently approached by applying cross-correlation-based 3D template matching. To reduce computational cost and noise, high binning is used to aggregate voxels before template matching. This remains a prevalent practice in both practical applications and methods development. Here, the relation between template size, shape and angular sampling is systematically evaluated to identify ribosomes in a ground-truth annotated data set. It is shown that at the commonly used binning, a detailed subtomogram average, a sphere and a heart emoji result in near-identical performance. These findings indicate that with current template-matching practices macromolecules can only be detected with high precision if their shape and size are sufficiently different from the background. Using theoretical considerations, the experimental results are rationalized and it is discussed why primarily low-frequency information remains at high binning and that template matching fails to be accurate because similarly shaped and sized macromolecules have similar low-frequency spectra. These challenges are discussed and potential enhancements for future template-matching methodologies are proposed.




tom

High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C—I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.




tom

Pillar data-acquisition strategies for cryo-electron tomography of beam-sensitive biological samples

For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.




tom

Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy

During the automatic processing of crystallographic diffraction experiments, beamstop shadows are often unaccounted for or only partially masked. As a result of this, outlier reflection intensities are integrated, which is a known issue. Traditional statistical diagnostics have only limited effectiveness in identifying these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form a typical pattern: clusters at the low-resolution end of the AUSPEX plots of intensities or amplitudes versus resolution. To automate NEMO detection, a new algorithm was developed by combining data statistics with a density-based clustering method. This approach demonstrates a promising performance in detecting NEMOs in merged data sets without disrupting existing data-reduction pipelines. Re-refinement results indicate that excluding the identified NEMOs can effectively enhance the quality of subsequent structure-determination steps. This method offers a prospective automated means to assess the efficacy of a beamstop mask, as well as highlighting the potential of modern pattern-recognition techniques for automating outlier exclusion during data processing, facilitating future adaptation to evolving experimental strategies.




tom

CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments

A group of three deep-learning tools, referred to collectively as CHiMP (Crystal Hits in My Plate), were created for analysis of micrographs of protein crystallization experiments at the Diamond Light Source (DLS) synchrotron, UK. The first tool, a classification network, assigns images into categories relating to experimental outcomes. The other two tools are networks that perform both object detection and instance segmentation, resulting in masks of individual crystals in the first case and masks of crystallization droplets in addition to crystals in the second case, allowing the positions and sizes of these entities to be recorded. The creation of these tools used transfer learning, where weights from a pre-trained deep-learning network were used as a starting point and repurposed by further training on a relatively small set of data. Two of the tools are now integrated at the VMXi macromolecular crystallography beamline at DLS, where they have the potential to absolve the need for any user input, both for monitoring crystallization experiments and for triggering in situ data collections. The third is being integrated into the XChem fragment-based drug-discovery screening platform, also at DLS, to allow the automatic targeting of acoustic compound dispensing into crystallization droplets.




tom

Orientational analysis of atomic pair correlations in nanocrystalline indium oxide thin films

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.




tom

Persistence of atoms in molecules: there is room beyond electron densities

Evidence that the electronic structure of atoms persists in molecules to a much greater extent than has been usually admitted is presented. This is achieved by resorting to N-electron real-space descriptors instead of one- or at most two-particle projections like the electron or exchange-correlation densities. Here, the 3N-dimensional maxima of the square of the wavefunction, the so-called Born maxima, are used. Since this technique is relatively unknown to the crystallographic community, a case-based approach is taken, revisiting first the Born maxima of atoms in their ground state and then some of their excited states. It is shown how they survive in molecules and that, beyond any doubt, the distribution of electrons around an atom in a molecule can be recognized as that of its isolated, in many cases excited, counterpart, relating this fact with the concept of energetic promotion. Several other cases that exemplify the applicability of the technique to solve chemical bonding conflicts and to introduce predictability in real-space analyses are also examined.




tom

Transferable Hirshfeld atom model for rapid evaluation of aspherical atomic form factors

