ma

THERMAL DRYING SYSTEM FOR ADDITIVE MANUFACTURING DEVICE

An additive manufacturing device includes at least one liquefier assembly that receives filament material from at least one feedstock and extrudes the material in a flowable form. A thermal drying system removes water vapor and heats compressed air to a preselected temperature set point to form conditioned air. At least one enclosed filament path houses and guides the filament material from a supply to the at least one liquefier assembly. The enclosed filament path is exposed to the conditioned air from the thermal drying system so as to keep the filament material dry as it is fed to the at least one liquefier assembly.




ma

COLUMN FOR THERMAL TREATMENT OF FLUID MIXTURES

The present invention relates to a column (1) for thermal treatment of fluid mixtures, having a cylindrical, vertically aligned column body (2) which forms a column cavity (3), having a sequence of vertically spaced-apart dual-flow mass transfer trays (8) which are mounted in the column cavity (3) and which have orifices for passage of liquid and gas in countercurrent, and having at least one gas entry orifice (5) disposed below the lowermost of the sequence of dual-flow mass transfer trays (8). It is a characteristic feature of the column of the invention that a gas distribution tray (9) which is disposed between the lowermost of the sequence of dual-flow mass transfer trays (8) and the gas entry orifice (5) has orifices (32) for vertical passage of gas which can be introduced into the column cavity (3) via the gas entry orifice (5), the orifices (32) being formed so as to bring about equal gas distribution over the column cross section. The invention further relates to a process for thermal treatment of fluid mixtures in such a column (1).




ma

FLOW MANAGEMENT AND CO2-RECOVERY APPARATUS AND METHOD OF USE

An apparatus and method for flow management and CO2-recovery from a CO2 containing hydrocarbon flow stream, such as a post CO2-stimulation flowback stream. The apparatus including a flow control zone, a gas separation zone, a pretreatment zone, and a CO2-capture zone. The CO2-capture zone is in fluid communication with the pretreatment zone to provide CO2-capture from a pretreated flowback gas stream and output a captured CO2-flow stream. The CO2-capture zone includes a flow splitter to direct a first portion of the pretreated flowback gas stream to a CO2-enricher to provide an enriched CO2-stream for mixing with a second portion of the pretreated flowback gas to form a mixed stream. The CO2-capture zone further includes at least one condenser to output the captured CO2-flow stream.




ma

Manual-automatic flush driving device

A flush driving device for a toilet includes a mounting bracket, a control panel that includes a sensing window and manual buttons, and a manual operating mechanism that includes bars cooperating with the manual buttons and rotating mechanisms connected with the bars. Rotating shafts of the rotating mechanisms are mounted in the mounting bracket. An automatic operating mechanism includes a driving motor, a rod controlled by the driving motor, and lifting mechanisms cooperating with the rod. The flush driving device also includes pull arms connected to both the rotating mechanisms and the lifting mechanisms for controlling the flush of the toilet.




ma

Automatic air evacuation appratus for swimming pool and spa filters

The present invention is an air evacuation apparatus that prevents the accumulation of air inside a swimming pool or spa filter by allowing any air to be removed from inside the filter every time the swimming pool pump is turned on. By allowing air to be removed from the filter, the present invention prevents the build-up of dangerous levels of potential energy caused by compressed air inside the filter that can lead to the violent separation of the filter. More important, the air evacuation apparatus of the present invention allows air to be safely and automatically removed from inside of the filter without interfering with the functionality of the filter.




ma

Manhole odor eliminator

A sewer gas odor absorption apparatus for a manhole having a perforate manhole cover disposed in the manhole which includes an imperforate housing having a seal dimensioned and configured for sealing engagement with the manhole, the housing has a first extremity and a second extremity and a passageway in fluid communication with ambient air above the manhole cover at the first extremity and in fluid communication with sewer gases at the second extremity thereof. A sub-assembly including a porous absorption media and a variable volume device disposed in mutual fluid communication in a subassembly having first and second axial extremities, the first and second extremities of the subassembly being disposed in fluid communication respectively with the first and second extremities of the imperforate housing.




