la On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
la Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent By Published On :: 2020 We propose graph-dependent implicit regularisation strategies for synchronised distributed stochastic subgradient descent (Distributed SGD) for convex problems in multi-agent learning. Under the standard assumptions of convexity, Lipschitz continuity, and smoothness, we establish statistical learning rates that retain, up to logarithmic terms, single-machine serial statistical guarantees through implicit regularisation (step size tuning and early stopping) with appropriate dependence on the graph topology. Our approach avoids the need for explicit regularisation in decentralised learning problems, such as adding constraints to the empirical risk minimisation rule. Particularly for distributed methods, the use of implicit regularisation allows the algorithm to remain simple, without projections or dual methods. To prove our results, we establish graph-independent generalisation bounds for Distributed SGD that match the single-machine serial SGD setting (using algorithmic stability), and we establish graph-dependent optimisation bounds that are of independent interest. We present numerical experiments to show that the qualitative nature of the upper bounds we derive can be representative of real behaviours. Full Article
la Noise Accumulation in High Dimensional Classification and Total Signal Index By Published On :: 2020 Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation. Full Article
la Causal Discovery Toolbox: Uncovering causal relationships in Python By Published On :: 2020 This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. Full Article
la Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification By Published On :: 2020 High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data. Full Article
la Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables By Published On :: 2020 We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models. Full Article
la Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables By Published On :: 2020 Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners. Full Article
la A Convex Parametrization of a New Class of Universal Kernel Functions By Published On :: 2020 The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly. Full Article
la pyts: A Python Package for Time Series Classification By Published On :: 2020 pyts is an open-source Python package for time series classification. This versatile toolbox provides implementations of many algorithms published in the literature, preprocessing functionalities, and data set loading utilities. pyts relies on the standard scientific Python packages numpy, scipy, scikit-learn, joblib, and numba, and is distributed under the BSD-3-Clause license. Documentation contains installation instructions, a detailed user guide, a full API description, and concrete self-contained examples. Full Article
la Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement By Published On :: 2020 We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy. Full Article
la Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory By Published On :: 2020 We consider the skill rating problem for multiplayer games, that is how to infer player skills from game outcomes in multiplayer games. We formulate the problem as a minimization problem $arg min_{s} s^T Delta s$ where $Delta$ is a positive semidefinite matrix and $s$ a real-valued function, of which some entries are the skill values to be inferred and other entries are constrained by the game outcomes. We leverage graph-based semi-supervised learning (SSL) algorithms for this problem. We apply our algorithms on several data sets of multiplayer games and obtain very promising results compared to Elo Duelling (see Elo, 1978) and TrueSkill (see Herbrich et al., 2006).. As we leverage graph-based SSL algorithms and because games can be seen as relations between sets of players, we then generalize the approach. For this aim, we introduce a new finite model, called hypernode graph, defined to be a set of weighted binary relations between sets of nodes. We define Laplacians of hypernode graphs. Then, we show that the skill rating problem for multiplayer games can be formulated as $arg min_{s} s^T Delta s$ where $Delta$ is the Laplacian of a hypernode graph constructed from a set of games. From a fundamental perspective, we show that hypernode graph Laplacians are symmetric positive semidefinite matrices with constant functions in their null space. We show that problems on hypernode graphs can not be solved with graph constructions and graph kernels. We relate hypernode graphs to signed graphs showing that positive relations between groups can lead to negative relations between individuals. Full Article
la Ensemble Learning for Relational Data By Published On :: 2020 We present a theoretical analysis framework for relational ensemble models. We show that ensembles of collective classifiers can improve predictions for graph data by reducing errors due to variance in both learning and inference. In addition, we propose a relational ensemble framework that combines a relational ensemble learning approach with a relational ensemble inference approach for collective classification. The proposed ensemble techniques are applicable for both single and multiple graph settings. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed framework. Finally, our experimental results support the theoretical analysis and confirm that ensemble algorithms that explicitly focus on both learning and inference processes and aim at reducing errors associated with both, are the best performers. Full Article