Form factors based on aspherical models of atomic electron density have brought great improvement in the accuracies of hydrogen atom parameters derived from X-ray crystal structure refinement. Today, two main groups of such models are available, the banks of transferable atomic densities parametrized using the Hansen–Coppens multipole model which allows for rapid evaluation of atomic form factors and Hirshfeld atom refinement (HAR)-related methods which are usually more accurate but also slower. In this work, a model that combines the ideas utilized in the two approaches is tested. It uses atomic electron densities based on Hirshfeld partitions of electron densities, which are precalculated and stored in a databank. This model was also applied during the refinement of the structures of five small molecules. A comparison of the resulting hydrogen atom parameters with those derived from neutron diffraction data indicates that they are more accurate than those obtained with the Hansen–Coppens based databank, and only slightly less accurate than those obtained with a version of HAR that neglects the crystal environment. The advantage of using HAR becomes more noticeable when the effects of the environment are included. To speed up calculations, atomic densities were represented by multipole expansion with spherical harmonics up to l = 7, which used numerical radial functions (a different approach to that applied in the Hansen–Coppens model). Calculations of atomic form factors for the small protein crambin (at 0.73 Å resolution) took only 68 s using 12 CPU cores.




tom

The ABC toxin complex from Yersinia entomophaga can package three different cytotoxic components expressed from distinct genetic loci in an unfolded state: the structures of both shell and cargo

Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB–TcC subcomplex that makes a hollow shell. This TcB–TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB–TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.




tom

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




tom

A step towards 6D WAXD tensor tomography

X-ray scattering/diffraction tensor tomography techniques are promising methods to acquire the 3D texture information of heterogeneous biological tissues at micrometre resolution. However, the methods suffer from a long overall acquisition time due to multi-dimensional scanning across real and reciprocal space. Here, a new approach is introduced to obtain 3D reciprocal information of each illuminated scanning volume using mathematic modeling, which is equivalent to a physical scanning procedure for collecting the full reciprocal information required for voxel reconstruction. The virtual reciprocal scanning scheme was validated by a simulated 6D wide-angle X-ray diffraction tomography experiment. The theoretical validation of the method represents an important technological advancement for 6D diffraction tensor tomography and a crucial step towards pervasive applications in the characterization of heterogeneous materials.




tom

A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction

The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.




tom

Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data

Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.




tom

Texture tomography, a versatile framework to study crystalline texture in 3D

Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials.




tom

Hirshfeld atom refinement and dynamical refinement of hexagonal ice structure from electron diffraction data

Reaching beyond the commonly used spherical atomic electron density model allows one to greatly improve the accuracy of hydrogen atom structural param­eters derived from X-ray data. However, the effects of atomic asphericity are less explored for electron diffraction data. In this work, Hirshfeld atom refinement (HAR), a method that uses an accurate description of electron density by quantum mechanical calculation for a system of interest, was applied for the first time to the kinematical refinement of electron diffraction data. This approach was applied here to derive the structure of ordinary hexagonal ice (Ih). The effect of introducing HAR is much less noticeable than in the case of X-ray refinement and it is largely overshadowed by dynamical scattering effects. It led to only a slight change in the O—H bond lengths (shortening by 0.01 Å) compared with the independent atom model (IAM). The average absolute differences in O—H bond lengths between the kinematical refinements and the reference neutron structure were much larger: 0.044 for IAM and 0.046 Å for HAR. The refinement results changed considerably when dynamical scattering effects were modelled – with extinction correction or with dynamical refinement. The latter led to an improvement of the O—H bond length accuracy to 0.021 Å on average (with IAM refinement). Though there is a potential for deriving more accurate structures using HAR for electron diffraction, modelling of dynamical scattering effects seems to be a necessary step to achieve this. However, at present there is no software to support both HAR and dynamical refinement.




tom

Solvatomorphism in a series of copper(II) complexes with the 5-phenyl­imidazole/perchlorate system as ligands

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenyl­imidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenyl­imidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(di­methyl­formamide) (7), 2(acetone) (8), 2(tetra­hydro­furane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(di­ethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the di­ethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds.




tom

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




tom

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




tom

Convolutional neural network approach for the automated identification of in cellulo crystals

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.




tom

Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating

X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes.




tom

Ray-tracing analytical absorption correction for X-ray crystallography based on tomographic reconstructions

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.




tom

Automated pipeline processing X-ray diffraction data from dynamic compression experiments on the Extreme Conditions Beamline of PETRA III