ma

Toilet training devices for small children

A toilet training device includes an odor remediation system for absorbing or masking odors that may be created during toilet training. The odor remediation system may include a modular odor remediating insert that may be releasably positioned within a recess that is provided within the toilet training device. The odor remediating insert may include an odor absorbing substance such as sodium bicarbonate, an odor masking substance such as a fragrance or a combination of an odor absorbing substance and an odor masking substance. The toilet training device also includes a system for dispensing wipes that may utilize a recess that is defined in a side wall of the main body portion of the toilet training device. A wipes cartridge is designed so that it can be used to conveniently dispense wipes regardless of whether it is separated from the toilet training device or mounted within the recess of the toilet training device.




ma

Method for controlling automatic head care system and automatic hair washing system, and automatic head care system

Provided is an automatic head care system and an automatic hair washing system for caring a person's head in a safe and effective manner without applying a straining force on the person's neck. In order to achieve the object, the following steps are performed in turn: a head receiving step in which a pair of arms 114L, 114R are placed at positions for receiving a person's head 10 on a suppotring body 112; a water washing step in which water ejected from a plurality of nozzles 110 is poured to the head 10 while the pair of arms 114L, 114R are swung; a shampoo step in which washing liquid ejected from the plurality of nozzles 110 is poured to the head 10 while the pair of arms 114L, 114R are swung; and a head care step in which the head 10 is cared by performing the push-rotating of the pair of arms 114L, 114R in the direction of approaching the head 10 so as to bring the plurality of contacts 109 into contact with the head 10 and by swinging the pair of arms 114L, 114R while moving the plurality of contacts 109.




ma

Automatic roll-back and return-to-position for header tilt on an agricultural machine

A windrower with a harvesting header with a crop cutting assembly for severing crop from the ground windrower has a header pitch sensor for measuring a fore/aft pitch angle and a hydraulic system. The hydraulic system moves the header between an operating height and a raised position, and also controls a fore/aft pitch angle. An electronics control module provides an output to activate solenoid valves in the hydraulic system to move the header between the operating height and the raised position and to select a desired pitch angle. When the header moves from the operating height to the raised position, the electronics control module operates the header hydraulic system to move the header to the zero-tilt condition, and upon lowering the header back the operating height, the electronics control module automatically returns the header to the selected pitch angle it was in at the start of the cycle.




ma

Control apparatus for unmanned autonomous operating vehicle

In an apparatus for controlling an unmanned autonomous operating vehicle having an electric motor supplied with power from a battery for operating an operating machine, and magnetic sensors for detecting intensity of a magnetic field of an area wire and controlled to run about in an operating area defined by the area wire through wheels driven by the prime movers to perform an operation using the operating machine and to return to a charging device installed on the area wire so as to charge the battery, there is provided with a turn-back portion formed by bending the area wire at an appropriate position and again bending the area wire to return in a same direction with a predetermined space so as to divide the operating area into a plurality of parts and vehicle running is controlled to be prohibited from going across the turn-back portion.




ma

Electromotive drive device for construction machine

An electromotive drive device of an electric motor-driven mini-excavator, which is capable of lengthening its operating time, includes an electric power storage device, a motor-generator, a hydraulic pump, a plurality of directional control valves which respectively control the flow of pressurized fluid, and a plurality of operating devices which respectively operate the plurality of directional control valves. The electromotive drive device is provided with a bidirectional converter which decelerates the motor-generator to an idle revolution speed when X seconds have elapsed in a state in which the plurality of directional control valves are all not operated. The bidirectional converter performs regenerative control to convert an inertial force of a rotor of the motor-generator to power and charge the electric power storage device when it decelerates the motor-generator from a standard revolution speed to the idle revolution speed.




ma

Automatic driveshaft coupler for auto header hookup

An agricultural harvester (100) comprises a self-propelled vehicle (102); a feederhouse (104); a driveshaft (114) supported on the feederhouse (104), the driveshaft (114) having a first coupler (116) fixed to one end of the driveshaft (114), the first coupler (116) comprising a coupler body (420), a piston (416) disposed in the coupler body (420), and a first key (302) mechanically coupled to the piston (416) to be extended or retracted by the piston (416) to engage a mating coupler on a second driveshaft (120) of an agricultural harvesting head (106) that is supported on the feederhouse (104).




ma

Air intake configuration for an agricultural harvesting machine

An agricultural work vehicle includes a vehicle body having longitudinally extending sides. An enclosed engine compartment is configured within the vehicle body. An air inlet is defined in side of the vehicle body for intake of air into the engine compartment. A grain bin forward of the engine compartment includes a grain bin extension skirt mounted above the grain bin. An intake housing is mounted over the air inlet in the vehicle body side and includes a forwardly extending portion mounted alongside the grain bin extension with an inlet opening oriented so as draw air primarily from an area forward of the engine compartment and above the vehicle body.




