se

DISPENSER AND METHOD FOR APPLYING A TOOTH WHITENING COMPOSITION

A method for applying a composition to teeth and a dispenser for dispensing a composition. The method of the present invention is directed to the storage and dispensing of a composition. During storage and subsequent use the composition in the storage chamber must be maintained segregated from the applicator surface. This is accomplished by delivering the composition from the storage chamber through a delivery channel having a length and a cross-sectional diameter sufficient to preclude the migration of moisture and the enzyme catalase from the application surface to the storage chamber. The composition is applied to teeth by means of bristles, a sponge surface or fibrillated surface. This applicator can be used with both aqueous and non-aqueous compositions.




se

COMBINATION OF AN OXIDANT, A PHOTOSENSITIZER AND A WOUND HEALING AGENT FOR ORAL DISINFECTION AND TREATMENT OF ORAL DISEASE

The present document describes methods of use of photo activated compositions for oral disinfection and/or treatments which comprise at least one oxidant, at least one photoactivator capable of activating the oxidant, and at least one healing factor chosen from hyaluronic acid, glucosamine and allantoin, in association with a pharmacologically acceptable carrier.




se

Two- Piece Fixture Mount Assembly

A dental implant two-piece fixture mount includes an implant fixture-mount base portion at its distal end, and a snap-on, separate, separable top piece at its proximal end, the top-piece including an insertion-tool-engaging surface and a distal cylindrical skirt with a plurality of protrusions on the skirt's inner surface, and a distal insertion projection, the fixture-mount base portion including a separable proximal portion that includes a groove near the bottom of the separable proximal portion for engagement with the protrusions, a longitudinal through passage to receive a fixation screw for attachment of the fixture mount base portion to a dental implant, and that includes an internal, multi-sided region to anti-rotationally engage the distal insertion projection.




se

DENTAL PROSTHESES DEVICES AND METHODS

Root canal abutment devices and methods which facilitate the adjustment or removal of an oral appliance, e.g., a crown or bridge, from a reconfigurable abutment assembly are described. The adjustable abutment assembly may be secured within a pulp chamber of a pre-existing tooth. The abutment assembly has a projecting abutment portion with one or more shape memory alloy sleeves or plates or elements extending along the abutment. Each of the sleeves has a length with at least one curved or arcuate portion. Energy may be applied to the elements such that the arcuate portion flattens to allow for the oral appliance to be placed thereupon while removal of the energy allows the elements to reconfigure into its curved configuration thereby locking the oral appliance to the abutment. Removal of the oral appliance may be effected by reapplication of energy to the elements.




se

ARCHWIRE FOR USE WITH A PASSIVE SELF-LIGATION ORTHODONTIC BRACKET

An archwire for use with a passive self-ligation orthodontic bracket is described and which includes a resilient main body which is received in the archwire slot, and which further has a predetermined width dimension, and a variable thickness dimension, and wherein the variable thickness dimension of the archwire can be varied so as to facilitate an adjustable application of a force to the passive self-ligation orthodontic bracket so as to achieve a clinician selectable and controllable second and third order movement of a patient's tooth.




se

DENTAL IMPLANT AND SET THEREOF

The present invention provides a dental implant that can deal with a subsequent reduction in bone mass while reducing a burden on a patient, and a set thereof. The present invention is directed to a dental implant comprising: a first stage implant 1 that has a bottomed tubular shape, a male thread 3 formed on an outer periphery thereof, and a female thread 4 formed in an inner periphery thereof; and a second stage implant 2 that has a tip part 6 having a male thread 5 threadably engaged with the female thread 4 of the first stage implant 1 and a rear end part 7 to which an upper prosthesis is to be attached via an abutment 8, wherein the female thread 4 of the first stage implant 1 and the male thread 5 of the second stage implant 2 are tapered threads.




se

Customized Dental Prosthesis For Periodontal or Osseointegration and Related Systems

Custom dental prosthesis or implants each individually designed and manufactured to replace nonfunctional natural teeth positioned in a jawbone of a specific pre-identified patient are provided. An example dental prosthesis/implant includes a dental implant body having a prosthesis interface formed therein to receive an occlusally-facing dental prosthesis component. The prosthesis interface has a custom three-dimensional surface shape positioned and formed to create a form locking fit with respect to the occlusally-facing dental prosthesis component when positioned thereon.