la Multiparameter Persistence Landscapes By Published On :: 2020 An important problem in the field of Topological Data Analysis is defining topological summaries which can be combined with traditional data analytic tools. In recent work Bubenik introduced the persistence landscape, a stable representation of persistence diagrams amenable to statistical analysis and machine learning tools. In this paper we generalise the persistence landscape to multiparameter persistence modules providing a stable representation of the rank invariant. We show that multiparameter landscapes are stable with respect to the interleaving distance and persistence weighted Wasserstein distance, and that the collection of multiparameter landscapes faithfully represents the rank invariant. Finally we provide example calculations and statistical tests to demonstrate a range of potential applications and how one can interpret the landscapes associated to a multiparameter module. Full Article
la Community-Based Group Graphical Lasso By Published On :: 2020 A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples. Full Article
la On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics By Published On :: 2020 Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. (2017) is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA. Full Article
la (1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets By Published On :: 2020 Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches. Full Article
la Scalable Approximate MCMC Algorithms for the Horseshoe Prior By Published On :: 2020 The horseshoe prior is frequently employed in Bayesian analysis of high-dimensional models, and has been shown to achieve minimax optimal risk properties when the truth is sparse. While optimization-based algorithms for the extremely popular Lasso and elastic net procedures can scale to dimension in the hundreds of thousands, algorithms for the horseshoe that use Markov chain Monte Carlo (MCMC) for computation are limited to problems an order of magnitude smaller. This is due to high computational cost per step and growth of the variance of time-averaging estimators as a function of dimension. We propose two new MCMC algorithms for computation in these models that have significantly improved performance compared to existing alternatives. One of the algorithms also approximates an expensive matrix product to give orders of magnitude speedup in high-dimensional applications. We prove guarantees for the accuracy of the approximate algorithm, and show that gradually decreasing the approximation error as the chain extends results in an exact algorithm. The scalability of the algorithm is illustrated in simulations with problem size as large as $N=5,000$ observations and $p=50,000$ predictors, and an application to a genome-wide association study with $N=2,267$ and $p=98,385$. The empirical results also show that the new algorithm yields estimates with lower mean squared error, intervals with better coverage, and elucidates features of the posterior that were often missed by previous algorithms in high dimensions, including bimodality of posterior marginals indicating uncertainty about which covariates belong in the model. Full Article
la Multi-Player Bandits: The Adversarial Case By Published On :: 2020 We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016). Full Article
la Youth & Community Initiatives Funding available By www.eastgwillimbury.ca Published On :: Thu, 20 Feb 2020 18:27:25 GMT Full Article
la Have your say on the Highway 404 Employment Corridor Secondary Plan By www.eastgwillimbury.ca Published On :: Mon, 27 Apr 2020 22:16:01 GMT Full Article
la Town launches new Community Support Hotline By www.eastgwillimbury.ca Published On :: Tue, 28 Apr 2020 23:15:02 GMT Full Article
la Oriented first passage percolation in the mean field limit By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Nicola Kistler, Adrien Schertzer, Marius A. Schmidt. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 414--425.Abstract: The Poisson clumping heuristic has lead Aldous to conjecture the value of the oriented first passage percolation on the hypercube in the limit of large dimensions. Aldous’ conjecture has been rigorously confirmed by Fill and Pemantle ( Ann. Appl. Probab. 3 (1993) 593–629) by means of a variance reduction trick. We present here a streamlined and, we believe, more natural proof based on ideas emerged in the study of Derrida’s random energy models. Full Article
la A Bayesian sparse finite mixture model for clustering data from a heterogeneous population By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.Abstract: In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively. Full Article
la Recent developments in complex and spatially correlated functional data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Israel Martínez-Hernández, Marc G. Genton. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 204--229.Abstract: As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data . The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series . For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data. Full Article
la On estimating the location parameter of the selected exponential population under the LINEX loss function By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Mohd Arshad, Omer Abdalghani. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 167--182.Abstract: Suppose that $pi_{1},pi_{2},ldots ,pi_{k}$ be $k(geq2)$ independent exponential populations having unknown location parameters $mu_{1},mu_{2},ldots,mu_{k}$ and known scale parameters $sigma_{1},ldots,sigma_{k}$. Let $mu_{[k]}=max {mu_{1},ldots,mu_{k}}$. For selecting the population associated with $mu_{[k]}$, a class of selection rules (proposed by Arshad and Misra [ Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter $mu_{S}$ of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $delta_{N,1},delta_{N,2}$ and $delta_{N,3}$ of $mu_{S}$, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of $mu_{i}$’s, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of $mu_{S}$ are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of $mu_{S}$ is derived. Using this result, estimator better than the natural estimator $delta_{N,1}$ is obtained. We also shown that the estimator $delta_{N,1}$ is dominated by the natural estimator $delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of $mu_{S}$. Full Article