ma

Row insensitive biomass harvesting and billeting system and method

A harvesting system and method providing a row insensitive plant cutting and gathering capability, suitable for harvesting tall, stalky plants such as sweet sorghum, cane, and the like, in high volume, which also billet cuts the harvested plants. Multiple plants are cut simultaneously on a continuous basis at any locations across a header of the system, and the cut plants are gathered into a continuous overlapping flow having a vertical extent or thickness of several stalks or canes and their associated foliage. The flow is then vertically compacted into a mat of reduced thickness while being conveyed into a billet cutter, which cuts the stalks or canes into billets of a desired length and discharges the billets to a desired location, all while the harvester is moving through a field harvesting. The system can be incorporated into a conventional sugarcane harvester in place of conventional base cutters and row dividers.




ma

Chopper attachment to improve conditioning of bio-mass type crops

A harvesting header includes a cutter bed having a plurality of cutting elements arranged transverse to the header and a crop chopping and conditioning region having a crop chopping device and a crop conditioning device. The crop chopping device is configured to chop crop cut by the cutter bed into smaller lengths and the crop conditioning device is configured to crimp the crop to aid in drying. The first chopping roller has a tubular, cylindrically-shaped body and a plurality of parallel knife-mounting lugs extending radially outward along substantially the full length of the body. A plurality of chopping knives are attached to the knife-mounting lugs and arranged around the body, each chopping knife having a length that is shorter than the length of the knife-mounting lug to which it is attached such that each chopping knife covers only a portion of the lateral length of the first chopping roller.




ma

Biomass storage system

An apparatus for forming a water storage material from a biomass input material using supercritical or subcritical fluid processing, the water storage material capable of absorbing a liquid and releasing the liquid. The apparatus utilizes supercritical fluid processing, subcritical fluid processing, charring, or a combination thereof. The apparatus includes a controller configured to control the apparatus. The apparatus further including a processing station configured to hold the biomass input material, and to use the biomass input material for processing into the water storage material.




ma

Pneumatic fruit decelerator body

A decelerator apparatus for mounting at the end of a pneumatic or gravity-fed fruit harvesting or delivery tube. The decelerator comprises a housing with a moving decelerator body aligned with a fruit-receiving inlet connected to the delivery tube. The decelerator body, for example a padded rotating wheel, moves at a speed slower than the speed at which the fruit is delivered into the housing, includes multiple depressions or indentations for receiving and separating fruit, and further defines a compressive deceleration path that moves the fruit in a compressive but protective fit toward a housing exit, releasing the fruit after the fruit has been decelerated to the speed of the moving body.




ma

Machine with ground working elements providing improved stability

A grass cutting machine with two cutting units mounted on opposite sides of the chassis has an inclinometer monitoring the left/right inclination of the chassis. If the inclination value exceeds a defined threshold, the higher of the two cutting units is lifted to improve stability.




ma

Agricultural working machine having at least one control unit

An agricultural working machine has a one control/regulating unit designed to adjust and monitor working parameters, quality parameters or both of the agricultural working machine that influence a harvesting process. The adjusting and monitoring are carried out in an automatable manner by the control/regulating unit using stored families of characteristics. The agricultural working machine also has at least one display device for depicting setpoint values and actual values of the working parameters, quality parameters or both. The control/regulating unit actuates defined measurement points in the stored families of characteristics and the specifically actuated measurement points are located in the boundary regions of the family of characteristics or outside the active working region of the particular family of characteristics.




ma

Harvesting machine for erecting and threshing and collecting crop materials

A harvesting machine for threshing crop materials includes a platform supported in front of a chassis, an erecting device having a number pairs of guiding bars attached to the platform and having a channel formed between two bar members of each pair of guiding bars, a guiding element disposed between every two adjacent pairs of guiding bars for guiding a stalk of the crop materials into the channel of the guiding bars, a number of pawls extended into the channel for sending the stalk of the crop materials into the channel, and a cutting device having two or more cutting elements for cutting the stalk into a lower base segment that carries no grain and an upper straw segment that carries grains.




