s:

Barnala, Patti Jails to be made quarantine centres: Punjab Govt




s:

No industrial activity in containment zones: Punjab CM




s:

Allow shops, industries to open in non-containment zones: Punjab CM




s:

Withdraw obligation to pay energy capacity charges: Punjab CM




s:

Allow small industry to operate from non-containment zones: Punjab CM




s:

Punjab doesn't favour migrant workers' return to native places: Sunil Jakhar




s:

Our families are the real heroes: doctors

Medical staff and their kin talk about sacrifices they are willingly making for each other and the nation




s:

Conduct health test for sanitation workers: KTR

Officials told to prepare for the monsoon




s:

Reply to plea seeking supply of food to people without ration cards: HC to State

Migrants, tribals have no money to buy food due to lockdown: PIL




s:

Covid-19 crisis: Airlines say flights between green zones unviable

Want services to resume only after at least three major airports in the country become functional




s:

Kolkata lockdown news: Today's updates




s:

Covid-19 woes: Phone majors ring in post-lockdown drill as plants reopen

On Saturday, Samsung India Electronics, counted among the largest in the space, ushered in over 1,000 workers at its facility in Sector 81, Noida




s:

Coronavirus in US: Obama calls Trump’s response as chaotic disaster

Obama cast the US response to the virus as an outgrowth of tribalism as he sought to emphasise the urgency of the November election




s:

No player makes a debut at the age of 30, BCCI doesn't entertain such players: Irfan Pathan

Pathan's statement came during an Instagram Live session with Suresh Raina.




s:

Ahmedabad lockdown news: Today's updates

Amid prevalent chaos and uncertainty over access to the essential services and commodities during the lockdown, we bring you the latest updates from your city.




s:

Online Chess: India suffers twin defeats, finishes 5th

With Viswanathan Anand resting, the Indian team managed to hold their own against the favourites before Yu Yangyi subdued B Adhiban with black pieces to secure another victory in the tournament.





s:

Chandigarh lockdown news: Today's updates

Amid prevalent chaos and uncertainty over access to the essential services and commodities during the lockdown, we bring you the latest updates from your city.




s:

Banned Umar Akmal refuses to divulge details of two meetings with suspected bookies: PCB sources




s:

X-ray radiation damage to biological samples: recent progress

With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below.




s:

ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data

The high temporal resolution in data acquisition, possible in the quick-scanning EXAFS (QEXAFS) mode of operation, provides new challenges in efficient data processing methods. Here a new approach is developed that combines an easy to use interactive graphical interface with highly optimized and fully parallelized Python-based routines for extracting, normalizing and interpolating oversampled time-resolved XAS spectra from a raw binary stream of data acquired during operando QEXAFS studies. The programs developed are freely available via a Github repository.




s:

IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range

A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5–3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.




s:

Nanocrystalline materials: recent advances in crystallographic characterization techniques

This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis.






s:

Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023.




s:

Sample deposition onto cryo-EM grids: from sprays to jets and back

Sample preparation within single-particle cryo-electron microscopy can still be a significant bottleneck, with issues in reproducibility, ice quality and sample loss. New approaches have recently been reported that use spraying or pin printing instead of the traditional blotting approach. Here, experience in the use of different nozzle designs and spraying regimes is reported together with their influence on the resulting spray and grid quality.




s:

Confidence maps: statistical inference of cryo-EM maps

The concept of statistical signal detection by controlling the false-discovery rate (FDR) to aid the atomic model interpretation of cryo-EM density maps is reviewed. The recommended usage of the FDR software tool is presented together with its successful integration into the CCP-EM suite.




s:

Poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper]: a three-dimensional copper(I) coordination polymer

The reaction of ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand mol­ecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds.




s:

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




s:

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnII–π-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−.




s:

Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2

The crystal structures of dirubidium potassium dysprosium bis­(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis­(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group Poverline{3}m1 with the glaserite structure type. VO4 tetra­hedra are linked to DyO6 or GdO6 octa­hedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.




s:

Crystal structures of two CuII compounds: catena-poly[[chlorido­copper(II)]-μ-N-[eth­oxy(pyridin-2-yl)methyl­idene]-N'-[oxido(pyridin-3-yl)methyl­idene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-di­chlorido-2κ

Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitro­gen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitro­gen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by inter­molecular C—H⋯O and C—H⋯Cl inter­actions, leading to a three-dimensional network structure. The tetra­nuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually inter­connected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the penta­coordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hy­droxy groups and one chloride anion to two other CuII ions. Each of the penta­coordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetra­nuclear monomeric unit, which is connected to four tetra­nuclear monomeric units by inter­molecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane.




s:

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset π–π inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.




s:

Syntheses and crystal structures of a new family of hybrid perovskites: C5H14N2·ABr3·0.5H2O (A = K, Rb, Cs)

The syntheses and crystal structures of three hybrid perovskites, viz. poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-potassium] hemihydrate], {(C5H14N2)[KBr3]·0.5H2O}n, (I), poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-rubidium] hemihydrate], {(C5H14N2)[RbBr3]·0.5H2O}n, (II), and poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-caesium] hemihydrate], {(C5H14N2)[CsBr3]·0.5H2O}n, (III), are described. These isostructural (space group Amm2) phases contain a three-dimensional, corner-sharing network of distorted ABr6 octa­hedra (A = K, Rb, Cs) with the same topology as the classical perovskite structure. The doubly protonated C5H14N22+ cations occupy inter­stices bounded by eight octa­hedra and the water mol­ecules lie in square sites bounded by four octa­hedra. N—H⋯Br, N—H⋯(Br,Br), N—H⋯O and O—H⋯Br hydrogen bonds consolidate the structures.




s:

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




s:

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




s:

Crystal structures of 3-chloro-2-nitro­benzoic acid with quinoline derivatives: 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1) and 8-hy­droxy­quinolinium 3-ch

The structures of three compounds of 3-chloro-2-nitro­benzoic acid with 5-nitro­quinoline, (I), 6-nitro­quinoline, (II), and 8-hy­droxy­quinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base mol­ecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site of the base mol­ecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π inter­actions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the mol­ecular chains are linked into layers parallel to the ab plane through these inter­actions.




s:

Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[

In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-di­chloro­phenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-di­chloro­phenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-di­chloro­phenyl derivative, the 1,4-dioxane solvent mol­ecules are connected to the chromene mol­ecules via O—H⋯O hydrogen bonds.




s:

Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(di­meth­ylamino)­phen­yl

The title pull–push chromophores, 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(di­methyl­amino)­phen­yl]allyl­idene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The mol­ecule with the short π-bridge, ID[1], is almost planar while for the mol­ecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-di­hydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The mol­ecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The mol­ecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intra­molecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of ID[2], mol­ecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The mol­ecules in the helix are linked by offset π–π inter­actions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain.




s:

checkCIF validation ALERTS: what they mean and how to respond

Authors of a paper that includes a new crystal-structure determination are expected to not only report the structural results of inter­est and their inter­pretation, but are also expected to archive in computer-readable CIF format the experimental data on which the crystal-structure analysis is based. Additionally, an IUCr/checkCIF validation report will be required for the review of a submitted paper. Such a validation report, automatically created from the deposited CIF file, lists as ALERTS not only potential errors or unusual findings, but also suggestions for improvement along with inter­esting information on the structure at hand. Major ALERTS for issues are expected to have been acted on already before the submission for publication or discussed in the associated paper and/or commented on in the CIF file. In addition, referees, readers and users of the data should be able to make their own judgment and inter­pretation of the underlying experimental data or perform their own calculations with the archived data. All the above is consistent with the FAIR (findable, accessible, inter­operable, and reusable) initiative [Helliwell (2019). Struct. Dyn. 6, 05430]. Validation can also be helpful for less experienced authors in pointing to and avoiding of crystal-structure determination and inter­pretation pitfalls. The IUCr web-based checkCIF server provides such a validation report, based on data uploaded in CIF format. Alternatively, a locally installable checkCIF version is available to be used iteratively during the structure-determination process. ALERTS come mostly as short single-line messages. There is also a short explanation of the ALERTS available through the IUCr web server or with the locally installed PLATON/checkCIF version. This paper provides additional background information on the checkCIF procedure and additional details for a number of ALERTS along with options for how to act on them.




