and Combination Therapy with Ibrexafungerp (formerly SCY-078), a First-in-Class Triterpenoid Inhibitor of (1->3)-{beta}-D-Glucan Synthesis, and Isavuconazole for Treatment of Experimental Invasive Pulmonary Aspergillosis [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:36-07:00 Ibrexafungerp (formerly SCY-078) is a semisynthetic triterpenoid and potent (1->3)-β-D-glucan synthase inhibitor. We investigated the in vitro activity, pharmacokinetics, and in vivo efficacy of ibrexafungerp (SCY) alone and in combination with anti-mould triazole isavuconazole (ISA) against invasive pulmonary aspergillosis (IPA). The combination of ibrexafungerp and isavuconazole in in vitro studies resulted in an additive and synergistic interactions against Aspergillus spp. Plasma concentration-time curves of ibrexafungerp were compatible with linear dose proportional profile. In vivo efficacy was studied in a well established persistently neutropenic NZW rabbit model of experimental IPA. Treatment groups included untreated rabbits (UC) and rabbits receiving ibrexafungerp at 2.5(SCY2.5) and 7.5(SCY7.5) mg/kg/day, isavuconazole at 40(ISA40) mg/kg/day, or combinations of SCY2.5+ISA40 and SCY7.5+ISA40. The combination of SCY+ISA produced in vitro synergistic interaction. There was significant in vivo reduction of residual fungal burden, lung weights, and pulmonary infarct scores in SCY2.5+ISA40, SCY7.5+ISA40, and ISA40-treatment groups vs that of SCY2.5-treated, SCY7.5-treated and UC (p<0.01). Rabbits treated with SCY2.5+ISA40 and SCY7.5+ISA40 had prolonged survival in comparison to that of SCY2.5-, SCY7.5-, ISA40-treated or UC (p<0.05). Serum GMI and (1->3)-β-D-glucan levels significantly declined in animals treated with the combination of SCY7.5+ISA40 in comparison to those treated with SCY7.5 or ISA40 (p<0.05). Ibrexafungerp and isavuconazole combination demonstrated prolonged survival, decreased pulmonary injury, reduced residual fungal burden, lower GMI and (1->3)-β-D-glucan levels in comparison to those of single therapy for treatment of IPA. These findings provide an experimental foundation for clinical evaluation of the combination of ibrexafungerp and an anti-mould triazole for treatment of IPA. Full Article
and Ceftobiprole Activity against Bacteria from Skin and Skin Structure Infections in the United States from 2016 through 2018 [Susceptibility] By aac.asm.org Published On :: 2020-03-16T08:17:36-07:00 Ceftobiprole medocaril is an advanced-generation cephalosporin prodrug that has qualified infectious disease product status granted by the US-FDA and is currently being evaluated in phase 3 clinical trials in patients with acute bacterial skin and skin structure infections (ABSSSIs) and in patients with Staphylococcus aureus bacteremia. In this study, the activity of ceftobiprole and comparators was evaluated against more than 7,300 clinical isolates collected in the United States from 2016 through 2018 from patients with skin and skin structure infections. The major species/pathogen groups were S. aureus (53%), Enterobacterales (23%), Pseudomonas aeruginosa (7%), β-hemolytic streptococci (6%), Enterococcus spp. (4%), and coagulase-negative staphylococci (2%). Ceftobiprole was highly active against S. aureus (MIC50/90, 0.5/1 mg/L; 99.7% susceptible by EUCAST criteria; 42% methicillin-resistant S. aureus [lsqb]MRSA[rsqb]). Ceftobiprole also exhibited potent activity against other Gram-positive cocci. The overall susceptibility of Enterobacterales to ceftobiprole was 84.8% (>99.0% susceptible for isolate subsets that exhibited a non-extended-spectrum β-lactamase [lsqb]ESBL[rsqb]-phenotype). A total of 74.4% of P. aeruginosa, 100% of β-hemolytic streptococci and coagulase-negative staphylococci, and 99.6% of Enterococcus faecalis isolates were inhibited by ceftobiprole at ≤4 mg/L. As expected, ceftobiprole was largely inactive against Enterobacterales that contained ESBL genes and Enterococcus faecium. Overall, ceftobiprole was highly active against most clinical isolates from the major Gram-positive and Gram-negative skin and skin structure pathogen groups collected at U.S. medical centers participating in the SENTRY Antimicrobial Surveillance Program during 2016–2018. The broad-spectrum activity of ceftobiprole, including potent activity against MRSA, supports its further evaluation for the potential ABSSSI indication. Full Article
and The Als3 cell wall adhesin plays a critical role in human Serum amyloid A1 (SAA1)-induced cell death and aggregation in Candida albicans [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Antimicrobial peptides and proteins play critical roles in the host defense against invading pathogens. We recently discovered that recombinantly expressed human and mouse serum amyloid A1 (rhSAA1 and rmSAA1) proteins have potent antifungal activities against the major human fungal pathogen Candida albicans. At high concentrations, rhSAA1 disrupts C. albicans membrane integrity and induces rapid fungal cell death. In the current study, we find that rhSAA1 promotes cell aggregation and targets the C. albicans cell wall adhesin Als3. Inactivation of ALS3 in C. albicans leads to a striking decrease in cell aggregation and cell death upon rhSAA1 treatment, suggesting that Als3 plays a critical role in SAA1 sensing. We further demonstrate that deletion of the transcriptional regulators controlling the expression of ALS3, such as AHR1, BCR1, and EFG1 in C. albicans results in similar effects to that of the als3/als3 mutant upon rhSAA1 treatment. Global gene expression profiling indicates that rhSAA1 has a discernible impact on the expression of cell wall- and metabolism-related genes, suggesting that rhSAA1 treatment could lead to a nutrient starvation effect on C. albicans cells. Full Article
and Structure and molecular recognition mechanism of IMP-13 metallo-{beta}-lactamase [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Multi-drug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely-used antibiotic class, the β-lactams, including the most recent-generation carbapenems. Interspecies spread renders these enzymes a serious clinical threat and there are no clinically-available inhibitors. We present crystal structures of IMP-13, a structurally-uncharacterized MBL from Gram-negative Pseudomonas aerugionasa found in clinical outbreaks globally, and characterize the binding using solution NMR-spectroscopy and molecular-dynamics simulations. Crystal structures of apo IMP-13 and bound to four clinically-relevant carbapenem antibiotics (doripenem, ertapenem, imipenem and meropenem) are presented. Active site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance. Full Article
and Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 E. coli bloodstream infection isolates from Oxfordshire, UK, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity 23% (78/339)) but improved when genetic features associated with penicillinase hyper-production (e.g. promoter mutations, copy number estimates) were considered (sensitivity 82% (277/339); p<0.0001). Most discrepancies occurred in isolates with peri-breakpoint MICs. We investigated two potential causes; the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions. Full Article
and Impact of KPC-production and high-level meropenem resistance on all-cause mortality of ventilator-associated pneumonia in association with Klebisella pneumoniae [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Objectives: Carbapenemase-producing Enterobacterales and specifically KPC-producing Klebsiella pneumoniae (KPC-Kp) are rapidly spreading worldwide. The prognosis of ventilator-associated pneumonia (VAP) caused by KPC-producing Klebsiella pneumoniae (KPC-Kp) is not well known. Our study tries to assess whether ventilator-associated pneumonia caused by a KPC-Kp strain is associated with higher all-cause mortality than if caused by carbapenem-susceptible isolates.Study design and methods: This is a retrospective cohort study of patients with VAP due to K. pneumoniae from a 35-bed polyvalent Intensive Care Unit in a university hospital (> 40,000 annual admissions) between January 2012 and December 2016. Adjusted multivariate analysis was used to study the association of KPC-Kp with 30-day all-cause mortality (Cox regression).Results. We analyze 69 cases of K. pneumoniae VAP of which 39 were produced by a KPC-Kp strain with high-level resistance to meropenem (MIC > 16 mg/mL). All-cause mortality at 30 days was 41% in the KPC-Kp group (16/39) and 33.3% in the carbapenem-susceptible cases (10/30). KPC-Kp etiology was not associated with higher mortality when controlled for confounders (adjusted hazard ratio [lsqb]HR[rsqb] 1.25; 95% CI: 0.46–3.41). Adequate targeted therapy (HR 0.03; 95% CI: <0.01–0.23) was associated with all-cause mortality.Conclussion. Assuming the limitations due to the available sample size, the prognosis of VAP caused by KPC-Kp is similar to VAPs caused by carbapenem-susceptible K. pneumoniae when appropriate treatment is used. Full Article