ma

Baler automatic stopping sequence

A system is provided that automatically stops a tractor as a function of a status of a round baler. This may include a controller such as a baler controller directly or indirectly detecting initial movement of an actuator that moves a wrapper assembly. Based on this detection, conditions for starting a wrap procedure may be determined either by actuator position or by a time period required for moving the wrapper assembly from a home position to a wrap start position. A time period required to bring the tractor to stop may be determined and compared with the time period required for the wrapper assembly to move from the home position to the wrap start position. The baler controller may send a tractor halt command signal for stopping the tractor to coordinate and synchronize bringing the tractor to a complete stop at the same time that the wrapping material is inserted and applied onto the bale at the beginning of a wrapping procedure.




ma

Reel lawn mower with main body, reel cutting unit, and connection structure for connecting reel cutting unit to main body such that reel cutting unit is rollable

A reel lawn mower which has a connection structure for connecting a reel cutting unit to a main body. The reel cutting unit has a spiral cutting reel which is rotated by a prime mover to cut grass together with a bedknife. In the connection structure, in order to connect the reel cutting unit to the main body so that the reel cutting unit rolls around a virtual horizontal line perpendicular to the shaft center of the cutting reel in the center of the axial direction of the cutting reel, the reel cutting unit includes a connecting arm with an arc portion shaped so as to follow a virtual arc centered on the virtual horizontal line. The connecting arm is slidably supported so as to prevent the arc portion from coming off the virtual arc.




ma

Windguard mechanism of a pick-up for an agricultural machine

A windguard mechanism comprising a pair of arms attachable to an agricultural machine and a windguard plate extending between the pair of arms and positioned to hold down crop material processed by a pickup mechanism. The windguard plate comprises a first plate fixed between the pair of arms and a second plate positioned movably with respect to the first plate, wherein working surfaces of the first plate and of the second plate form a windguard working surface of an area independent on the position of the second plate.




ma

Packaging Device Having Plural Microstructures Disposed Proximate to Die Mounting Region

An example method includes providing a packaging device includes a substrate having an integrated circuit die mounting region. A plurality of microstructures, each including an outer insulating layer over a conductive material, are disposed proximate a side of the integrated circuit die mounting region. An underfill material is disposed between the substrate and the integrated circuit die, the microstructures preventing spread of the underfill. In another example method, a via can be formed in a substrate and the substrate etched to form a bump or pillar from the via. An insulating material can be formed over the bump or pillar. In another example method, a photoresist deposited over a seed layer and patterned to form openings. A conductive material is plated in the openings, forming a plurality of pillars or bumps. The photoresist and exposed seed layer are removed. The conductive material is oxidized to form an insulating material.




ma

METHOD OF MARKING A SEMICONDUCTOR PACKAGE

A method of making a semiconductor device can include providing a wafer comprising a plurality of semiconductor die, wherein each semiconductor die comprises an active surface and a backside opposite the active surface. A photosensitive layer can be formed over the wafer and on a backside of each of the plurality of semiconductor die within the wafer with a coating machine. An identifying mark can be formed within the photosensitive layer for each of the plurality of semiconductor die with a digital exposure machine and a developer, wherein a thickness of the identifying mark is less than or equal to 50 percent of a thickness of the photosensitive layer. The photosensitive layer can be cured. The wafer can be singulated into a plurality of semiconductor devices.




ma

METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE HAVING MOISTURE-RESISTANT RINGS BEING FORMED IN A PERIPHERAL REGION

A semiconductor device includes a first moisture-resistant ring disposed in a peripheral region surrounding a circuit region on a semiconductor substrate in such a way as to surround the circuit region and a second moisture-resistant ring disposed in the peripheral region in such a way as to surround the first moisture-resistant ring.




ma

MANUFACTURING METHOD OF CHIP PACKAGE AND PACKAGE SUBSTRATE

A manufacturing method of a package substrate is provided. The method includes forming a first circuit layer on a carrier. A passive component is disposed on the first circuit layer and the carrier. A dielectric layer is formed on the carrier to embed the passive component and the first circuit layer in the dielectric layer. A second circuit layer is formed on the dielectric layer. The carrier is removed from the dielectric layer. A manufacturing method of a chip package is also provided.




ma

SEMICONDUCTOR MOUNTING APPARATUS, HEAD THEREOF, AND METHOD FOR MANUFACTURING LAMINATED CHIP

A semiconductor mounting apparatus includes a storing unit that stores a liquid or a gas, a contact unit that comes into contact with a semiconductor chip when the storing unit is filled with the liquid or the gas, and a sucking unit that sucks up the semiconductor chip to bring the semiconductor chip into close contact with the contact unit.