se

DENTAL IMPLANT ASSEMBLY AND ABUTMENT THEREOF

A dental implant assembly includes an implant, an abutment, and a fixing element. The implant is placed in the alveolar bone. The abutment is assembled to the implant and includes a tapered position-restricting part and an elastic pressing part. The tapered position-restricting part has an abutment fixing channel substantially matching the tapered position-restricting outer wall of the tapered position-restricting trench. The elastic pressing part includes the elastic pressing structures extended from the tapered position-restricting part. The fixing element includes the fixing head and the fixing rod extended from the fixing head. A tolerance allowable gap is formed between the abutment fixing channel and the fixing rod. As the abutment is assembled to the implant, the elastic pressing structures press against the position-restricting wall first to hinder the relative rotation therebetween; when an offset error exists, the tolerance allowable gap allows the fixing rod to penetrate the abutment fixing channel.




se

NOVEL DENTAL SCANNER DEVICE AND SYSTEM AND METHODS OF USE

A three-dimensional (3D) scanner device for generating a three dimensional (3D) surface model of shaped objects, such as dental structures, applicable for use in the field of dentistry, particularly to dental prosthetics manufacturing is described. The scanning device can include a probe head having a particular configuration and utility. Methods and systems relating to the device and components thereof are also disclosed.




se

SELECTABLE ONE-WAY CLUTCH

A selectable one-way clutch includes a pocket plate; a notch plate; engagement pieces housed in housing recesses of the pocket plate; elastic members biasing the engagement pieces; a selector plate switching states of the engagement pieces; and elastic bodies disposed at least in one of contact portions where contact are made between the engagement pieces and the notch plate and contact portions where contacts are made between the engagement pieces and the pocket plate.




se

TORQUE CONVERTER WITH AN EMBOSSED COVER FOR RECEIVING A CARRIER PLATE

A torque converter, including: an axis of rotation; a cover arranged to receive torque from an engine and including a first indentation; an impeller shell fixedly secured to the cover; at least one impeller blade fixedly secured to the impeller shell; a turbine including a turbine shell and at least one turbine blade fixedly secured to the turbine shell; and a lock-up clutch including a first carrier plate fixedly secured to the cover and including a first protrusion disposed in the first indentation and a clutch plate non-rotatably connected to the first carrier plate.




se

Fluid Driving Device, Motor Assembly and Friction Clutch Thereof

A fluid driving device, a motor assembly and a friction clutch thereof are disclosed. The friction clutch includes: a fixing member fixed on a rotary shaft; a connecting member slidable disposed on the rotary shaft, wherein when the rotary shaft starts rotating, an axial distance between the connecting member and the fixing member changes such that a friction force between the fixing member and the connecting member increases until the connecting member rotates synchronously with the fixing member; a loading member slidable disposed on the rotary shaft, the loading member and the connecting member being circumferentially positioned; and a restoring member configured to reduce an amount of change of the axial distance between the fixing member and the connecting member when the rotary shaft stops rotating.




se

Twin Plate Separation Systems

A twin plate separation system, comprising a pressure plate, an intermediate plate facing the pressure plate, and a spring separator assembly. The spring separator assembly comprises a mounting extending out from the intermediate plate towards the pressure plate. A spring surrounds the mounting, and the spring is biased to push the pressure plate and the intermediate plate apart. The mounting or another fixture can secure at least one drive strap to the intermediate plate. Alternatively, the mounting extends out of the pressure plate towards the intermediate plate, and the spring surrounds the mounting and is biased to push the pressure plate and the intermediate plate apart. In this alternative, the intermediate plate does not comprise a hole for receiving the mounting.




se

DOUBLE CLUTCH ASSEMBLY AND DEVICE FOR ASSISTING ACTUATOR OF THE SAME

The present disclosure provides a double clutch assembly and a device for assisting an actuator of the double clutch. The device applies an assistance force to the actuator upon an operation of the actuator. In particular, the double clutch assembly includes first and second actuators which engage or disengage first and second clutches, respectively. The device includes: an elastic member to apply an elastic force; a first transfer portion to transfer the elastic force of the elastic member to the first actuator; and a second transfer portion to transfer the elastic force of the elastic member to the second actuator.