Presented and discussed here is the implementation of a software solution that provides prompt X-ray diffraction data analysis during fast dynamic compression experiments conducted within the dynamic diamond anvil cell technique. It includes efficient data collection, streaming of data and metadata to a high-performance cluster (HPC), fast azimuthal data integration on the cluster, and tools for controlling the data processing steps and visualizing the data using the DIOPTAS software package. This data processing pipeline is invaluable for a great number of studies. The potential of the pipeline is illustrated with two examples of data collected on ammonia–water mixtures and multiphase mineral assemblies under high pressure. The pipeline is designed to be generic in nature and could be readily adapted to provide rapid feedback for many other X-ray diffraction techniques, e.g. large-volume press studies, in situ stress/strain studies, phase transformation studies, chemical reactions studied with high-resolution diffraction etc.




tom

Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed.




tom

X-ray tensor tomography for small-grained polycrystals with strong texture

Small-angle X-ray tensor tomography and the related wide-angle X-ray tensor tomography are X-ray imaging techniques that tomographically reconstruct the anisotropic scattering density of extended samples. In previous studies, these methods have been used to image samples where the scattering density depends slowly on the direction of scattering, typically modeling the directionality, i.e. the texture, with a spherical harmonics expansion up until order ℓ = 8 or lower. This study investigates the performance of several established algorithms from small-angle X-ray tensor tomography on samples with a faster variation as a function of scattering direction and compares their expected and achieved performance. The various algorithms are tested using wide-angle scattering data from an as-drawn steel wire with known texture to establish the viability of the tensor tomography approach for such samples and to compare the performance of existing algorithms.




tom

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.




tom

Electronic angle focusing for neutron time-of-flight powder diffractometers

A neutron time-of-flight (TOF) powder diffractometer with a continuous wide-angle array of detectors can be electronically focused to make a single pseudo-constant wavelength diffraction pattern, thus facilitating angle-dependent intensity corrections. The resulting powder diffraction peak profiles are affected by the neutron source emission profile and resemble the function currently used for TOF diffraction.




tom

Correlative X-ray micro-nanotomography with scanning electron microscopy at the Advanced Light Source

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples. To develop a methodology for measuring the multi-scale 3D microstructure of geological samples, correlative X-ray micro- and nanotomography were performed on two rocks followed by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis. The study was performed in five steps: (i) micro X-ray tomography was performed on rock sample cores, (ii) samples for nanotomography were prepared using laser milling, (iii) nanotomography was performed on the milled sub-samples, (iv) samples were mounted and polished for SEM analysis and (v) SEM imaging and compositional mapping was performed on micro and nanotomography samples for complimentary information. Correlative study performed on samples of serpentine and basalt revealed multiscale 3D structures involving both solid mineral phases and pore networks. Significant differences in the volume fraction of pores and mineral phases were also observed dependent on the imaging spatial resolution employed. This highlights the necessity for the application of such a multiscale approach for the characterization of complex aggregates such as rocks. Information acquired from the chemical mapping of different phases was also helpful in segmentation of phases that did not exhibit significant contrast in X-ray imaging. Adoption of the protocol used in this study can be broadly applied to 3D imaging studies being performed at the Advanced Light Source and other user facilities.




tom

distect: automatic sample-position tracking for X-ray experiments using computer vision algorithms

Soft X-ray spectroscopy is an important technique for measuring the fundamental properties of materials. However, for measurements of samples in the sub-millimetre range, many experimental setups show limitations. Position drifts on the order of hundreds of micrometres during thermal stabilization of the system can last for hours of expensive beam time. To compensate for drifts, sample tracking and feedback systems must be used. However, in complex sample environments where sample access is very limited, many existing solutions cannot be applied. In this work, we apply a robust computer vision algorithm to automatically track and readjust the sample position in the dozens of micrometres range. Our approach is applied in a complex sample environment, where the sample is in an ultra-high vacuum chamber, surrounded by cooled thermal shields to reach sample temperatures down to 2.5 K and in the center of a superconducting split coil. Our implementation allows sample-position tracking and adjustment in the vertical direction since this is the dimension where drifts occur during sample temperature change in our setup. The approach can be easily extended to 2D. The algorithm enables a factor of ten improvement in the overlap of a series of X-ray absorption spectra in a sample with a vertical size down to 70 µm. This solution can be used in a variety of experimental stations, where optical access is available and sample access by other means is reduced.




tom

PayPoint and Share Energy partner in order to optimise customer payment solutions

PayPoint has announced its partnership with



tom

Careem Pay introduces instant transfers for customers in Europe

Digital wallet and fintech platform Careem Pay has launched...




tom

Why Liam Neeson was 'very reluctant' to star in 'A Walk Among the Tombstones'

Liam Neeson stars as Matthew Scudder in "A Walk Among the Tombstones." ; Credit: Universal Pictures

Screenwriter and director Scott Frank has been trying to make “A Walk Among the Tombstones” for more than a decade, but it wasn't until Liam Neeson signed on that his efforts finally came into view.