ma

SEMICONDUCTOR DEVICE HAVING BURIED GATE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME, MEMORY CELL HAVING THE SAME AND ELECTRONIC DEVICE HAVING THE SAME

A semiconductor device includes a substrate comprising a trench; a gate dielectric layer formed over a surface of the trench; a gate electrode positioned at a level lower than a top surface of the substrate, and comprising a lower buried portion embedded in a lower portion of the trench over the gate dielectric layer and an upper buried portion positioned over the lower buried portion; and a dielectric work function adjusting liner positioned between the lower buried portion and the gate dielectric layer; and a dipole formed between the dielectric work function adjusting liner and the gate dielectric layer.




ma

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Embodiments of the inventive concepts provide a method for manufacturing a semiconductor device. The method includes forming a stack structure including insulating layers and sacrificial layers which are alternately and repeatedly stacked on a substrate. A first photoresist pattern is formed on the stack structure. A first part of the stack structure is etched to form a stepwise structure using the first photoresist pattern as an etch mask. The first photoresist pattern includes a copolymer including a plurality of units represented by at least one of the following chemical formulas 1 to 3, wherein “R1”, “R2”, “R3”, “p”, “q” and “r” are the same as defined in the description.




ma

METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

A performance of a semiconductor device is improved. A film, which is made of silicon, is formed in a resistance element formation region on a semiconductor substrate, and an impurity, which is at least one type of elements selected from a group including a group 14 element and a group 18 element, is ion-implanted into the film, and a film portion which is formed of the film of a portion into which the impurity is ion-implanted is formed. Next, an insulating film with a charge storage portion therein is formed in a memory formation region on the semiconductor substrate, and a conductive film is formed on the insulating film.




ma

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

A method of manufacturing a semiconductor device according to one embodiment includes forming a first film including a first metal above a processing target member. The method includes forming a second film including two or more types of element out of a second metal, carbon, and boron above the first film. The method includes forming a third film including the first metal above the second film. The method includes forming a mask film by providing an opening part to a stacked film including the first film, the second film and the third film. The method includes processing the processing target member by performing etching using the mask film as a mask.




ma

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Embodiments of the inventive concept provide a method for manufacturing a semiconductor device. The method includes forming a stack structure by alternately and repeatedly stacking insulating layers and sacrificial layers on a substrate, sequentially forming a first lower layer and a first photoresist pattern on the stack structure, etching the first lower layer using the first photoresist pattern as an etch mask to form a first lower pattern. A first part of the stack structure is etched to form a stepwise structure using the first lower pattern as an etch mask. The first lower layer includes a novolac-based organic polymer, and the first photoresist pattern includes a polymer including silicon.




ma

METHOD FOR MANUFACTURING N-TYPE TFT

The present invention provides a method for manufacturing the N-type TFT, which includes subjecting a light shielding layer to a grating like patternization treatment for controlling different zones of a poly-silicon layer to induce difference of crystallization so as to have different zones of the poly-silicon layer forming crystalline grains having different sizes, whereby through just one operation of ion doping, different zones of the poly-silicon layer have differences in electrical resistivity due to difference of grain size generated under the condition of identical doping concentration to provide an effect equivalent to an LDD structure for providing the TFT with a relatively low leakage current and improved reliability. Further, since only one operation of ion injection is involved, the manufacturing time and manufacturing cost can be saved, damages of the poly-silicon layer can be reduced, the activation time can be shortened, thereby facilitating the manufacture of flexible display devices.




ma

METHODS OF MANUFACTURING THIN FILM TRANSISTOR AND ARRAY SUBSTRATE

A method of manufacturing a thin film transistor is disclosed. The method of manufacturing the thin film transistor includes: manufacturing a substrate; forming an oxide semiconductor layer on the substrate; forming a pattern including an active layer through a patterning process; forming a source and drain metal layer on the active layer; and forming a pattern including a source electrode and a drain electrode through a patterning process, an opening being formed between the source electrode and the drain electrode at a position corresponding to a region of the active layer used as a channel, wherein the step of forming the pattern including the source electrode and the drain electrode through a patterning process includes: removing a portion of the source and drain metal layer corresponding to the position of the opening through dry etching. The method may also be used to manufacturing a thin film transistor.