and Mutations in ArgS arginine-tRNA synthetase confer additional antibiotic-tolerance protection to ESBL-producing Burkholderia thailandensis [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Highly conserved PenI-type class A β-lactamase in pathogenic members of Burkholderia can evolve to extended-spectrum β-lactamase (ESBL), which exhibits hydrolytic activity towards third-generation cephalosporins, while losing its activity towards the original penicillin substrates. We describe three single-amino-acid-substitution mutations in the ArgS arginine-tRNA synthetase that confer extra antibiotic tolerance protection to ESBL-producing Burkholderia thailandensis. This pathway can be exploited to evade antibiotic tolerance induction in developing therapeutic measures against Burkholderia species, targeting their essential aminoacyl-tRNA synthetases. Full Article
and Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a ‘keystone' periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis, and critically contributes to the pathogenesis of periodontitis. Persisters are a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and notably metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with lethal dosage of metronidazole (100 μg/ml, 6 hours) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling and qPCR. We demonstrated that the overall morphology and ultra-cellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade into HGECs. Moreover, M-PgPs significantly suppressed pro-inflammatory cytokine expression in HGECs at a comparable level with the untreated P. gingivalis cells, through the thermo-sensitive components. The present study reveals that P. gingivalis persisters induced by lethal treatment of antibiotics could maintain their capabilities to adhere to and invade into human gingival epithelial cells, and perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favourably modulating the dysregulated immuno-inflammatory responses for oral/periodontal health and general wellbeing. Full Article
and Towards harmonization of voriconazole CLSI and EUCAST breakpoints for Candida albicans using a validated in vitro pharmacokinetic/pharmacodynamic model [Susceptibility] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Background. CLSI and EUCAST susceptibility breakpoints for voriconazole and C. albicans differ by one dilution (≤0.125 and ≤0.06 mg/l, respectively) whereas the epidemiological cutoff values (ECOFF/ECV) with both methodologies are the same (0.03 mg/L). We therefore determined the pharmacokinetic-pharmacodynamic (PK/PD) breakpoints of voriconazole against C. albicans for both methodologies with an in vitro PK/PD model, which was validated using existing animal PK/PD data.Methods. Four clinical wild-type and non-wild-type C. albicans isolates (voriconazole MICs 0.008-0.125 mg/l) were tested in an in vitro PK/PD model. For validation purposes, mouse PK were simulated and in vitro PD were compared with in vivo outcome. Human PK were simulated and the exposure-effect relationship fAUC0-24/MIC was described for EUCAST and CLSI24/48h methods. PK/PD breakpoints were determined using the fAUC0-24/MIC associated with half-maximal activity (EI50) and Monte Carlo simulation analysis.Results. The in vitro 24h-PD EI50 of voriconazole against C. albicans were 2.5-5 (1.5-17) fAUC/MIC. However, the 72h-PD were higher, 133 (51-347) fAUC/MIC for EUCAST and 94 (35-252) fAUC/MIC for CLSI. The mean (95% confidence interval) probability of target attainment (PTA) was 100(95-100)%, 97(72-100)%, 83(35-99)%, and 49(8-91)% and 100(97-100)%, 99(85-100)%, 91(52-100)% and 68(17-96)% for EUCAST and CLSI MICs 0.03, 0.06, 0.125, and 0.25 mg/L, respectively. Significantly, >95% PTAs were found for EUCAST/CLSI MICs ≤0.03 mg/ll. For MICs 0.06-0.125 mg/l trough levels 1-4 mg/ll would be required.Conclusion. A PK/PD breakpoint of C. albicans voriconazole at the ECOFF/ECV of 0.03 mg/L was determined for both EUCAST/CLSI methods, indicating the need for breakpoint harmonization for the reference methodologies. Full Article
and Spectrum of Beta-Lactamase Inhibition by the Cyclic Boronate QPX7728, an Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases: Enhancement of Activity of Multiple Antibiotics Against Isogenic Strains Expressing Single {beta} By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MIC of multiple IV only (ceftazidime, piperacillin, cefepime, ceftolozane and meropenem) and orally bioavailable (ceftibuten, cefpodoxime, tebipenem) antibiotics alone and in combination with QPX7728 (4 μg/ml), as well as comparator agents, were determined against the panels of laboratory strains of P. aeruginosa and K. pneumoniae expressing over 55 diverse serine and metallo beta-lactamases. QPX7728 significantly enhanced the potency of antibiotics against the strains expressing Class A extended spectrum beta-lactamases (CTX-M, SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-A, BKC-1), consistent with beta-lactamase inhibition demonstrated in biochemical assays. It also inhibits both plasmidic (CMY, FOX, MIR, DHA) and chromosomally encoded (P99, PDC, ADC) Class C beta-lactamases and Class D enzymes including carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/72/58). QPX7728 is also a potent inhibitor of many class B metallo beta-lactamases (NDM, VIM, CcrA1, IMP, GIM but not SPM or L1). Addition of QPX7728 (4 μg/ml) reduced the MICs in a majority of strains to the level observed for the vector alone control, indicative of complete beta-lactamase inhibition. The ultra-broad-spectrum beta-lactamase inhibition profile makes QPX7728 a viable candidate for further development. Full Article
and Emergence of the phenicol exporter gene fexA in Campylobacter coli and Campylobacter jejuni of animal origin [Letters] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Bacteria of the genus Campylobacter are major foodborne pathogens which have become increasingly resistant to clinically important antimicrobial agents (1).... Full Article
and Complex response of the CpxAR two-component system to {beta}-lactams on antibiotic resistance and envelop homeostasis in Enterobacteriaceae [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 The Cpx stress response is widespread among Enterobacteriaceae. We have previously reported a mutation in cpxA in a multidrug resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields to a single amino acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxAY144N is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the intimate interconnection between Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall active antibiotic or inactivation of penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increase phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to causes abnormal accumulation of muropeptides (disaccharide-pentapeptide, N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamy-meso-diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycan caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular the interaction between CpxA and CpxP, as a promising therapeutic target. Full Article
and Nonclinical Pharmacokinetics, Protein Binding, and Elimination of KBP-7072, An Aminomethylcycline Antibiotic in Animal Models [Pharmacology] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 KBP-7072 is a semi-synthetic aminomethylcycline with broad-spectrum activity against Gram-positive and Gram-negative pathogens including multidrug resistant bacterial strains. The pharmacokinetics (PK) of KBP-7072 after oral and intravenous (IV) administration of single and multiple doses were investigated in animal models including during fed and fasted states and also evaluated the protein binding and excretion characteristics. In Sprague-Dawley (SD) rats, Beagle dogs, and CD-1 mice, KBP-7072 demonstrated a linear PK profile after administration of single oral and IV and multiple oral doses. Oral bioavailability ranged from 12% to 32%. Mean Tmax ranged from 0.5 to 4 hours, and mean half-life ranged from approximately 6 to 11 hours. Administration of oral doses in the fed state resulted in a marked reduction in Cmax and AUC compared with dosing in fasted animals. The mean bound fractions of KBP-7072 were 77.5%, 69.8%, 64.5%, 69.3%, and 69.2% in mouse, rat, dog, monkey, and human plasma, respectively. Following a single 22.5 mg/kg oral dose of KBP-7072 in SD rats, cumulative excretion in feces was 64% and in urine was 2.5% of the administered dose. The PK results in animal models are consistent with single and multiple ascending dose studies in healthy volunteers and confirm the suitability of KBP-7072 for once daily oral and IV administration in clinical studies. Full Article