la A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Natalia Shenkman. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.Abstract: While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities. Full Article
la A joint mean-correlation modeling approach for longitudinal zero-inflated count data By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Weiping Zhang, Jiangli Wang, Fang Qian, Yu Chen. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 35--50.Abstract: Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach. Full Article
la Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.Abstract: Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy. Full Article
la Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Sylvia Frühwirth-Schnatter. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.Abstract: Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities. Full Article
la Unions of random walk and percolation on infinite graphs By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Kazuki Okamura. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 586--637.Abstract: We consider a random object that is associated with both random walks and random media, specifically, the superposition of a configuration of subcritical Bernoulli percolation on an infinite connected graph and the trace of the simple random walk on the same graph. We investigate asymptotics for the number of vertices of the enlargement of the trace of the walk until a fixed time, when the time tends to infinity. This process is more highly self-interacting than the range of random walk, which yields difficulties. We show a law of large numbers on vertex-transitive transient graphs. We compare the process on a vertex-transitive graph with the process on a finitely modified graph of the original vertex-transitive graph and show their behaviors are similar. We show that the process fluctuates almost surely on a certain non-vertex-transitive graph. On the two-dimensional integer lattice, by investigating the size of the boundary of the trace, we give an estimate for variances of the process implying a law of large numbers. We give an example of a graph with unbounded degrees on which the process behaves in a singular manner. As by-products, some results for the range and the boundary, which will be of independent interest, are obtained. Full Article
la Fake uniformity in a shape inversion formula By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Christian Rau. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 549--557.Abstract: We revisit a shape inversion formula derived by Panaretos in the context of a particle density estimation problem with unknown rotation of the particle. A distribution is presented which imitates, or “fakes”, the uniformity or Haar distribution that is part of that formula. Full Article
la Spatially adaptive Bayesian image reconstruction through locally-modulated Markov random field models By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Salem M. Al-Gezeri, Robert G. Aykroyd. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 498--519.Abstract: The use of Markov random field (MRF) models has proven to be a fruitful approach in a wide range of image processing applications. It allows local texture information to be incorporated in a systematic and unified way and allows statistical inference theory to be applied giving rise to novel output summaries and enhanced image interpretation. A great advantage of such low-level approaches is that they lead to flexible models, which can be applied to a wide range of imaging problems without the need for significant modification. This paper proposes and explores the use of conditional MRF models for situations where multiple images are to be processed simultaneously, or where only a single image is to be reconstructed and a sequential approach is taken. Although the coupling of image intensity values is a special case of our approach, the main extension over previous proposals is to allow the direct coupling of other properties, such as smoothness or texture. This is achieved using a local modulating function which adjusts the influence of global smoothing without the need for a fully inhomogeneous prior model. Several modulating functions are considered and a detailed simulation study, motivated by remote sensing applications in archaeological geophysics, of conditional reconstruction is presented. The results demonstrate that a substantial improvement in the quality of the image reconstruction, in terms of errors and residuals, can be achieved using this approach, especially at locations with rapid changes in the underlying intensity. Full Article
la A temporal perspective on the rate of convergence in first-passage percolation under a moment condition By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Daniel Ahlberg. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 397--401.Abstract: We study the rate of convergence in the celebrated Shape Theorem in first-passage percolation, obtaining the precise asymptotic rate of decay for the probability of linear order deviations under a moment condition. Our results are presented from a temporal perspective and complement previous work by the same author, in which the rate of convergence was studied from the standard spatial perspective. Full Article