se

Self-Locking Clutch Mechanism

A self-locking clutch mechanism comprising a base, an output member journalled to the base, a first spring engaged between the base and the output member, the first spring exerting a first spring force in a first direction, a clutch spring engaged with an intermediate member and frictionally engaged with a base cylindrical surface, an input member rotationally engaged with the base, the input member intermittently engagable with the clutch spring through a control member such that the clutch spring is temporarily released from the base cylindrical surface upon a rotary movement of the control member in a first direction, the intermediate member rotates upon release of the clutch spring from the base cylindrical surface, and a second spring engaged between the intermediate member and the output member, the second spring exerting a second spring force opposite the first spring force.




se

DEVICE FOR ACTUATING A CLUTCH-CONTROLLED TRANSFER CASE HAVING A TWO-STAGE INTERMEDIATE GEARING AND CLUTCH-CONTROLLED TRANSFER CASE THAT HAS A TWO-STAGE INTERMEDIATE GEARING AND THAT IS EQUIPPED WITH SAID DEVICE

The invention relates to a device for actuating a clutch-controlled transfer case having a two-stage intermediate gearing and a clutch-controlled transfer case that has a two-stage intermediate gearing and that is equipped with such a device. The device comprises: a rotatably driven selector shaft,a drive for rotating the selector shaft,a clutch cam disk, which can be rotated about a clutch cam disk axis by means of the selector shaft, andat least one scissor lever, wherein: one end (06) of at least one scissor lever is guided in a gate provided on the clutch cam disk,the gate has a curved path for each scissor lever, in which curved path the end of the scissor lever associated with the curved path is guided,the curved path winds around the clutch cam disk axis by at least 360°,the curved path has at least one helical segment having a continuously increasing or decreasing distance from the clutch cam disk axis, along which segment one end of a scissor lever guided therein experiences a continuously increasing or decreasing change in deflection with respect to the clutch cam disk axis during a rotation of the clutch cam disk with increasing angle of rotation, andthe clutch cam disk is disposed in such a way that the clutch cam disk can be rotated with respect to the selector shaft between two stops by an angle-of-rotation range such that, by means of rotation of the selector shaft within the angle-of-rotation range situated between said stops, shifting back and forth between the shifting stages of the intermediate gearing occurs, and, by means of rotation of the selector shaft beyond the angle-of-rotation range, the end of the at least one scissor lever experiences a deflection for actuating the clutch while a selected shifting stage is maintained.




se

METHOD OF OPERATING A POWER PATH WITH CONTINUOUSLY POWER-SPLIT TRANSMISSION AND WITH SECONDARILY COUPLED POWER SPLIT

A method for operating a vehicle drive-train having a continuously power-branched transmission with secondary coupling. In the open operating condition of reversing clutches of a reversing gear unit, torque applied in the area of a drive output can be supported by a range group in the area of a variator. In the event of a command to interrupt the power flow between a drive engine and the drive output, it is checked whether the vehicle is on an inclined surface and if the result of that inquiry is positive, the power flow between the drive engine and the transmission is interrupted at the latest when the rotational speed of the drive output is reduced to zero by opening the reversing clutches, while the active connection between the drive output and the variator is maintained by way of the range group.




se

REVERSE INPUT BLOCKING CLUTCH

In a locking type reverse input blocking clutch, smooth finished surfaces having no directionality are formed, by barrel polishing, on surfaces brought into contact with rollers while rotation is being transmitted from the input side to the output side, i.e. an inner peripheral cylindrical surface of an outer ring and a surface of a lid portion opposed to the rollers. With this arrangement, it is possible to reduce the sliding resistance between the rollers and the outer ring and between the rollers and the lid portion, without the need to reduce the forces of springs for pushing the rollers into narrow portions of wedge-shaped spaces. This in turn makes it possible to reduce the torque necessary to transmit rotation from the input side to the output side, while maintaining high locking performance.