and The Impact of Intrinsic Resistance Mechanisms on Potency of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. [Mechanisms of Resis By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo beta-lactamases at a nano molar range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impact of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3 producing isogenic strains of K. pneumoniae and P. aeruginosa and OXA-23-producing strains of A. baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multi-drug resistance efflux pumps in either Enterobacteriaceae, or in non-fermenters such as P. aeruginosa or A. baumannii. In P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane is permeabilized. The potency of QPX7728 in P. aeruginosa is not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8-16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed KPC-mediated meropenem resistance in strains with porin mutations, consistent with a lesser effect of these mutations on the potency of QPX7728 compared to other agents. The ultra-broad-spectrum beta-lactamase inhibition profile combined with enhancement of the activity of multiple beta-lactam antibiotics with varying sensitivity to the intrinsic resistance mechanisms of efflux and permeability indicate QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics. Full Article
and Rapid-Release Griffithsin Fibers for the Dual Prevention of HSV-2 and HIV-1 Infections [Antiviral Agents] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 The biologic Griffithsin (GRFT) has recently emerged as a candidate to safely prevent sexually transmitted infections (STIs) including human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2). However, to date, there are few delivery platforms that are available to effectively deliver biologics to the female reproductive tract (FRT). The goal of this work was to evaluate rapid-release polyethylene oxide (PEO), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) fibers, that incorporate GRFT, in in vitro (HIV-1 and HSV-2) and in vivo (HSV-2) infection models. GRFT loading was determined via ELISA, and the bioactivity of GRFT fibers was assessed using in vitro HIV-1 pseudovirus and HSV-2 plaque assays. Afterwards, the efficacy of GRFT fibers was assessed in a murine model of lethal HSV-2 infection. Finally, murine reproductive tracts and vaginal lavages were evaluated for histology and cytokine expression, 24 and 72 hr after fiber administration, to determine safety. All rapid-release formulations achieved high levels of GRFT incorporation and were completely efficacious against in vitro HIV-1 and HSV-2 infections. Importantly, all rapid-release GRFT fibers provided potent protection in a murine model of HSV-2 infection. Moreover, histology and cytokine levels, evaluated from collected murine reproductive tissues and vaginal lavages treated with blank fibers, showed no increased cytokine production or histological aberrations, demonstrating the preliminary safety of rapid-release GRFT fibers in vaginal tissue. Full Article
and Evaluation of the effect of contezolid (MRX-I) on the corrected QTc interval: a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Contezolid (MRX-I), a new oxazolidinone, is an antibiotic in development for treating complicated skin and soft tissue infections (cSSTI) caused by resistant Gram-positive bacteria. This was a thorough QT study conducted in 52 healthy subjects who were administered oral contezolid at a therapeutic (800 mg) dose, a supratherapeutic (1600 mg) dose, placebo, and oral moxifloxacin 400 mg in 4 separate treatment periods. The pharmacokinetic profile of contezolid was also evaluated. Time-point analysis indicated that the upper bounds of the two-sided 90% confidence interval (CI) for placebo-corrected change-from-baseline QTc (QTc) were <10 ms for the contezolid therapeutic dose at each time point. The upper bound of the 90% CI for QTc were slightly more than 10 ms with the contezolid supratherapeutic dose at 3 and 4 hours postdose, and the prolongation effect on the QT/QTc interval was less than that of the positive control, moxifloxacin 400 mg. At 3 and 4 h after the moxifloxacin dose, the moxifloxacin group met the assay sensitivity criteria outlined in ICH Guidance E14 with having a lower confidence bound ≥5 ms. The results of a linear exposure-response model which were similar to that of a time point analysis demonstrated a slightly positive relationship between contezolid plasma levels and QTcF interval with a slope of 0.227 ms per mg/L (90% CI: 0.188 to 0.266). In summary, contezolid did not prolong the QT interval at a therapeutic dose and may have a slight effect on QT interval prolongation at a supratherapeutic dose. Full Article
and Proteomic changes of Klebsiella pneumoniae in response to colistin treatment and crrB mutation-mediated colistin resistance [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance. Full Article
and Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying the quinolone resistance [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018, were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin and erythromycin resistance rates were 84.69%, 51.44% and 3.59% in U. parvum and 82.43%, 62.16% and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and ermB gene were identified in erythromycin-resistant Ureaplasma spp. Fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced. Full Article
and Population Pharmacokinetics and Dosage Optimization of Linezolid in Patients with Liver Dysfunction [Pharmacology] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Linezolid is the first synthetic oxazolidone agent to treat infections caused by Gram-positive pathogens. Infected patients with liver dysfunction (LD) are more likely to suffer from adverse reactions such as thrombocytopenia when standard-dose linezolid is used than patients with LD who didn't use linezolid. Currently, pharmacokinetics data of linezolid in patients with LD are limited. The study aimed to characterize pharmacokinetics parameters of linezolid in patients with LD, identify the factors influencing the pharmacokinetics, and propose an optimal dosage regimen. We conducted a prospective study and established population pharmacokinetics model with the Phoenix NLME. The final model was evaluated by goodness-of-fit plots, bootstrap analysis, and prediction corrected-visual predictive check. A total of 163 concentration samples from 45 patients with LD were adequately described by a one-compartment model with first-order elimination along with prothrombin activity (PTA) and creatinine clearance as significant covariates. Linezolid clearance (CL) was 2.68 L/h (95% confidence interval [CI]: 2.34-3.03 L/h); the volume of distribution (Vd) was 58.34 L (95% CI: 48.00-68.68 L). Model-based simulation indicated that the conventional dose was at risk for overexposure in patients with LD or severe renal dysfunction; reduced dosage (300 mg/12 h) would be appropriate to achieve safe (Cmin, ss at 2-8 ug/mL) and effective targets (the ratio of AUC0-24 at steady state to MIC, 80-100). In addition, for patients with severe LD (PTA <= 20%), the dosage (400 mg/24 h) was sufficient at an MIC <= 2 ug/mL. This study recommended therapeutic drug monitoring for patients with LD. Full Article
and Novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage [Mechanisms of Action] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Recent studies highlight the abundance of commensal coagulase-negative staphylococci (CoNS) on healthy skin. Evidence suggests that CoNS actively shape the skin immunological and microbial milieu to resist colonization or infection by opportunistic pathogens, including methicillin resistant Staphylococcus aureus (MRSA), in a variety of mechanisms collectively termed colonization resistance. One potential colonization resistance mechanism is the application of quorum sensing, also called the Accessory Gene Regulator (agr) system, which is ubiquitous among staphylococci. Common and rare CoNS make autoinducing peptides (AIPs) that function as MRSA agr inhibitors, protecting the host from invasive infection. In a screen of CoNS spent media we found that Staphylococcus simulans, a rare human skin colonizer and frequent livestock colonizer, released potent inhibitors of all classes of MRSA agr signaling. We identified three S. simulans agr classes, and have shown intraspecies cross-talk between non-cognate S. simulans agr types for the first time. The S. simulans AIP-I structure was confirmed, and the novel AIP-II and AIP-III structures were solved via mass spectrometry. Synthetic S. simulans AIPs inhibited MRSA agr signaling with nanomolar potency. S. simulans in competition with MRSA reduced dermonecrotic and epicutaneous skin injury in murine models. Addition of synthetic AIP-I also effectively reduced MRSA dermonecrosis and epicutaneous skin injury in murine models. These results demonstrate potent anti-MRSA quorum sensing inhibition by a rare human skin commensal, and suggest that cross-talk between CoNS and MRSA may be important in maintaining healthy skin homeostasis and preventing MRSA skin damage during colonization or acute infection. Full Article