la Hierarchical modelling of power law processes for the analysis of repairable systems with different truncation times: An empirical Bayes approach By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Rodrigo Citton P. dos Reis, Enrico A. Colosimo, Gustavo L. Gilardoni. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 374--396.Abstract: In the data analysis from multiple repairable systems, it is usual to observe both different truncation times and heterogeneity among the systems. Among other reasons, the latter is caused by different manufacturing lines and maintenance teams of the systems. In this paper, a hierarchical model is proposed for the statistical analysis of multiple repairable systems under different truncation times. A reparameterization of the power law process is proposed in order to obtain a quasi-conjugate bayesian analysis. An empirical Bayes approach is used to estimate model hyperparameters. The uncertainty in the estimate of these quantities are corrected by using a parametric bootstrap approach. The results are illustrated in a real data set of failure times of power transformers from an electric company in Brazil. Full Article
la Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Bastien Mallein. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.Abstract: Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold. Full Article
la A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Kushal K. Dey, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.Abstract: Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered. Full Article
la An estimation method for latent traits and population parameters in Nominal Response Model By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Caio L. N. Azevedo, Dalton F. AndradeSource: Braz. J. Probab. Stat., Volume 24, Number 3, 415--433.Abstract: The nominal response model (NRM) was proposed by Bock [ Psychometrika 37 (1972) 29–51] in order to improve the latent trait (ability) estimation in multiple choice tests with nominal items. When the item parameters are known, expectation a posteriori or maximum a posteriori methods are commonly employed to estimate the latent traits, considering a standard symmetric normal distribution as the latent traits prior density. However, when this item set is presented to a new group of examinees, it is not only necessary to estimate their latent traits but also the population parameters of this group. This article has two main purposes: first, to develop a Monte Carlo Markov Chain algorithm to estimate both latent traits and population parameters concurrently. This algorithm comprises the Metropolis–Hastings within Gibbs sampling algorithm (MHWGS) proposed by Patz and Junker [ Journal of Educational and Behavioral Statistics 24 (1999b) 346–366]. Second, to compare, in the latent trait recovering, the performance of this method with three other methods: maximum likelihood, expectation a posteriori and maximum a posteriori. The comparisons were performed by varying the total number of items (NI), the number of categories and the values of the mean and the variance of the latent trait distribution. The results showed that MHWGS outperforms the other methods concerning the latent traits estimation as well as it recoveries properly the population parameters. Furthermore, we found that NI accounts for the highest percentage of the variability in the accuracy of latent trait estimation. Full Article
la Nights below Foord Street : literature and popular culture in postindustrial Nova Scotia By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Thompson, Peter, 1981- author.Callnumber: PS 8131 N6 T56 2019ISBN: 0773559345 Full Article
la Public-private partnerships in Canada : law, policy and value for money By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Murphy, Timothy J. (Timothy John), author.Callnumber: KE 1465 M87 2019ISBN: 9780433457985 (Cloth) Full Article
la Reclaiming indigenous governance : reflections and insights from Australia, Canada, New Zealand, and the United States By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Callnumber: K 3247 R43 2019ISBN: 9780816539970 (paperback) Full Article
la Estimating the size of a hidden finite set: Large-sample behavior of estimators By projecteuclid.org Published On :: Fri, 03 Jan 2020 22:02 EST Si Cheng, Daniel J. Eck, Forrest W. Crawford. Source: Statistics Surveys, Volume 14, 1--31.Abstract: A finite set is “hidden” if its elements are not directly enumerable or if its size cannot be ascertained via a deterministic query. In public health, epidemiology, demography, ecology and intelligence analysis, researchers have developed a wide variety of indirect statistical approaches, under different models for sampling and observation, for estimating the size of a hidden set. Some methods make use of random sampling with known or estimable sampling probabilities, and others make structural assumptions about relationships (e.g. ordering or network information) between the elements that comprise the hidden set. In this review, we describe models and methods for learning about the size of a hidden finite set, with special attention to asymptotic properties of estimators. We study the properties of these methods under two asymptotic regimes, “infill” in which the number of fixed-size samples increases, but the population size remains constant, and “outfill” in which the sample size and population size grow together. Statistical properties under these two regimes can be dramatically different. Full Article
la Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists By projecteuclid.org Published On :: Tue, 05 Nov 2019 22:03 EST John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko. Source: Statistics Surveys, Volume 13, 150--180.Abstract: Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study. Full Article
