ed

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




ed

Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles]

Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.




ed

Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews]

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.




ed

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]




ed

Images in Lipid Research [Editorials]




ed

Problem Notes for SAS®9 - 65852: The PANEL procedure produces incorrect results for certain models when the NOINT and RANONE options are specified

The estimation results might be incorrect in PROC PANEL when the RANONE and NOINT options are specified in the MODEL statement.




ed

Problem Notes for SAS®9 - 65938: Incorrect values might be written to Hadoop for columns defined with the BIGINT data type

Large numeric values consisting of 16 digits in SAS might be incorrect when written to Hadoop for columns defined with the BIGINT data type.  This problem was introduced in SAS 9




ed

Problem Notes for SAS®9 - 65929: A grid-enabled sign-on to SAS 9.4M6 (TS1M6) fails with errors, including "Remote signon … canceled"

A sign-on to a grid-enabled environment fails while it is trying to communicate with the client host. The following errors then appear in the SAS log:


ed

Problem Notes for SAS®9 - 65908: The IMPORT procedure contains a stack-corruption vulnerability

Severity: Medium Description: PROC IMPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances (with use of the DBM




ed

Problem Notes for SAS®9 - 65906: The EXPORT procedure contains a stack-corruption vulnerability

Severity: Medium Description: PROC EXPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances, the use of PROC EXP




ed

Problem Notes for SAS®9 - 65922: Trying to read a Google BigQuery table that contains a variable defined as an array might result in a panic error and SAS shutting down

Trying to read a Google BigQuery table that contains a variable that is defined as an array of records might result in an error and cause SAS to shut down. This issue occurs when one of the variables contained in




ed

Problem Notes for SAS®9 - 65295: The order of columns is not maintained when you select columns for output in the Business Rules transformation

In SAS Data Integration Studio, the columns that you select to include in the target table in a Business Rules transformation appear in the Selected columns area in a random order. Th




ed

Problem Notes for SAS®9 - 65031: Grid options set mappings are returned based on which option set is the first in the metadata search chain

When users are defined in multiple groups associated with grid options set mappings, the first grid option set that is returned by the metadata search chain takes precedence. Only one grid options set mapping is used




ed

Problem Notes for SAS®9 - 65927: The Copy Files task in SAS Enterprise Guide 8.2 fails with the message "ERROR: Target folder does not exist or cannot be accessed"

When you run the Copy Files task in SAS Enterprise Guide and there is no connection to a SAS server, it fails with the following error: "ERROR: Target folder does not exist or cannot be accessed."




ed

Problem Notes for SAS®9 - 65904: SAS Federation Server stops responding when you run queries against X_OBJECT_PRIVILEGES in SYSCAT and the queries run for hours

The select * from "SYSCAT"."SYSCAT"."X_EFFECTIVE_OBJECT_PRIVILEGES" query runs for hours. In this scenario, SAS Federation Server stops responding, making it unavailable for use. Restarting SAS Federation Server solves t




ed

Problem Notes for SAS®9 - 65682: Running FedSQL with an Oracle table is slow, even when you use a LIMIT clause

When you query an Oracle table and use the LIMIT clause using either SAS  Federation Server or FedSQL, a row limit is not passed to the database. In this scenario, a Full Article



ed

Problem Notes for SAS®9 - 65574: Decimal values are rounded after they are inserted into a new Databricks table via SAS/ACCESS Interface to JDBC

A DATA step and PROC SQL can round numeric values while creating and loading data into a new Databricks table via JDBC.




ed

Problem Notes for SAS®9 - 65909: SAS Visual Analytics Designer 7.5 responds slowly when you edit large or complex reports

If your SAS Visual Analytics report contains many sections and objects, you might encounter performance problems when you are editing the report.   A hot fix is planned for this issue.




ed

Problem Notes for SAS®9 - 64980: The PRINT procedure contains a buffer-overrun vulnerability

Severity: Medium Description: PROC PRINT might fail with a buffer overrun when you submit it in conjunction with certain malformed SAS statements.



ed

Problem Notes for SAS®9 - 65893: Custom sorts are sorted incorrectly when they are used in a hierarchy in SAS Visual Analytics Designer

A custom sort might be sorted incorrectly when the data item is used in a custom category, which is then used in a hierarchy. The issue can occur in the following scenario:




ed

Problem Notes for SAS®9 - 65597: An SQL procedure query with a WHERE clause that contains multiple subselects might return incorrect results

An issue occurs when code contains a complex SQL procedure query with a WHERE clause that contains multiple subselects. Incorrect results might be returned. Click the Hot Fix tab in this note to




ed

Problem Notes for SAS®9 - 65572: The length of a string variable might be longer than specified with the MAX_CHAR_LEN= option