and Fenbendazole controls in vitro growth, virulence potential and animal infection in the Cryptococcus model [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 The human diseases caused by the fungal pathogens Cryptococcus neoformans and C. gattii are associated with high indices of mortality, and toxic and/or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Previous studies suggested benzimidazoles as promising anti-cryptococcal agents combining low cost and high antifungal efficacy, but their therapeutic potential has not been demonstrated so far. In this study, we investigated the antifungal potential of fenbendazole, the most effective anti-cryptococcal benzimidazole. Fenbendazole was inhibitory against 17 different isolates of C. neoformans and C. gattii at a low concentration. The mechanism of anti-cryptococcal activity of fenbendazole involved microtubule disorganization, as previously described for human parasites. In combination with fenbendazole, the concentrations of the standard antifungal amphotericin B required to control cryptococcal growth were lower than those required when this antifungal was used alone. Fenbendazole was not toxic to mammalian cells. During macrophage infection, the anti-cryptococcal effects of fenbendazole included inhibition of intracellular proliferation rates and reduced phagocytic escape through vomocytosis. Fenbendazole deeply affected the cryptococcal capsule. In a mice model of cryptococcosis, the efficacy of fenbendazole to control animal mortality was similar to that observed for amphotericin B. These results indicate that fenbendazole is a promising candidate for the future development of an efficient and affordable therapeutic tool to combat cryptococcosis. Full Article
and In vitro and in vivo study on the synergistic effect of minocycline and azoles against pathogenic fungi [Susceptibility] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 In vitro and in vivo interactions of minocycline and azoles including itraconazole, voriconazole, and posaconazole against filamentous pathogenic fungi were investigated. A total of 56 clinical isolates were studied in vitro via broth microdilution checkerboard technique, including 20 strains of Aspergillus fumigatus, 7 strains of A. flavus, 16 strains of Exophiala dermatitidis, 10 strains of Fusarium solani and 3 strain s of F. oxysporum. The results revealed that minocycline individually did not exhibit any significant antifungal activity against all tested strains. However, favorable synergy of minocycline with itraconazole, voriconazole, or posaconazole were observed against 34 (61%), 28 (50%), and 38 (69%) isolates, respectively, including azole resistant A. fumigatus and Fusarium spp. with inherently high MICs of azoles. Synergistic combinations resulted in 4 fold to 16-fold reduction of effective MICs of minocycline and azoles. No antagonism was observed. In vivo effect of minocycline-azole combinations were evaluated by survival assay in Galleria mellonella model infected with E. dermatitidis strain BMU00034, F. solani strain FS9, A. fumigatus strain AF293, AFR1 and AFR2 . Minocycline acted synergistically with azoles and significantly increased larvae survival in all isolates (P<0.001), including azole resistant A. fumigatus and azole-inactive Fusarium spp.. In conclusion, the results suggested that minocycline combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. Full Article
and Development of probiotic formulations for oral candidiasis prevention: Gellan gum as a carrier to deliver Lactobacillus paracasei 28.4 [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and there is a necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeting local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food-additive, with a probiotic and investigated its antifungal activity against Candida albicans. Lactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1%). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic/gellan formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacteria-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic/gellan formulations provided a release of L. paracasei cells over 24 hours that was sufficient to inhibit the growth of C. albicans with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic/gellan formulations also had inhibitory activity against Candida spp. biofilms by reducing the number of Candida spp. cells (p < 0.0001), decreasing the total biomass (p = 0.0003), and impairing hyphae formation (p = 0.0002), compared to the control group which received no treatment. Interestingly, probiotic formulation of 1% w/v gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log of CFU/mL after 10 days. This formulation inhibited the C. albicans growth (p < 0.0001), prevented the development of candidiasis lesions (p = 0.0013), and suppressed inflammation (p = 0.0006) when compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis. Full Article
and Safety, Pharmacokinetics, and Drug:Drug Interaction Potential of Intravenous Durlobactam, a {beta}-lactamase Inhibitor, in Healthy Subjects [Pharmacology] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Durlobactam (DUR, also known as ETX2514) is a novel β-lactamase inhibitor with broad activity against Ambler class A, C, and D β-lactamases. Addition of DUR to sulbactam (SUL) in vitro restores SUL activity against clinical isolates of Acinetobacter baumannii. The safety and pharmacokinetics (PK) of DUR alone and with SUL and/or imipenem/cilastatin (IMI/CIL) were evaluated in healthy subjects. This was a randomized, placebo-controlled study. In Part A, subjects including an elderly cohort (DUR 1 g) received single ascending doses of DUR 0.25-8 g. In Part B, multiple ascending dose of DUR 0.25-2 g were administered every 6 hours (q6h) for 29 doses. In Parts C and D, the drug-drug interaction (DDI) potential, including safety, of DUR (1 g) with SUL (1 g) and/or IMI/CIL (0.5/0.5 g) was investigated after single and multiple doses. Plasma and urine concentrations of DUR, SUL, and IMI/CIL were determined. Among 124 subjects, DUR was generally safe and well tolerated either alone or in combination with SUL and/or IMI/CIL. After single and multiple doses, DUR demonstrated linear dose proportional exposure across the studied dose ranges. Renal excretion was a predominant clearance mechanism. No drug:drug interaction potential was identified between DUR and SUL and/or IMI/CIL. SUL-DUR, 1 g (of each component) administered q6h with a 3 hour IV infusion, is under development for the treatment of serious infections due to A. baumannii. Full Article
and Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Ceftazidime–avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales. Here we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime–avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine–proline deletion at positions 294–295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime–avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared with AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime–avibactam and cefiderocol requires close monitoring.Importance Ceftazidime–avibactam and cefiderocol are newly approved β-lactam agents that possess broad spectrum activity against multidrug-resistant (MDR) Gram-negative bacteria. We show here that a two amino-acid deletion in the chromosomal AmpC β-lactamase, identified in a clinical strain of Enterobacter cloacae, confers reduced susceptibility to both agents. By crystallographic studies of free and drug-bound forms of enzyme, we demonstrate that this deletion in AmpC induces slanting of the H-9 helix that is directly connected with the R2 loop, and disappearance of the H-10 helix, is directly responsible for increased hydrolysis of ceftazidime and cefiderocol. These findings provide novel insights into how MDR Gram-negative bacteria may evolve their β-lactamases to survive selective pressure from these newly developed β-lactam agents. Full Article