la PLS for Big Data: A unified parallel algorithm for regularised group PLS By projecteuclid.org Published On :: Mon, 02 Sep 2019 04:00 EDT Pierre Lafaye de Micheaux, Benoît Liquet, Matthew Sutton. Source: Statistics Surveys, Volume 13, 119--149.Abstract: Partial Least Squares (PLS) methods have been heavily exploited to analyse the association between two blocks of data. These powerful approaches can be applied to data sets where the number of variables is greater than the number of observations and in the presence of high collinearity between variables. Different sparse versions of PLS have been developed to integrate multiple data sets while simultaneously selecting the contributing variables. Sparse modeling is a key factor in obtaining better estimators and identifying associations between multiple data sets. The cornerstone of the sparse PLS methods is the link between the singular value decomposition (SVD) of a matrix (constructed from deflated versions of the original data) and least squares minimization in linear regression. We review four popular PLS methods for two blocks of data. A unified algorithm is proposed to perform all four types of PLS including their regularised versions. We present various approaches to decrease the computation time and show how the whole procedure can be scalable to big data sets. The bigsgPLS R package implements our unified algorithm and is available at https://github.com/matt-sutton/bigsgPLS . Full Article
la A review of dynamic network models with latent variables By projecteuclid.org Published On :: Mon, 03 Sep 2018 04:01 EDT Bomin Kim, Kevin H. Lee, Lingzhou Xue, Xiaoyue Niu. Source: Statistics Surveys, Volume 12, 105--135.Abstract: We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the literature, with the data source listed in Appendix. Based on the review, we summarize a list of open problems and challenges in dynamic network modeling with latent variables. Full Article
la A comparison of spatial predictors when datasets could be very large By projecteuclid.org Published On :: Tue, 19 Jul 2016 14:13 EDT Jonathan R. Bradley, Noel Cressie, Tao Shi. Source: Statistics Surveys, Volume 10, 100--131.Abstract: In this article, we review and compare a number of methods of spatial prediction, where each method is viewed as an algorithm that processes spatial data. To demonstrate the breadth of available choices, we consider both traditional and more-recently-introduced spatial predictors. Specifically, in our exposition we review: traditional stationary kriging, smoothing splines, negative-exponential distance-weighting, fixed rank kriging, modified predictive processes, a stochastic partial differential equation approach, and lattice kriging. This comparison is meant to provide a service to practitioners wishing to decide between spatial predictors. Hence, we provide technical material for the unfamiliar, which includes the definition and motivation for each (deterministic and stochastic) spatial predictor. We use a benchmark dataset of $mathrm{CO}_{2}$ data from NASA’s AIRS instrument to address computational efficiencies that include CPU time and memory usage. Furthermore, the predictive performance of each spatial predictor is assessed empirically using a hold-out subset of the AIRS data. Full Article
la A survey of bootstrap methods in finite population sampling By projecteuclid.org Published On :: Tue, 15 Mar 2016 09:17 EDT Zeinab Mashreghi, David Haziza, Christian Léger. Source: Statistics Surveys, Volume 10, 1--52.Abstract: We review bootstrap methods in the context of survey data where the effect of the sampling design on the variability of estimators has to be taken into account. We present the methods in a unified way by classifying them in three classes: pseudo-population, direct, and survey weights methods. We cover variance estimation and the construction of confidence intervals for stratified simple random sampling as well as some unequal probability sampling designs. We also address the problem of variance estimation in presence of imputation to compensate for item non-response. Full Article
la Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
la Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED) By arxiv.org Published On :: Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification. Full Article
la A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED) By arxiv.org Published On :: Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Full Article
la Excess registered deaths in England and Wales during the COVID-19 pandemic, March 2020 and April 2020. (arXiv:2004.11355v4 [stat.AP] UPDATED) By arxiv.org Published On :: Official counts of COVID-19 deaths have been criticized for potentially including people who did not die of COVID-19 but merely died with COVID-19. I address that critique by fitting a generalized additive model to weekly counts of all registered deaths in England and Wales during the 2010s. The model produces baseline rates of death registrations expected in the absence of the COVID-19 pandemic, and comparing those baselines to recent counts of registered deaths exposes the emergence of excess deaths late in March 2020. Among adults aged 45+, about 38,700 excess deaths were registered in the 5 weeks comprising 21 March through 24 April (612 $pm$ 416 from 21$-$27 March, 5675 $pm$ 439 from 28 March through 3 April, then 9183 $pm$ 468, 12,712 $pm$ 589, and 10,511 $pm$ 567 in April's next 3 weeks). Both the Office for National Statistics's respective count of 26,891 death certificates which mention COVID-19, and the Department of Health and Social Care's hospital-focused count of 21,222 deaths, are appreciably less, implying that their counting methods have underestimated rather than overestimated the pandemic's true death toll. If underreporting rates have held steady, about 45,900 direct and indirect COVID-19 deaths might have been registered by April's end but not yet publicly reported in full. Full Article