se

Self-contained and wireless device for a washing machine

The invention relates to a self-contained and wireless monitoring device (10) for use in a washing machine (1) to indicate shortage of detergent in said washing machine. The monitoring device comprises a sensor (13) arranged to monitor detergent concentration in washing liquid (5) of said washing machine and to provide an alarm signal (A) when said monitored detergent concentration is below a target value. The monitoring device is capable of floating in said washing liquid and comprises signalling means (11) for indicating said shortage of detergent in response to said alarm signal. The invention further relates to a package containing such a monitoring device and a method for indicating shortage of detergent.




se

Metal free acid dyes, methods for the production thereof and their use

The present invention relates to dyes of the formula (I) in which R1 to R10, D1 and D2 are defined as given in claim 1, a process for preparing them, and their use for dyeing and printing hydroxyl- and/or carboxamido-containing materials.




se

Fructan-based epilatory compositions

The invention relates to an epilatory mixture comprising a fructan, preferably inulin. Furthermore, an epilatory composition is disclosed comprising said epilatory effective mixture. Also a method of use of said epilatory composition of the invention for the removal of unwanted hair from the skin is disclosed, as well as a method of use of said composition for carrying out an epilatory treatment which can be carried out by a professional person as well as by a non-professional person.




se

Cellulose nanofiber, production method of same and cellulose nanofiber dispersion

The cellulose nanofiber production method of the present invention comprises an oxidation treatment step for oxidizing native cellulose in a neutral or acidic reaction solution containing an N-oxyl compound and an oxidizing agent that oxidizes aldehyde groups, and a dispersion step for dispersing the native cellulose in a medium following the oxidation treatment step. According to the production method of the present invention, a cellulose nanofiber is provided that has long fibers and demonstrates high strength.




se

Modified cellulose fibers and cellulose composite thereof

An object of the invention is to provide cellulose fibers which can give a cellulose composite that renders high transparency, a reduction in linear expansion coefficient, and a high modulus of elasticity possible. The invention relates to: a process for producing modified cellulose fibers which includes a modification reaction step of reacting cellulose with an aromatic compound in an organic acid to thereby modify the cellulose with an aromatic-ring-containing substituent; cellulose fibers modified with aromatic-ring-containing substituent; a dispersion of the cellulose fibers; and a cellulose fiber composite obtained from the same.




se

Selective tinting method

The invention relates to a selective dyeing method used for dyeing a substrate (10), selectively within a first exposed surface portion (S1) of said substrate. For this purpose, the substrate consists of a material (2) that is impervious to a dye with the exception of the first portion of the exposed surface. In particular, the impervious material can form a layer which covers a base portion (3) of the substrate in a second portion (S2) of the exposed surface. The substrate is heated such that the dye (C) penetrates a pervious material (1) which constitutes the first portion of the exposed surface. The method is particularly useful for eliminating light diffused by the walls of a multilayer structure which is supported by means of ocular glass.




se

Appliances with sudsing-reducing flushable detergent dispensers

Appliances having a detergent dispenser that may be flushed with a water flow for removal of residual treating chemistry while reducing sudsing are disclosed. An example dispenser includes a cup with a bottom wall, a siphon tube projecting upwardly from the bottom wall, a cover for the siphon tube, an opening configured to introduce a liquid stream into the cup from a position above and beyond a periphery of the cover, wherein substantially all of the liquid stream flows downwardly along a trajectory defined by the opening and terminating below and within the periphery of the cover, and wherein the liquid stream directly impinges a portion of at least one of the cup or the siphon tube below the cover.




se

Disperse dye mixtures, their preparation and use

The present invention provides dye mixtures containing at least one dye of formula (I) and at least one dye of formula (II) where T1, T2, R1 to R9 and n are each as defined in claim 1, processes for their preparation and their use.




se

TWO-DIMENSIONAL MATERIAL SEMICONDUCTOR DEVICE

A semiconductor device comprises a two-dimensional (2D) material layer, the 2D material layer comprising a channel region in between a source region and a drain region; a first gate stack and a second gate stack in contact with the 2D material layer, the first and second gate stack being spaced apart over a distance; the first gate stack located on the channel region of the 2D material layer and in between the source region and the second gate stack, the first gate stack arranged to control the injection of carriers from the source region to the channel region and the second gate stack located on the channel region of the 2D material layer; the second gate stack arranged to control the conduction of the channel region.