and Phase 2a Pharmacokinetic, Safety, and Exploratory Efficacy Evaluation of Oral Gepotidacin (GSK2140944) in Female Participants With Uncomplicated Urinary Tract Infection (Acute Uncomplicated Cystitis) [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 Gepotidacin, a triazaacenaphthylene bacterial type II topoisomerase inhibitor, is in development for treatment of uncomplicated urinary tract infection (uUTI). This Phase 2a study in female participants with uUTI evaluated the pharmacokinetics (primary objective), safety, and exploratory efficacy of gepotidacin. Eligible participants (N = 22) were confined to the clinic at baseline, received oral gepotidacin 1,500 mg twice daily for 5 days (on-therapy; Days 1 to 5), and returned to the clinic for test-of-cure (Days 10 to 13) and follow-up (Day 28±3). Pharmacokinetic, safety, clinical, and microbiological assessments were performed. Maximum plasma concentrations were observed approximately 1.5 to 2 hours postdose. Steady state was attained by Day 3. Urinary exposure over the dosing interval increased from 3,742 μg.h/ml (Day 1) to 5,973 μg.h/ml (Day 4), with trough concentrations of 322 to 352 μg/ml from Day 3 onward. Gepotidacin had an acceptable safety-risk profile with no treatment-limiting adverse events and no clinically relevant safety trends. Clinical success was achieved in 19 (86%) and 18 (82%) of 22 participants at test-of-cure and follow-up, respectively. Eight participants had a qualifying baseline uropathogen (growth; ≥105 CFU/ml). A therapeutic (combined clinical and microbiological [no growth; <103 CFU/ml]) successful response was achieved in 6 (75%) and 5 (63%) of 8 participants at test-of-cure and follow-up, respectively. Plasma area under the free-drug concentration-time curve over 24 hours at steady state divided by the MIC (fAUC0-24/MIC) and urine AUC0-24/MIC ranged from 6.99 to 90.5 and 1,292 to 121,698, respectively. Further evaluation of gepotidacin in uUTI is warranted. (NCT03568942) Full Article
and Therapeutic efficacy of a mixed formulation of conventional and PEGylated liposomes containing meglumine antimoniate, combined with allopurinol, in dogs naturally infected with Leishmania infantum [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 Treatment of dogs naturally infected with Leishmania infantum using meglumine antimoniate (MA) encapsulated in conventional liposomes (LC) in association with allopurinol has been previously reported to promote marked reduction in the parasite burden in the main infection sites. Here, a new assay in naturally infected dogs was performed using a novel liposome formulation of MA consisting of a mixture of conventional and long-circulating (PEGylated) liposomes (LCP), with expected broader distribution among affected tissues of the mononuclear phagocyte system. Experimental groups of naturally infected dogs were as follows: LCP+Allop, receiving LCP intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg/dose) at 4-day intervals, plus allopurinol at 30 mg/kg/12 h p.o. during 130 days; LC+Allop, receiving LC intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg/dose), plus allopurinol during 130 days; Allop, treated with allopurinol only; non-treated control. Parasite loads were evaluated by quantitative PCR in liver, spleen and bone marrow and by immunohistochemistry in the ear skin, before, just after treatment and 4 months later. LCP+Allop and LC+Allop groups, but not the Allop group, showed significant suppression of the parasites in the liver, spleen and bone marrow 4 months after treatment, compared to the pre-treatment period or the control group. Only LCP+Allop group showed significantly lower parasite burden in the skin, in comparison to the control group. On the basis of clinical staging and parasitological evaluations, LCP formulation exhibited a more favorable therapeutic profile, when compared to LC one, being therefore promising for treatment of canine visceral leishmaniasis. Full Article
and Epidemiological study on prevalence, serovar diversity, multi-drug resistance and CTX-M-type extended-spectrum {beta}-lactamases of Salmonella spp. from patients with diarrhea, food of animal origin, and pets in several provinces of China [Epidemiology an By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 A total of 2,283 Salmonella spp. isolates were recovered from 18,334 samples including patients with diarrhea, food of animal origin and pets across 5 provinces of China. The highest prevalence of Salmonella spp. was detected in chicken meats (39.3%, 486/1,237). Fifteen serogroups and 66 serovars were identified, with Typhimurium and Enteritidis being the most dominant. Most (85.5%, 1,952/2,283) isolates exhibited resistant to ≥ 1 antimicrobial and 56.4% were multi-drug resistant (MDR). A total of 222 isolates harbored extended-spectrum β-lactamases (ESBLs), 200 of which were CTX-M-type that were mostly detected from chicken meat and turtle fecal. Overall, eight blaCTX-M genes were identified, with blaCTX-M-65, blaCTX-M-123, blaCTX-M-14, blaCTX-M-79, and blaCTX-M-130 being the most prevalent. Totally, 166 of the 222 ESBL-producing isolates had amino acid substitutions in GyrA (S83Y, S83F, D87G, D87N, and D87Y) and ParC (and S80I), whilst the PMQR-encoding genes oqxA/B, qepA, and qnrB/S were detected in almost all isolates. Of the fifteen sequence types (STs) identified in the 222 ESBLs, ST17, ST11, ST34, and ST26 ranked among the top 5 in the number of isolates. Our study revealed considerable serovars diversity, high prevalence of co-occurrence of MDR determinants, including CTX-M-type ESBLs, QRDRs mutations and PMQR genes. This is the first report of CTX-M-130 Salmonella spp. from patients with diarrhea and QRDRs mutations from turtle fecal samples. Our study emphasizes the importance of actions, both in the health care settings and in the veterinary medicine sector, to control the dissemination of MDR, especially the CTX-M Salmonella spp. isolates. Full Article
and Population Pharmacokinetics and Exposure-Response Relationships of Baloxavir Marboxil in Patients Infected with Influenza at High Risk of Influenza Complications [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-20T08:36:47-07:00 Baloxavir marboxil, a prodrug of cap-dependent endonuclease inhibitor, baloxavir acid, reduces the time to improvement of influenza symptoms in patients infected with type A or B influenza virus. To characterize its pharmacokinetics, a population pharmacokinetic model for baloxavir acid was developed using 11846 plasma concentration data items from 1827 subjects including 2341 plasma concentration data items from 664 patients at high risk of influenza complications. A three-compartment model with first-order elimination and first-order absorption with lag time well described the plasma concentration data. Body weight and race were found to be the most important factors influencing clearance and volume of distribution. The exposures in high-risk patients were similar to those in otherwise healthy patients, and no pharmacokinetic difference was identified regarding any risk factors for influenza complications.Exposure-response analyses were performed regarding the time to improvement of symptoms and the reduction in the influenza virus titer in high-risk patients. The analyses suggested that body weight-based dosage, 40 mg for patients weighing < 80 kg and 80 mg for patients weighing ≥ 80 kg, can shorten the time to improvement of influenza symptoms and reduce virus titer for both type A and B influenza virus regardless of the exposure levels of the high-risk patients as well as for the otherwise healthy influenza patients.The results of our population pharmacokinetic and exposure-response analyses in patients with risk factors of influenza complications should provide useful information on the pharmacokinetic and pharmacodynamic characteristics of baloxavir marboxil and also for the optimization of dose regimens. Full Article