ma

METHODS OF FORMING IMAGE SENSOR INTEGRATED CIRCUIT PACKAGES

A method of forming image sensor packages may include performing a molding process. Mold material may be formed either on a transparent substrate in between image sensor dies, or on a removable panel in between transparent substrates attached to image sensor dies. Redistribution layers may be formed before or after the molding process. Mold material may be formed after forming redistribution layers so that the mold material covers the redistribution layers. In these cases, holes may be formed in the mold material to expose solder pads on the redistribution layers. Alternatively, redistribution layers may be formed after the molding process and the redistribution layers may extend over the mold material. Image sensor dies may be attached to a glass or notched glass substrate with dam structures. The methods of forming image sensor packages may result in hermetic image sensor packages that prevent exterior materials from reaching the image sensor.




ma

METHOD OF USING A SURFACTANT-CONTAINING SHRINKAGE MATERIAL TO PREVENT PHOTORESIST PATTERN COLLAPSE CAUSED BY CAPILLARY FORCES

A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.




ma

TFT AND MANUFACTURING METHOD THEREOF, ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF, X-RAY DETECTOR AND DISPLAY DEVICE

A TFT and manufacturing method thereof, an array substrate and manufacturing method thereof, an X-ray detector and a display device are disclosed. The manufacturing method includes: forming a gate-insulating-layer thin film (3'), a semiconductor-layer thin film (4') and a passivation-shielding-layer thin film (5') successively; forming a pattern (5') that includes a passivation shielding layer through one patterning process, so that a portion, sheltered by the passivation shielding layer, of the semiconductor-layer thin film forms a pattern of an active layer (4a'); and performing an ion doping process to a portion, not sheltered by the passivation shielding layer, of the semiconductor-layer thin film to form a pattern comprising a source electrode (4c') and a drain electrode (4b'). The source electrode (4c') and the drain electrode (4b') are disposed on two sides of the active layer (4a') respectively and in a same layer as the active layer (4a'). The manufacturing method can reduce the number of patterning processes and improve the performance of the thin film transistor in the array substrate.




ma

Manufacturing Methods of JFET-Type Compact Three-Dimensional Memory

Manufacturing methods of JFET-type compact three-dimensional memory (3D-MC) are disclosed. In a memory level stacked above the substrate, an x-line extends from a memory array to an above-substrate decoding stage. A JFET-type transistor is formed on the x-line as a decoding device for the above-substrate decoding stage, where the overlap portion of the x-line with the control-line (c-line) is semi-conductive.




ma

METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

To provide a semiconductor device having improved reliability. After formation of an n+ type semiconductor region for source/drain, a first insulating film is formed on a semiconductor substrate so as to cover a gate electrode and a sidewall spacer. After heat treatment, a second insulating film is formed on the first insulating film and a resist pattern is formed on the second insulating film. Then, these insulating films are etched with the resist pattern as an etching mask. The resist pattern is removed, followed by wet washing treatment. A metal silicide layer is then formed by the salicide process.




ma

EXTREMELY THIN SILICON-ON-INSULATOR SILICON GERMANIUM DEVICE WITHOUT EDGE STRAIN RELAXATION

A method for forming a semiconductor structure includes forming a strained silicon germanium layer on top of a substrate. At least one patterned hard mask layer is formed on and in contact with at least a first portion of the strained silicon germanium layer. At least a first exposed portion and a second exposed portion of the strained silicon germanium layer are oxidized. The oxidizing process forms a first oxide region and a second oxide region within the first and second exposed portions, respectively, of the strained silicon germanium.




ma

METHOD FOR MANUFACTURING LDMOS DEVICE

A method for manufacturing an LDMOS device includes: providing a semiconductor substrate (200), forming a drift region (201) in the semiconductor substrate (200), forming a gate material layer on the semiconductor substrate (200), and forming a negative photoresist layer (204) on the gate material layer; patterning the negative photoresist layer (204), and etching the gate material layer by using the patterned negative photoresist layer (204) as a mask so as to form a gate (203); forming a photoresist layer having an opening on the semiconductor substrate (200) and the patterned negative photoresist layer (204), the opening corresponding to a predetermined position for forming a body region (206); and injecting the body region (206) by using the gate (203) and the negative photoresist layer (204) located above the gate (203) as a self-alignment layer, so as to form a channel region.