se

INTERNAL POWER SUPPLY CIRCUIT AND SEMICONDUCTOR DEVICE

A control switch is connected to a power supply voltage and turns on based on a control signal to output a current. A clamp circuit is connected to a load and performs clamp control of the output voltage of the control switch. A current control element conducts or shuts off a current based on the output voltage to be clamp-controlled. A selector switch group includes switches, and performs switching based on a voltage varying with the current control by the current control element, thereby switching between paths for generating an internal power supply. The switch circuit connects or disconnects the coupling between the clamp circuit and the selector switch group.




se

SEMICONDUCTOR DEVICE AND CIRCUIT PROTECTING METHOD

A semiconductor device includes a first transistor and a clamping circuit. The first transistor is arranged to generate an output signal according to a control signal. The clamping circuit is arranged to generate the control signal according to an input signal, and to clamp the control signal to a predetermined signal level when the input signal exceeds the predetermined signal level.




se

PHASE DETECTION CIRCUIT

A phase detection circuit includes a sampling signal generation circuit configured to generate a plurality of sampling signals in response to a plurality of phase change clocks having different phases and data; a charging voltage generation circuit configured to compare the plurality of sampling signals, and change a voltage level of one charging voltage between a first charging voltage and a second charging voltage; and a comparison circuit configured to compare voltage levels of the first and second charging voltages, and generate a result signal.




se

SEMICONDUCTOR INTEGRATED CIRCUIT AND HIGH FREQUENCY ANTENNA SWITCH

An integrated circuit includes a drive circuit with a first inverter circuit with a first transistor of a first conductivity type and a second transistor of a second conductivity type. The drains of the first and second transistors are connected. An output circuit is provided having a third transistor of the second conductivity with a gate connected to the drains of the first and second transistors. A capacitor is connected between the gate and a drain of the third transistor and has a capacitance greater than 0.5 pF and less than or equal to 3.0 pF. A gate width of the first transistor when divided by a gate width of the third transistor has a value of less than 1/100. The output circuit is configured to output a transmission signal from the drain of the third transistor.




se

PHASE FREQUENCY DETECTOR

Described is an apparatus comprising: a first phase frequency detector (PFD) to determine a coarse phase difference between a first clock signal and a second clock signal, the first PFD to generate a first output indicating the coarse phase difference; and a second PFD, coupled to the first PFD, to determine a fine phase difference between the first clock signal and the second clock signal, the second PFD to generate a second output indicating the fine phase difference.




se

CLOCK GENERATION CIRCUIT AND SEMICONDUCTOR APPARATUS AND ELECTRONIC SYSTEM USING THE SAME

A clock generation circuit may include a reference clock generator configured to generate a pair of first reference clocks in an offset code generation mode, a correction code generator configured to generate a reference correction code according to a duty detection signal based on a phase difference between the pair of first reference clocks, and an offset code generator configured to generate an offset code based on the reference correction code and a preset reference code.




se

CONTINUOUS COARSE-TUNED PHASE LOCKED LOOP

In some embodiments, a phase-locked loop (PLL) system comprises a phase-frequency detector (PFD) configured to compare a phase-frequency reference signal and a feedback signal, a charge pump (CP) electrically coupled to the PFD and configured to produce a first tuning signal based on an output of the PFD, multiple integrator cells electrically coupled to the CP and configured to output multiple second tuning signals based on a voltage of the first tuning signal relative to a voltage reference signal, and a voltage-controlled oscillator (VCO) electrically coupled to the CP and to the multiple integrator cells and configured to adjust a capacitance value of the VCO based on the multiple second tuning signals. The capacitance value and the first tuning signal affect a frequency of the feedback signal.