and Safety and tolerability of more than 6 days of tedizolid treatment [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Tedizolid has demonstrated its efficacy and safety in clinical trials, however, data concerning its tolerability in long-term treatments is scarce. The aim of the study was to assess the indications and to describe the long-term safety profile of tedizolid.A multicentric, retrospective study of patients who received tedizolid for more than 6-days was conducted. Adverse events (AEs) were identified from patients' medical records and laboratory data. The World Health Organization causality categories were used to discern AEs probably associated with tedizolid.Eighty-one patients, treated with tedizolid 200mg once-daily for a median (IQR) duration of 28 (14-59) days, were included, 36 (44.4%) had previously received linezolid. Most common reasons for selecting tedizolid were to avoid linezolid potential toxicities or interactions (53.1%) or due to previous linezolid-related toxicities (27.2%). Most common indications were off-label, including prosthetic joint infections, osteomyelitis and respiratory infections (77.8%). Overall, 9/81 patients (11.1%) experienced a probably associated AE. Two patients (2.5%) developed gastrointestinal disorders, 1 (1.2%) anemia and 6 thrombocytopenia (7.4%) after a median (IQR) duration of treatment of 26.5 (17-58.5) days. Four (5%) patients discontinued tedizolid due to AEs. Among 23 patients with chronic renal failure (CRF) the rate of mielotoxicity was 17.4% and only 8.7% had to stop tedizolid and 20 out of 22 with previous linezolid-associated toxicity had no AE.Long-term tedizolid treatments had good tolerance with rates of gastrointestinal AE and hematological toxicity lower than those reported with linezolid, particularly in patients with CRF and in those with a previous history of linezolid-associated toxicity. Full Article
and Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis in Mongolia [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-20T08:36:47-07:00 Globally, mutations in the katG gene account for the majority of isoniazid-resistant strains of Mycobacterium tuberculosis. Buyankhishig et al analyzed a limited number of Mycobacterium tuberculosis strains in Mongolia and found that isoniazid resistance was mainly attributable to inhA mutations. The GenoType® MTBDRplus assay was performed for isolates collected in the First National Tuberculosis Prevalence Survey and the Third Anti-Tuberculosis Drug Resistance Survey to investigate genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis in Mongolia. Of the 409 isoniazid-resistant isolates detected by the GenoType® MTBDRplus assay, 127 (31.1%) were resistant to rifampicin, 294 (71.9%) had inhA mutations without katG mutations, 113 (27.6%) had katG mutations without inhA mutations, and two (0.5%) strains had mutations in both the inhA and katG genes. Of the 115 strains with any katG mutation, 114 (99.1%) had mutations in codon 315 (S315T). Of the 296 trains with any inhA mutation, 290 (98.0%) had a C–15T mutation. The proportion of isoniazid-resistant strains with katG mutations was 25.3% among new cases and 36.2% among retreatment cases (p=0.03), as well as 17.0% among rifampicin-susceptible strains and 52.8% among rifampicin-resistant strains (p<0.01). Rifampicin resistance was significantly associated with the katG mutation (adjusted odds ratio 5.36, 95% CI 3.3–8.67, p<0.001). Mutations in inhA predominated in isoniazid-resistant tuberculosis in Mongolia. However, the proportion of katG mutations in isolates from previously treated cases was higher than that among new cases, and that in cases with rifampicin resistance was higher than that in cases without rifampicin resistance. Full Article
and Cardiovascular safety and population pharmacokinetic properties of piperaquine in African patients with uncomplicated falciparum malaria - a pooled multicentre analysis [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-20T08:36:47-07:00 Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicentre trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90ms mean QTc-prolongation per 100ng/mL increase in piperaquine concentration. The effect of piperaquine on absolute QTc-interval estimated a mean maximum QTc-interval of 456ms (EC50=209ng/mL). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98-2.46% risk of having QTc-prolongation > 60ms in all treatment settings. Although piperaquine administration resulted in QTc-prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern. Full Article
and Mutation of kvrA causes OmpK35/36 porin downregulation and reduced meropenem/vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae. [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Meropenem/vaborbactam resistance in Klebsiella pneumoniae is associated with loss of function mutations in the OmpK35 and OmpK36 porins. Here we identify two previously unknown loss of function mutations that confer cefuroxime resistance in K. pneumoniae. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor controlling capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem/vaborbactam in a KPC-3 producing K. pneumoniae isolate. Full Article
and Prediction of antibiotic susceptibility for urinary tract infection in a hospital setting [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Objectives: Empiric antibiotic prescribing can be supported by guidelines and/or local antibiograms, but these have limitations. We sought to use data from a comprehensive electronic health record to use statistical learning to develop predictive models for individual antibiotics that incorporate patient-, and hospital-specific factors. This paper reports on the development and validation of these models on a large retrospective cohort.Methods: This is a retrospective cohort study including hospitalized patients with positive urine cultures in the first 48 hours of hospitalization at a 1500 bed, tertiary care hospital over a 4.5 year period. All first urine cultures with susceptibilities were included. Statistical learning techniques, including penalized logistic regression, were used to create predictive models for cefazolin, ceftriaxone, ciprofloxacin, cefepime, and piperacillin-tazobactam. These were validated on a held-out cohort.Results: The final dataset used for analysis included 6,366 patients. Final model covariates included demographics, comorbidity score, recent antibiotic use, recent antimicrobial resistance, and antibiotic allergies. Models had acceptable to good discrimination in the training dataset and acceptable performance in the validation dataset, with a point estimate for area under the receiver operating characteristic curve (AUC) that ranged from 0.65 for ceftriaxone to 0.69 for cefazolin. All models had excellent calibration.Conclusion: In this study we used electronic health record data to create predictive models to estimate antibiotic susceptibilities for UTIs in hospitalized patients. Our models had acceptable performance in a held-out validation cohort. Full Article
and Species Distribution and Comparison between EUCAST and Gradient Concentration Strips Methods for Antifungal Susceptibility Testing of 112 Aspergillus Section Nigri Isolates [Susceptibility] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Aspergillus niger, the third species responsible for invasive aspergillosis has been considered as a homogeneous species until DNA-based identification uncovered many cryptic species. These species have been recently reclassified into the Aspergillus section Nigri. However little is yet known among the section Nigri about the species distribution and the antifungal susceptibility pattern of each cryptic species. A total of 112 clinical isolates collected from 5 teaching hospitals in France and phenotypically identified as A. niger were analyzed. Identification to the species level was carried out by nucleotide sequence analysis. The Minimum Inhibitory Concentrations (MICs) of itraconazole, voriconazole, posaconazole, isavuconazole and amphotericin B were determined by both the EUCAST and gradient concentration strips methods. Aspergillus tubingensis (n=51, 45.5%) and A. welwitschiae (n=50, 44.6%) were the most common species while A. niger accounted for only 6.3% (n=7). The MICs of azoles drugs were higher for A. tubingensis than for A. welwitschiae. The MIC of amphotericin B was 2 mg/L or less for all isolates. Importantly, MICs determined by EUCAST showed no correlation with those determined by gradient concentration strips methods, these latter being lower than the former (Spearman's rank correlation tests ranging - depending on the antifungal agent - from 0.01 to 0.25; p>0.4). In conclusion, A. niger should be considered as a minority species in the section Nigri. The differences in MICs between species for different azoles underline the importance of accurate identification. Significant divergences in the determination of MIC between EUCAST and gradient concentration strips methods require further investigation. Full Article
and Anidulafungin and Micafungin concentrations in Cerebrospinal Fluid and in Cerebral Cortex [Pharmacology] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 Anidulafungin and micafungin were quantified in cerebrospinal fluid (CSF) of critically ill adults and in cerebral cortex of deceased patients. In CSF, anidulafungin levels (<0.01-0.66 μg/ml) and micafungin levels (<0.01-0.16 μg/ml) were lower than the simultaneous plasma concentrations (0.77-5.07 μg/ml and 1.21-8.70 μg/ml, respectively). In cerebral cortex, anidulafungin and micafungin levels were 0.21-2.34 μg/g and 0.18-2.88 μg/g, respectively. Thus, MIC values of several pathogenic Candida strains exceed concentrations in CSF and in brain. Full Article