When you read in a BigQuery table, the length of string variables might be longer than the length specified with the MAX_CHAR_LEN= option when running your SAS software   with UTF-8. By




ed

Problem Notes for SAS®9 - 65869: SAS Visual Data Builder does not enable you to schedule with multiple time-event triggers

SAS Visual Data Builder might not enable you to create multiple time-event triggers. The + button to add another trigger is not available to select, as shown in the following display: imgalt="" src="{fusion_658




ed

Bulked-up Duffy looks to sustain at plate in '19

As Matt Duffy entered the offseason, he knew that he needed to add strength in order to hold up over the course of a 162-game season. The 28-year old has been at the Rays' Spring Training facility in Port Charlotte, Fla., for about a week, and he believes his improved shape will help the team fight for a playoff spot in 2019.




ed

Predicting Rays' Opening Day roster

Here's an early look at how the Rays' 25-man roster could shape up on Opening Day.




ed

Pagan working to develop off-speed pitches

As Emilio Pagan enters his first Spring Training with the Rays, he's looking to prove that he can perform well against hitters on either side of the plate.




ed

Cash reminder: Stay focused on the now

All 66 players on the Rays' Spring Training roster took the field Monday as Tampa Bay went through its first full-squad workout.




ed

Thyroid nodules: diagnostic evaluation based on thyroid cancer risk assessment




ed

Management of ANCA associated vasculitis




ed

Advances in regenerative medicine for otolaryngology/head and neck surgery




ed

Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology]

Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.




ed

ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease]

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.




ed

Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology]

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.




ed

Delineating an extracellular redox-sensitive module in T-type Ca2+ channels [Membrane Biology]

T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I and a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc.




ed

MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids]

Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.




ed

ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




ed

Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice

Objective:

GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis.

Research Design and Methods:

Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed.

Results:

In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates.

Conclusions:

Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes.




ed

Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-like Protein 4 Expression in Mice

To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF feeding (ppHF), which avoided the dietary effect during pregnancy. We found that maternal blood TG concentrations in ppHF dams were not only remarkably lower than control dams, but the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in iBAT of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4-/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gWAT and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.




ed

Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice

Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has been recently shown to act as a neurotrophic factor to control the development of AP->NTS and ARC->PVN axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. To investigate the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR) was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment.




ed

Hybrid Insulin Peptides are Recognized by Human T Cells in the Context of DRB1*04:01

T cells isolated from the pancreatic infiltrates of non-obese diabetic mice have been shown to recognize epitopes formed by the covalent cross-linking of proinsulin and secretory granule peptides. Formation of such hybrid insulin peptides (HIPs) was confirmed through mass spectrometry and responses to HIPs were observed among the islet-infiltrating T cells of pancreatic organ donors and in the peripheral blood of individuals with type 1 diabetes (T1D). However, questions remain about the prevalence of HIP-specific T cells in humans, the sequences they recognize, and their role in disease. We identified six novel HIPs that are recognized in the context of DRB1*04:01, discovered by utilizing a library of theoretical HIP sequences derived from insulin fragments covalently linked to one another or to fragments of secretory granule proteins or other islet-derived proteins. We demonstrate that T cells that recognize these HIPs are detectable in the peripheral blood of subjects with T1D and exhibit an effector memory phenotype. HIP-reactive T cell clones produced Th1-associated cytokines and proliferated in response to human islet preparations. These results support the relevance of HIPs in human disease, further establishing a novel post-translational modification that may contribute to the loss of peripheral tolerance in T1D.




ed

Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.




ed

Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling

Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity.




ed

Pathogenic Role of PPAR{alpha} Down-Regulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes

The purpose of this study was to investigate the protective role of Peroxisome Proliferator-Activated Receptor-alpha (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from diabetic and non-diabetic human donors. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was down-regulated in the corneas of diabetic humans and rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which was partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα-/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα-/- mice relative to wild-type mice by nine months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy.




ed

Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.




ed

Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice

Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress.




ed

Elevated First-Trimester Neutrophil Count Is Closely Associated with the Development of Maternal Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes

Chronic low-grade inflammation plays a central role in the pathophysiology of gestational diabetes mellitus (GDM). In order to investigate the ability of different inflammatory blood cell parameters in predicting the development of GDM and pregnancy outcomes, 258 women with GDM and 1154 women without were included in this retrospective study. First-trimester neutrophil count outperformed white blood cell (WBC) count, and neutrophil-to-lymphocyte ratio (NLR) in the predictability for GDM. Subjects were grouped based on tertiles of neutrophil count during their first-trimester pregnancy. The results showed that as the neutrophil count increased, there was a step-wise increase in GDM incidence, as well as glucose and glycosylated hemoglobin (HbA1c) level, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), macrosomia incidence and newborn weight. Neutrophil count was positively associated with pre-pregnancy Body Mass Index (BMI), HOMA-IR and newborn weight. Additionally, neutrophil count was an independent risk factor for the development of GDM, regardless of the history of GDM. Spline regression showed that there was a significant linear association between GDM incidence and continuous neutrophil count when it exceeded 5.0 x 109/L. This work suggested that first-trimester neutrophil count is closely associated with the development of GDM and adverse pregnancy outcomes.




ed

Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Induced Obese Mice

Sodium glucose co-transporter-2 inhibitors (SGLT2i) have favorable cardiovascular outcomes in diabetic patients. However, whether SGLT2i can improve obesity-related cardiac dysfunction is unknown. Sestrin2 is a novel stress-inducible protein that regulates AMPK-mTOR and suppresses oxidative damage. The aim of this study was to determine whether empagliflozin (EMPA) improves obesity-related cardiac dysfunction via regulating Sestrin2-mediated pathways in diet-induced obesity. C57BL/6J mice and Sestrin2 knockout mice were fed a high-fat diet (HFD) for 12 weeks and then treated with or without EMPA (10 mg/kg) for 8 weeks. Treating HFD-fed C57BL/6J mice with EMPA reduced body weight, whole-body fat, and improved metabolic disorders. Furthermore, EMPA improved myocardial hypertrophy/fibrosis and cardiac function, and reduced cardiac fat accumulation and mitochondria injury. Additionally, EMPA significantly augmented Sestrin2 levels, increased AMPK and eNOS phosphorylation, but inhibited Akt and mTOR phosphorylation. These beneficial effects were partially attenuated in HFD-fed Sestrin2 knockout mice. Intriguingly, EMPA treatment enhanced the Nrf2/HO-1-mediated oxidative stress response, suggesting antioxidant and anti-inflammatory activity. Thus, EMPA improved obesity-related cardiac dysfunction via regulating Sestrin2-mediated AMPK-mTOR signaling and maintaining redox homeostasis. These findings provide a novel mechanism for the cardiovascular protection of SGLT2i in obesity.




ed

Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islet (PI) β-cells by an as yet unknown mechanism. We found NADPH oxidase, isoform-4 (NOX4), to be the major producer of cytosolic H2O2, essential for GSIS, while the increase in ATP/ADP alone was insufficient. The fast GSIS phase was absent in PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (not NOX2KO), and NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations and the patch-clamped ATP-sensitive potassium channel (KATP) opened more frequently at high glucose. Mitochondrial H2O2, decreasing upon GSIS, provided an alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxide by electron-transport flavoprotein:Q-oxidoreductase. Unlike GSIS, this ceased with mitochondrial antioxidant SkQ1. Both NOX4KO and NOX4βKO strains exhibited impaired glucose tolerance and peripheral insulin resistance. Thus the redox signaling previously suggested to cause β-cell-self-checking – hypothetically induces insulin resistance when absent. In conclusion, ATP plus H2O2 elevations constitute an essential switch-on signal of insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (partly for fatty acids). Redox signaling could be impaired by cytosolic antioxidants, hence those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.




ed

Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis

Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the non-oxidative branch of the PPP which connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically delete TKT in mouse adipocytes and find no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuates high fat diet (HFD)-induced obesity, reduces hepatic steatosis, improves glucose tolerance, alleviates insulin resistance and increases energy expenditure. Mechanistically, TKT deficiency accumulates non-oxidative PPP metabolites, decreases glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity, but also suggest limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure.




ed

Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment after Acute Myocardial Infarction in Patients with Type 2 Diabetes

Type 2 diabetes mellitus predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (n=1147, n=265 diabetic; n=882 non-diabetic) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF), global longitudinal, circumferential and radial strains (GLS, GCS and GRS), LA reservoir, conduit and booster pump strains, as well as infarct size, edema and microvascular obstruction. Predefined endpoints were major adverse cardiovascular events (MACE) within 12 months. Diabetic patients had impaired LA reservoir (19.8 vs. 21.2%, p<0.01) and conduit strains (7.6 vs. 9.0%, p<0.01) but not ventricular function or myocardial damage. They were at higher risk of MACE than non-diabetic patients (10.2% vs. 5.8%, p<0.01) with most MACE occurring in patients with LVEF≥35%. Whilst LVEF (p=0.045) and atrial reservoir strain (p=0.024) were independent predictors of MACE in non-diabetic patients, GLS was in diabetic patients (p=0.010). Considering patients with diabetes and LVEF≥35% (n=237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above LVEF.