s:

Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate]

The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-di­thiol­ane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one aceto­nitrile mol­ecule and inter­connected through two bridging 1,3-di­thiol­ane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexa­fluorido­phosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supra­molecular framework. The crystal studied was refined as a two-component twin.




s:

Two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.




s:

Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2

The title compound, di­aqua­[tris­(2-amino­eth­yl)amine]­nickel(II) hexa­aqua­nickel(II) bis­(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octa­hedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris­(2-amino­eth­yl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water mol­ecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water mol­ecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure.




s:

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




s:

Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses

Two polymorphs of the title compound, C19H16N2O3, were obtained from ethano­lic (polymorph I) and methano­lic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete mol­ecule in the asymmetric unit. The main difference between the mol­ecules of (I) and (II) is the reversed position of the hy­droxy group of the carb­oxy­lic function. All other conformational features are found to be similar in the two mol­ecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) inter­molecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carb­oxy­lic functions are found. The inter­molecular inter­actions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




s:

Silver(I) nitrate two-dimensional coordination polymers of two new pyrazine­thio­phane ligands: 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e

The two new pyrazine­ophanes, 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. The mol­ecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming planar five-membered rings. The mol­ecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming eight-membered rings that have twist-boat-chair con­fig­urations. In the crystals of both compounds, there are no significant inter­molecular inter­actions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-di­hydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bis­ects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supra­molecular frameworks. There are additional C—H⋯S contacts present in the supra­molecular framework of II.




s:

Functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.




s:

Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination

Serial rotation electron diffraction (SerialRED) has been developed as a fully automated technique for three-dimensional electron diffraction data collection that can run autonomously without human intervention. It builds on the previously established serial electron diffraction technique, in which submicrometre-sized crystals are detected using image processing algorithms. Continuous rotation electron diffraction (cRED) data are collected on each crystal while dynamically tracking the movement of the crystal during rotation using defocused diffraction patterns and applying a set of deflector changes. A typical data collection screens up to 500 crystals per hour, and cRED data are collected from suitable crystals. A data processing pipeline is developed to process the SerialRED data sets. Hierarchical cluster analysis is implemented to group and identify the different phases present in the sample and to find the best matching data sets to be merged for subsequent structure analysis. This method has been successfully applied to a series of zeolites and a beam-sensitive metal–organic framework sample to study its capability for structure determination and refinement. Two multi-phase samples were tested to show that the individual crystal phases can be identified and their structures determined. The results show that refined structures obtained using automatically collected SerialRED data are indistinguishable from those collected manually using the cRED technique. At the same time, SerialRED has lower requirements of expertise in transmission electron microscopy and is less labor intensive, making it a promising high-throughput crystal screening and structure analysis tool.




s:

Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF

The structural dimension of metal–organic frameworks (MOFs) is of great importance in defining their properties and thus applications. In particular, 2D layered MOFs are of considerable interest because of their useful applications, which are facilitated by unique structural features of 2D materials, such as a large number of open active sites and high surface areas. Herein, this work demonstrates a methodology for the selective synthesis of a 2D layered MOF in the presence of the competitive formation of a 3D MOF. The ratio of the reactants, metal ions and organic building blocks used during the reaction is found to be critical for the selective formation of a 2D MOF, and is associated with its chemical composition. In addition, the well defined and uniform micro-sized 2D MOF particles are successfully synthesized in the presence of an ultrasonic dispersion. Moreover, the laminated 2D MOF layers are directly synthesized via a modified bottom-up lamination method, a combination of chemical and physical stimuli, in the presence of surfactant and ultrasonication.