and Emergence of Mycobacterium leprae rifampicin resistance evaluated by whole-genome sequencing after 48 years of irregular treatment [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-27T08:14:57-07:00 A case of M. leprae rifampicin resistance after irregular anti-leprosy treatments since 1971 is reported. Whole-genome sequencing from four longitudinal samples indicated relapse due to acquired rifampicin resistance and not to reinfection with another strain. A putative compensatory mutation in rpoC was also detected. Clinical improvement was achieved using an alternative therapy. Full Article
and Impact of vanA-positive Enterococcus faecium exhibiting diverse susceptibility phenotypes to glycopeptides on 30-day mortality of patients with a bloodstream infection [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-27T08:14:57-07:00 Introduction: This study was performed to evaluate the impacts of vanA-positivity of Enterococcus faecium (EFM) exhibiting diverse susceptibility phenotypes to glycopeptides on clinical outcomes in patients with a bloodstream infection (BSI) through a prospective, multicenter, observational study.Methods: A total of 509 patients with an EFM BSI from eight sentinel hospitals in South Korea during a two-year period were enrolled in this study. Risk factors of the hosts and causative EFM isolates were assessed to determine associations with the 30-day mortality of EFM BSI patients via multivariable logistic regression analyses.Results: The vanA gene was detected in 35.2% (179/509) of EFM isolates; 131 EFM isolates exhibited typical VanA phenotypes (group vanA-VanA), while the remaining 48 EFM isolates exhibited atypical phenotypes (group vanA-Atypical), including VanD (n = 43) and vancomycin-variable phenotypes (n = 5). A multivariable logistic regression indicated that vanA-positivity of causative pathogens was independently associated with the increased 30-day mortality rate in the patients with an EFM BSI; however, there was no significant difference in the survival rates between the patients of the vanA-VanA and vanA-Atypical groups (log-rank test, P = 0.904).Conclusions: A high 30-day mortality rate was observed in patients with vanA-positive EFM BSIs, and vanA-positivity of causative EFM was an independent risk factor for early mortality irrespective of the susceptibility phenotypes to glycopeptides; thus, intensified antimicrobial stewardship is needed to improve clinical outcome of patients with vanA-positive EFM BSI. Full Article
and Population Pharmacokinetic Analyses for Omadacycline Using Phase 1 and 3 Data [Pharmacology] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 Omadacycline, a novel aminomethylcycline antibiotic with activity against Gram-positive and -negative organisms, including tetracycline-resistant pathogens, received FDA approval in October, 2018 for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). A previously-developed population pharmacokinetic (PK) model based on Phase 1 intravenous and oral PK data was refined using data from infected patients. Data from 10 Phase 1 studies used to develop the previous model were pooled with data from three additional Phase 1 studies, a Phase 1b uncomplicated urinary tract infection study, one Phase 3 CABP study, and two Phase 3 ABSSSI studies. The final population PK model was a three-compartment model with first-order absorption using transit compartments to account for absorption delay following oral dosing and first-order elimination. Epithelial lining fluid (ELF) concentrations were modeled as a sub-compartment of the first peripheral compartment. A food effect on oral bioavailability was included in the model. Sex was the only significant covariate identified, with 15.6% lower clearance for females relative to males. Goodness-of-fit diagnostics indicated a precise and unbiased fit to the data. The final model, which was robust in its ability to predict plasma and ELF exposures following omadacycline administration, was also able to predict the central tendency and variability in concentration-time profiles using an external Phase 3 ABSSSI dataset. A population PK model, which described omadacycline PK in healthy subjects and infected patients, was developed and subsequently used to support pharmacokinetic-pharmacodynamic (PK-PD) and PK-PD target attainment assessments. Full Article
and Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in Plasmodium berghei. [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in south East Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other malaria endemic regions. Artemisinin reduced susceptibility in South East Asia (SEA) has been primarily linked to mutations in P. falciparum Kelch-13, which is currently widely recognised as a molecular marker of artemisinin resistance. However, 2 mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with artemisinin reduced susceptibility in a rodent model of malaria and some cases of UBP-1 mutation variants associating with artemisinin treatment failure have been reported in Africa and SEA. In this study, we have employed CRISPR-Cas9 genome editing and pre-emptive drug pressures to test these artemisinin susceptibility associated mutations in UBP-1 in P. berghei sensitive lines in vivo. Using these approaches, we have shown that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines while simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work has provided independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions. Full Article
and Combination Therapy Using Benznidazole and Aspirin During the Acute Phase of Experimental Chagas Disease Prevents Cardiovascular Dysfunction and Decreases Typical Cardiac Lesions in the Chronic Phase [Clinical Therapeutics] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy, and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (NFX) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase. At low doses, aspirin (ASA) has been reported to protect against T. cruzi infection. We evaluated the effectiveness of BZ in combination with ASA at low doses during the acute disease phase and evaluated cardiovascular aspects and cardiac lesions in the chronic phase. ASA treatment prevented the cardiovascular dysfunction (hypertension and tachycardia) and typical cardiac lesions. Moreover, BZ+ASA-treated mice had a smaller cardiac fibrotic area than that in BZ-treated mice. These results were associated with an increase in the number of eosinophils and reticulocytes and level of nitric oxide in the plasma and cardiac tissue of ASA-treated mice relative to respective controls. These effects of ASA and BZ+ASA in chronically infected mice were inhibited by pretreatment with the LXA4 receptor antagonist, Boc-2, indicating that the protective effects of ASA are mediated by ASA-triggered lipoxin. These results emphasize the importance of exploring new drug combinations for treatments of acute phase of Chagas disease that are beneficial for chronic patients. Full Article
and In vitro and in vivo antibiotic capacity of two host defence peptides [Mechanisms of Action] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Two non-amidated host defence peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria; two isolated from diabetic foot ulcer patients, Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3, and another from a commercial collection, Salmonella enterica serovar Typhimurium (ATCC 14028). In vitro experiments showed that the antimicrobial performance of the synthetic peptides, Pin2[G] and FA1, was modest, although FA1 was more effective than Pin2[G]. In contrast Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48-72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72-96 h of treatment. Ceftriaxone was equally effective vs. Pseudomonas but less effective vs. S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica ser. Typhimurium (ATCC 14028). Only Pin2[G], at 0.56 mg/kg, was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing poly(IC)-induced pro-inflammatory IL6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity, and suggest that other factors such as immunomodulatory activity were more important. Full Article