Based on the Lawrence Block novel, “Tombstones” stars Liam Neeson as Matthew Scudder, an ex-cop working as an unlicensed private investigator. He agrees to help a well-to-do drug trafficker hunt down the kidnappers who have brutally murdered his wife.

 

Frank wrote the screenplay and, after the departures of other attached directors, Frank decided to step behind the cameras himself. 

When he came by The Frame studio, Frank spoke with host John Horn about Neeson's great strengths as an action hero and how he convinced Neeson to sign on to the project.

Interview Highlights:

 

John Horn: Liam Neeson has evolved in a fascinating way as an action hero. When did you start having conversations with him about this movie, and what was it about him as an actor that made it feel like the right fit?

"Well, what's interesting is that Larry Block, the novelist, had always said, going way back to 2003 or something, that the perfect actor for this, after [he saw] 'Michael Collins'...would be Liam Neeson. Chris Andrews, who is Liam's agent, always loved the script and was always trying to find a way to put it together, and he's the one who gave it to Liam back when D.J. [Caruso] was going to direct. So the first time I met Liam to talk about the movie, I was talking to him as the writer, not as the director of the movie. And then when D.J. fell out to go do a different movie at Sony...we had a conversation about directing the movie.

JH: Was this before or after the first "Taken" had come out?

This was well after the first 'Taken,' this was right before the second 'Taken.'

JH: So Liam is...succeeding as a version of that character, and I wonder if that success cuts both ways, that maybe there's a reluctance on his part to not do something that's quite as similar? Or is that part of your conversation that you have with him? 

It absolutely cuts both ways, and that was a huge part of the conversation because there's a kidnapping in this story, and there he is on the telephone for a few minutes at the end of the movie talking to kidnappers, and there are similarities [to 'Taken']. And he knew that was the way to sell the movie, and so he was very reluctant. And I talked to him and I had him watch 'Klute,' and I said, "That's the movie we're gonna make. We're not going to make 'Taken,' we're going to make a movie that's like 'Klute,' or a little bit like 'Dirty Harry,' or one of those old-school '70s films. It's going to feel more like that than an action movie."

 

 

JH: Liam Neeson's not physically imposing, but there's something about him that really kind of makes the hair on the back of your neck stand up. What is it about him as an actor in this kind of part?

Well, there's a couple things. One: you believe him. No matter what he's talking about, it seems authentic and true...he has this thing about him that, whatever he's doing, you believe him. Two: he's one of those actors like Gene Hackman where he can convey exposition and make it feel like character. He can talk pages of exposition and make it all feel like it's character and drama — it's a great thing. The other thing about him is that he has this real gravitas, and it almost borders on sadness sometimes; it's interesting when you watch him and you feel like there's all this other life going on behind him.

JH: That he has nothing to lose, in other words.

Nothing to lose, and he says that at one point in the film, but I think it's those things that are all at work at the same time.




tom

Benmont Tench - of Tom Petty and the Heartbreakers - says goodbye to John with the most Off-Rampy song ever

; Credit: John Rabe/KPCC

John Rabe | Off-Ramp®

Off-Ramp fan, KPCC member (!), and Tom Petty and Heartbreakers keyboardist Benmont Tench III joined John in his old Mercedes with his large, but portable Casio.

Tench has lived in the hills of Tarzana for decades, in a perfectly good house, but in the 100-degree heat, John outfitted his car with condenser mikes to record a farewell ode to Off-Ramp, Tench's "Like the Sun."

The full band version of Benmont Tench III's "Like the Sun"

"Like the Sun" helped Tench get back in the songwriting groove a decade ago after he burnt out on being professional songwriter in Nashville. He based the lyrics on tours of Los Angeles given to him by a friend, and takes the listener (with his Southern accent) from a restaurant called Michoacan to a hill top tent city. Tench also told John how he and his wife Alice explore Los Angeles.