ma

Magnetoresistive Random Access Memory Structure and Method of Forming the Same

A magnetoresistive random access memory (MRAM) structure includes a bottom electrode structure. A magnetic tunnel junction (MTJ) element is over the bottom electrode structure. The MTJ element includes an anti-ferromagnetic material layer. A ferromagnetic pinned layer is over the anti-ferromagnetic material layer. A tunneling layer is over the ferromagnetic pinned layer. A ferromagnetic free layer is over the tunneling layer. The ferromagnetic free layer has a first portion and a demagnetized second portion. The MRAM also includes a top electrode structure over the first portion.




ma

ORGANIC LAYER DEPOSITION ASSEMBLY, ORGANIC LAYER DEPOSITION DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE USING THE ORGANIC LAYER DEPOSITION ASSEMBLY

An organic layer deposition assembly for depositing a deposition material on a substrate includes a deposition source configured to spray the deposition material, a deposition source nozzle arranged in one side of the deposition source and including deposition source nozzles arranged in a first direction, a patterning slit sheet arranged to face the deposition source nozzle and having patterning slits in a second direction that crosses the first direction, and a correction sheet arranged between the deposition source nozzle and the patterning slit sheet and configured to block at least a part of the deposition material sprayed from the deposition source.




ma

MANUFACTURING FLEXIBLE ORGANIC ELECTRONIC DEVICES

A method of forming microelectronic systems on a flexible substrate includes depositing a plurality of layers on one side of the flexible substrate. Each of the plurality of layers is deposited from one of a plurality of sources. A vertical projection of a perimeter of each one of the plurality of sources does not intersect the flexible substrate. The flexible substrate is in motion during the depositing the plurality of layers via a roll to roll feed and retrieval system.




ma

Fastening strap and manufacturing method thereof

A fastening strap and a manufacturing method thereof are provided. The fastening strap includes a first band and a second band. The first band has a first surface and a second surface. The first surface has a plurality of hooks of special configuration. The second band has a third surface and a fourth surface. The third surface is directly adhered to the second surface of the first band, and the fourth surface has a plurality of loops for being mechanically latched by the hooks on the first surface. The second surface and/or the third surface is printed with at least one pattern. After the first band and the second band are adhered together, the pattern can be seen from the first surface of the first band.




ma

Headgear connection assembly for a respiratory mask assembly

A respiratory mask assembly for delivering breathable gas to a patient includes a frame and at least one locking clip. The frame has a main body and a side frame member provided on each lateral side of the main body, at least one of the side frame members including a locking clip receiver assembly. The at least one locking clip has a main body providing a front portion adapted to be removably coupled with the at least one locking clip receiver assembly and a rear portion adapted to be removably coupled to a headgear assembly. The rear portion includes a cross bar that forms an opening through which a strap of the headgear assembly can pass and be removably coupled with the cross bar, and the front portion includes at least one resiliently flexible spring arm that is flexible within the plane of the main body.




ma

Hook with magnetic closure

A hook formed into a body having a hook shape and having a neck and fabricated from nonferromagnetic material with the body having a first end and a second end. The neck is proximate the first end. The hook also includes a closure that is fabricated from nonmagnetic ferromagnetic material, other nonmagnetic materials, and magnetic ferromagnetic materials, and having a first closure end and a second closure end, the closure being pivotally and/or pivotally and slidably attached to the body and positioned to span a gap between the second end of the hook and the body. There is at least one magnet fixedly attached to the neck, so the at least one magnet holds the closure in a closed position that spans the gap such that the hook encloses a defined space in the closed position.




ma

Loop clips for golf bags and methods to manufacture golf bags

Embodiments of a loop clip used with a golf bag and methods to manufacture a golf bag are generally described herein. Other embodiments of the loop clip may be described and claimed.




ma

Memorial product including cremation remains

A memorial product is presently disclosed that includes a glass structure having a first helix of cremation remains and a second helix of a second material, wherein the helix of the cremation remains and the helix of the second material are intertwined to form a double helix in the glass structure. In some embodiments, the second material is additional cremation remains or a colored material selected to correspond to the deceased represented by the cremation remains. Also disclosed is a method of manufacturing a memorial product including forming a first portion of molten glass into a substantially cylindrical shape having an exterior surface, applying cremation remains on a first portion of the exterior surface, applying a second material on a second portion of the exterior surface, and gathering a second portion of molten glass over the first portion of molten glass to encase the cremation remains and the second material.