and Focusing the lens on the CAMERA concepts: Early combination {beta}-lactam and vancomycin therapy in methicillin-resistant Staphylococcus aureus bacteremia [Minireviews] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Methicillin-resistant Staphylococcus aureus (MRSA) has grown to become a major burden on healthcare systems. The cumulation of limited therapeutic options and worsened patient outcomes with persistent MRSA bacteremia has driven research in optimizing its initial management. The guidelines published by the Infectious Disease of America currently recommend combination therapy for refractory MRSA bacteremia, but the utility of combining antibiotics from the start of therapy is under investigation. The alternative strategy of early use of a β-lactam antibiotics in combination with vancomycin upon initial MRSA bacteremia detection has shown promise. While this concept has gained international attention, providers should give this strategy serious consideration prior to implementation. The objective of this review is to examine retrospective and prospective evidence for early combination with vancomycin and β-lactam antibiotics, as well as explore potential consequences of combination therapy. Full Article
and Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model [Pharmacology] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOmutS (MICciprofloxacin 0.25 mg/L, MICmeropenem 2 mg/L) and CW44 (MICciprofloxacin 0.5 mg/L, MICmeropenem 4 mg/L), were investigated for 120h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin 0.4g every 8h as 1h-infusions (80% ELF penetration), meropenem 6 g/day as continuous infusion (CI; 30% and 60% ELF penetration) and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by UHPLC-PDA. For both strains, all monotherapies failed with substantial regrowth and resistance of planktonic (≥8log10 CFU/mL) and biofilm (>8log10 CFU/cm2) bacteria at 120h (MICciprofloxacin up to 8 mg/L, MICmeropenem up to 64 mg/L). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ~48h onwards and suppressed regrowth to ≤4log10 CFU/mL and ≤6log10 CFU/cm2 at 120h. Overall, both combination treatments suppressed amplification of resistance of planktonic bacteria for both strains, and biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed amplification of resistance of biofilm bacteria for PAOmutS. Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains. Full Article
and Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs [Antiviral Agents] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Drug repositioning is the only feasible option to address the COVID-19 global challenge immediately. We screened a panel of 48 FDA-approved drugs against SARS-CoV-2 which were pre-selected by an assay of SARS-CoV and identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low micromolar IC50s and in particular, two FDA-approved drugs - niclosamide and ciclesonide – were notable in some respects. Full Article
and Influence of CYP2C8, CYP3A4 and CYP3A5 host genotypes on early recurrence of Plasmodium vivax [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 CYP450 enzymes are involved in biotransformation of chloroquine (CQ), but the role of the different metabolism profiles of this drug has not been properly investigated in relation to P. vivax recurrences. To investigate the influence of CYPs genotypes associated with CQ-metabolism on early recurrence rates of P. vivax, a case-control study was carried out. Cases included patients presenting an early recurrence (CQ-recurrent), defined as recurrence during the first 28 days after initial infection, plasma concentrations of CQ plus desethylchloroquine (DCQ, the major CQ metabolite) higher than 100 ng/mL. A control (CQ-responsive) with no parasite recurrence over the follow-up was also included. CQ and DCQ plasma levels were measured on Day 28. CQ CYPs (CYP2C8, CYP3A4 and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify CQ and DCQ efficacy in P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and controls for CYP2C8 (OR=1.45, 95% CI=0.51-4.14, p=0.570), CYP3A4 (OR=2.38, 95% CI=0.92-6.19, p=0.105) and CYP3A5 (OR=4.17, 95% CI=0.79-22.04, p=1.038) genes. DCQ levels were higher than CQ, regardless of the genotype. Regarding the DCQ/CQ rate, there was no difference between groups or between those patients who had a normal or mutant genotype. DCQ and CQ showed similar efficacy ex vivo. CYPs genotypes had no influence on early recurrence rates. Similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite presence of alleles associated with slow metabolism. Full Article
and Comparative Genomic Analysis of Third Generation Cephalosporin-Resistant Escherichia coli Harboring blaCMY-2-Positive IncI1 group, IncB/O/K/Z, and IncC Plasmids Isolated from Healthy Broilers in Japan. [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 The off-label use of third generation cephalosporin (3GC) during in ovo vaccination or vaccination of newly hatched chicks, was a common practice worldwide. CMY-2-producing Escherichia coli have been disseminated among broiler production. The objectives of this study were to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan because grandparent stock and parent stock were imported in Japan. We examined the whole genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002-2014. The predominant 3GC-resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-I (n=21; 24.1%), IncI (n=12; 13.8%), IncB/O/K/Z (n=28; 32.2%), and IncC (n=22; 25.3%). Those plasmids were subjected to gene clustering and network analyses and plasmid multi-locus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single nucleotide variant (SNV)-based phylogenetic analysis.MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. ST429 harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broiler in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI and pST12-IncI1-I and pST3-IncC were prevalent in western Japan. pST12-IncI1-I and pST3-IncC were closely related to those detected in E. coli isolates from chicken in American continent, whereas 26 IncB/O/K/Z were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria in and out of Japan. Full Article
and Activity of epigenetic inhibitors against Plasmodium falciparum asexual and sexual blood stages. [Susceptibility] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Earlier genetic and inhibitor studies have shown that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new anti-malarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum. We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM. Full Article
and Comparative plasma pharmacokinetics of ceftriaxone and ertapenem between normoalbuminemia, hypoalbuminemia and with albumin replacement in a sheep model. [Pharmacology] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 BackgroundOptimal concentrations of unbound antimicrobials are essential for maximum microbiological effect. Although hypoalbuminemia and albumin fluid resuscitation are common in critical care, the effects of different albumin concentrations on the unbound concentrations of highly protein-bound antimicrobials are not known. The aim of this study was to compare effects of different albumin states on total and unbound concentrations of ertapenem and ceftriaxone using an ovine model.MethodsDesignProspective, three phase intervention observational study.SubjectsHealthy Merino sheep.InterventionsEight sheep were subject to three experimental phases; normoalbuminemia, hypoalbuminemia using plasmapheresis and albumin replacement using a 25% albumin solution. In each phase, ceftriaxone 40 mg/kg and ertapenem 15 mg/kg were given intravenously. Blood samples were collected at pre-defined intervals and analyzed using an ultra-high-performance liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters such as area under the curve (AUC0-24), plasma clearance (CL) and apparent volume of distribution in the terminal phase (Vd) were estimated and compared between the phases.ResultsThe protein and albumin concentrations were significantly different between phases. Hypoalbuminemia resulted in a significantly lower AUC0-24 and higher CL of total and unbound concentrations of ceftriaxone compared to the other phases. Whereas albumin replacement led to higher AUC0-24 and lower CL compared to other phases for both drugs. The Vd for total drug concentrations for both drugs were significantly lower with albumin replacement.ConclusionsFor highly protein-bound drugs such as ceftriaxone and ertapenem, both hypoalbuminemia and albumin replacement may affect unbound drug exposure. Full Article
and Google's Advanced Protection Expands to Phone-Only Users By www.pcmag.com Published On :: Google has made it easier to join the company's Advanced Protection Program, which is designed to stop the most sophisticated hackers from breaking into your Gmail account. Before you needed two security keys to enroll. Now you just need a smartphone. Full Article