se

PHASE LOCKED LOOP AND ASSOCIATED METHOD FOR LOOP GAIN CALIBRATION

A phase locked loop (PLL) includes a controllable oscillator, a charge pump, a type II loop filter, a frequency divider, a phase error processing circuit, a phase frequency detector and a phase alignment circuit. The controllable oscillator generates an oscillating signal. The charge pump circuit generates a charge pump output in a calibration mode. The type II loop filter generates a first control signal to the controllable oscillator according to the charge pump output. The frequency divider performs frequency division upon the oscillating signal for generating a feedback signal. The phase error processing circuit outputs an adjusting signal by comparing a reference signal with the feedback signal. The phase frequency detector generates a detection signal by comparing the feedback signal and the reference signal. The phase alignment circuit generates a second control signal in the calibration mode.




se

SYSTEMS AND METHODS FOR CONTROLLING A PLURALITY OF POWER SEMICONDUCTOR DEVICES

A power conversion system may include a plurality of power devices and a sensor operably coupled to at least one of the plurality of power devices and configured to detect a voltage, current, or electromagnetic signature signal associated with the plurality of power devices. The power converter may also include circuitry operably coupled to the plurality of power devices and the sensor. The circuitry may send a respective gate signal to each respective power device of the plurality of power devices, such that each respective gate signal is delayed by a respective compensation delay that is determined for the respective power device based on a respective time delay of the respective power device and a maximum time delay of the plurality of power devices.




se

CLOCK SELECTION CIRCUIT AND POWER SUPPLY DEVICE EQUIPPED WITH THE SAME

To provide a clock selection circuit capable of reducing clock omission generated when switching from a state of being synchronized with a first clock to a second clock. The clock selection circuit is equipped with a clock detection circuit which detects a first clock to output a detected signal, a switch which outputs the first clock when the detected signal is at a first level and outputs a second clock when the detected signal is at a second level different from the first level, and a one-shot circuit which outputs a one-shot pulse in response to switching of the detected signal from the first level to the second level. The output of the switch and the output of the one-shot circuit are added to be outputted as an output clock.




se

DEVICE AND METHOD FOR PRODUCING A DYNAMIC REFERENCE SIGNAL FOR A DRIVER CIRCUIT FOR A SEMICONDUCTOR POWER SWITCH

A device (442) for producing a dynamic reference signal (UREF) for a control circuit for a power semiconductor switch comprises a reference signal generator (442) for providing a dynamic reference signal (UREF), which has a stationary signal level after elapse of a predefined time following a switching process of the power semiconductor switch, a passive charging circuit (450) which is configured to increase a signal level of the dynamic reference signal in reaction to a switching of a control signal of the power semiconductor switch from an OFF state to ON state for at least one part of the predefined time above the stationary signal level, in order to produce the dynamic reference signal and an output (A) for tapping the dynamic reference signal (UREF).




se

SEMICONDUCTOR APPARATUS

A semiconductor apparatus may include a noise determination circuit, a strobe signal control circuit, and a reception circuit. The noise determination circuit may sense and determine noise of a reference voltage, and generate an up control signal and a down control signal. The strobe signal control circuit may adjust a transition timing of a strobe signal in response to the up control signal and the down control signal, and output a control strobe signal. The reception circuit may generate internal data signal in response to external data signal, the reference voltage, and the control strobe signal.




se

PHASE LOCKED LOOPS

This application relates to methods and apparatus for phase locked loops. A phase-and-frequency detector (101) receives a reference clock signal (CKref) and a feedback signal (SFB) and outputs a first adjustment signal (U) that is modulated between respective first and second signal levels to provide control pulses indicating that an increase in frequency required for phase and frequency lock, and a second adjustment signal (D) that is modulated between respective first and second signal levels to provide control pulses indicating that a decrease in frequency required for phase and frequency lock. First and second time-to-digital converters (201-1 and 201-2) receive the first and second adjustment signals respectively and output respective first and second digital signals indicative of the duration of said control pulses. Each time-to-digital converter comprises a controlled-oscillator (401, 801) configured so as to operate at a first frequency when the respective adjustment signal is at the first signal level and operate at a second frequency when the respective adjustment signal is at the second signal level and a counter (403) configured to produce a count value of the number oscillations of the controlled-oscillator in each of a succession of count periods defined by a count clock signal. The first and second digital signals are based on the count values output from the respective counters. The difference between the first and second digital signals may be determined and input to digital loop filter (203) before driving numerically-controlled-oscillator (204) to produce the output signal.