 

This content is from Southern California Public Radio. View the original story at SCPR.org.




tom

Building the bank of tomorrow: Innovations shaping the future of finance

With the advent of disruptive technologies such as artificial intelligence, blockchain, and data analytics, banks across the world are embracing a new era of innovation to enhance their services and improve customer experiences. These innovations are empowering banks to provide personalized, efficient, reliable, and secure financial solutions to their customers.




tom

Health Study of Atomic Veterans Families Not Feasible Study Says

A scientifically accurate and valid epidemiologic study of reproductive problems among the families of veterans exposed to radiation from atomic bombings and nuclear weapons tests is not feasible, concluded an Institute of Medicine (IOM) committee in a new report.




tom

Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Is a Legitimate Disease That Needs Proper Diagnosis and Treatment, Says IOM Report Identifies Five Symptoms to Diagnose Disease

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome -- commonly referred to as ME/CFS -- is a legitimate, serious, and complex systemic disease that frequently and dramatically limits the activities of affected individuals, says a new report from the Institute of Medicine.




tom

A Domestic Electron Ion Collider Would Unlock Scientific Mysteries of Atomic Nuclei, Maintain U.S. Leadership in Accelerator Science, New Report Says

The science questions that could be answered by an electron ion collider (EIC) – a very large-scale particle accelerator – are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.




tom

Entomologist May R. Berenbaum of the University of Illinois at Urbana-Champaign Named PNAS Editor-in-Chief

The National Academy of Sciences (NAS) announces the appointment of May R. Berenbaum as Editor-in-Chief of the Proceedings of the National Academy of Sciences (PNAS), the official journal of the Academy. Berenbaum will begin the editorship on January 1, 2019.




tom

International Collaboration, Cross-Disciplinary Workforce Development and Education Needed for U.S. to Maintain Leadership in Atomic, Molecular, and Optical Science

The federal government should foster collaboration and decrease obstacles that can keep foreign atomic, molecular, and optical (AMO) physicists from working in the United States, if the nation is to maintain its position as leader in these fields, says a new report from the National Academies of Sciences, Engineering, and Medicine.




tom

Automated Research Workflows Are Speeding Pace of Scientific Discovery - New Report Offers Recommendations to Advance Their Development

Automated research workflows — which integrate computation, laboratory automation, and tools from artificial intelligence — have the potential to increase the speed of research activities and accelerate scientific discovery. A new report recommends ways to advance their development.




tom

560 million Ticketmaster customer data for sale? – Week in security with Tony Anscombe

Ticketmaster seems to have experienced a data breach, with the ShinyHunters hacker group claiming to have exfiltrated 560 million customer data




tom

AI and automation reducing breach costs – Week in security with Tony Anscombe

Organizations that leveraged AI and automation in security prevention cut the cost of a data breach by $2.22 million compared to those that didn't deploy these technologies




tom

Telugu youth adopts automation, takes farming to next level

A young US-returned robotic engineer is making waves with his experiments in agriculture.




tom

Video : Let my customers self-serve with Auto Contact

Auto Contact, our range of self-service solutions, can help free up agents to handle more complex and revenue-generating calls –and at the same time improve the overall customer experience whilst reducing costs.




tom

We place customers at the center of our design: Suresh Khadakbhavi, CEO of Digi Yatra

Suresh Khadakbhavi, CEO of Digi Yatra, envisions a seamless travel experience through innovative technology, emphasizing privacy, efficiency, and sustainability while transforming air travel into a contactless, user-friendly journey.




tom

Case Study : GSK Nutritional Healthcare: Market leader makes customer care miles better

Care isn’t just part of the name at GSK Nutritional Healthcare. It’s at the heart of its customer help lines. But Ashley Thomas knew that the company’s legacy telephone technology was becoming a bit of a hindrance. Keen to boost customer service with new technology, a review of the market led Ashley to BT Cloud Contact




tom

Case Study : Tesco uses BT Cloud Contact technology to bring it closer to customers

Tesco, one of the world’s largest retailers, is using the BT Cloud Contact solution to give its UK customers an enhanced, more flexible and more responsive contact centre service.




tom

AI, automation, and resilience is Oracle’s vision for supply chain management: Derek Gittoes

In this exclusive interview with ETCIO, Derek Gittoes, Vice President of Supply Chain Management Product Strategy at Oracle, shares valuable insights into the current trends shaping the future of supply chain management.