se

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY PACK

A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.




se

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY SEPARATOR

The present invention provides a nonaqueous electrolyte secondary battery separator that achieves an excellent rate characteristic by having a tensile creep compliance J satisfying at least one of the following three conditions in a case where stress of 30 MPa is applied for t seconds: (i) when t=300 seconds, J=4.5 GPa−1 to 14.0 GPa−1, (ii) when t=1800 seconds, J=9.0 GPa−1 to 25.0 GPa−1, (iii) when t=600 seconds, J=12.0 GPa−5 to 32.0 GPa−1.




se

SEPARATOR FOR RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY INCLUDING THE SAME

A separator for a rechargeable battery and a rechargeable lithium battery, the separator including a porous substrate; and a heat-resistant porous layer on at least one surface of the porous substrate, wherein the heat-resistant porous layer includes a filler and a copolymer including a structural unit of vinylidenefluoride, a structural unit of hexafluoropropylene, and a structural unit of a carboxyl-containing monomer, the structural unit of hexafluoropropylene is present in an amount of about 4 wt % to about 10 wt %, based on a total weight of the copolymer, and the structural unit of a carboxyl-containing monomer is present in an amount of about 1 wt % to about 7 wt %, based on the total weight of the copolymer.




se

SECONDARY BATTERY

A secondary battery includes a case composed of a metal containing aluminum as a main component, a stacked electrode assembly arranged in the case, a negative electrode current collector electrically connecting negative electrodes of the stacked electrode assembly to a negative electrode terminal, a positive electrode current collector electrically connecting positive electrodes of the stacked electrode assembly to a positive electrode terminal, a first metal plate arranged between the case and the stacked electrode assembly, and a spacer arranged between the case and the first metal plate, the spacer being composed of an insulating material. The positive electrodes are electrically connected to the case or a second metal plate arranged on the first metal plate with an insulating member provided between the first metal plate and the insulating member. The negative electrode current collector is in contact with the first metal plate to establish electrical connection between the negative electrode current collector and the first metal plate.




se

SECONDARY BATTERY

A secondary battery is disclosed. In one aspect, the secondary battery includes a case accommodating an electrode assembly, a cap plate sealing an opening of the case, an electrode terminal electrically connected to the electrode assembly and disposed over the cap, and an insulating member provided between the cap plate and the electrode terminal and configured to insulate the electrode terminal from the cap plate. The battery also includes a connection tab disposed over the electrode terminal, and a safety device having a portion positioned under the connection tab and electrically connected to the electrode terminal via the connection tab. The safety device has at least one of electric conductivity and thermal conductivity greater than that of the connection tab, and at least a part of the safety device is seated on the insulating member.




se

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




se

POSITIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

The positive electrode as an embodiment includes a positive electrode current collector mainly composed of aluminum, a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed above the positive electrode current collector, and a protective layer disposed between the positive electrode current collector and the positive electrode mixture layer. The protective layer contains inorganic particles, an electro-conductive material, and a binding material; is mainly composed of the inorganic particles; and is disposed on the positive electrode current collector to cover the positive electrode current collector in approximately the entire area where the positive electrode mixture layer is disposed and at least a part of the exposed portion of the positive electrode current collector where the positive electrode mixture layer is not disposed on the surface of the positive electrode current collector.




se

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




se

CARBON MATERIAL, METHOD FOR PRODUCING CARBON MATERIAL, AND NON-AQUEOUS SECONDARY BATTERY USING CARBON MATERIAL

A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 μm to 1 μm of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 μm to 1 μm in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.




se

CATALYST COMPOSITION FOR ALKALINE ELECTROCHEMICAL ENERGY CONVERSION REACTION AND USE THEREOF

A catalyst composition and a use thereof are provided. The catalyst composition includes a support and at least one RuXMY alloy attached to the surface of the support, wherein M is a transition metal and X≧Y. The catalyst composition is used in an alkaline electrochemical energy conversion reaction, and can improve the energy conversion efficiency for an electrochemical energy conversion device and significantly reduce material costs.