ty

Crystal structure solution and high-temperature thermal expansion in NaZr2(PO4)3-type materials

The NaZr2P3O12 family of materials have shown low and tailorable thermal expansion properties. In this study, SrZr4P6O24 (SrO·4ZrO2·3P2O5), CaZr4P6O24 (CaO·4ZrO2·3P2O5), MgZr4P6O24 (MgO·4ZrO2·3P2O5), NaTi2P3O12 [½(Na2O·4TiO2·3P2O5)], NaZr2P3O12 [½(Na2O·4ZrO2·3P2O5)], and related solid solutions were synthesized using the organic–inorganic steric entrapment method. The samples were characterized by in-situ high-temperature X-ray diffraction from 25 to 1500°C at the Advanced Photon Source and National Synchrotron Light Source II. The average linear thermal expansion of SrZr4P6O24 and CaZr4P6O24 was between −1 × 10−6 per °C and 6 × 10−6 per °C from 25 to 1500°C. The crystal structures of the high-temperature polymorphs of CaZr4P6O24 and SrZr4P6O24 with R3c symmetry were solved by Fourier difference mapping and Rietveld refinement. This polymorph is present above ∼1250°C. This work measured thermal expansion coefficients to 1500°C for all samples and investigated the differences in thermal expansion mechanisms between polymorphs and between compositions.




ty

K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclo­silicates

Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclo­silicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclo­silicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units.




ty

Crystal structure of S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate and of its bis-chelated nickel(II) complex

The nitro­gen–sulfur Schiff base proligand S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl di­thio­carbamate with aceto­phenone. Treatment of HL with nickel acetate yielded the complex bis­[S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetra­hedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiol­ate) bond.




ty

Crystal structures of the isotypic complexes bis­(morpholine)­gold(I) chloride and bis­(morpholine)­gold(I) bromide

The compounds bis­(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis­(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding.




ty

Synthesis, structure and Hirshfeld surface analysis of 1,3-bis­[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-benzo[d]imidazol-2(3H)-one

The title mol­ecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C—H⋯O hydrogen bonds form chains of mol­ecules extending along the b-axis direction, which are linked by weak C—H⋯N hydrogen bonds and C—H⋯π inter­actions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) inter­actions.




ty

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




ty

An octa­nuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives

The mol­ecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-oct­yl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-di­chloro­ethane solvent mol­ecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetra­butyl­aza­nium tetra­methyl­aza­nium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexa­hedro-octa­nickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-methyl­pyrazolato)-hexa­hedro-octa­nickel 1,2-di­chloro­ethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexa­hedro-octa­nickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns.




ty

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.




ty

Synthesis and crystal structure of the adduct between 2-pyridyl­selenyl chloride and isobutyro­nitrile

The reaction between 2-pyridyl­selenenyl chloride and isobutyro­nitrile results in the formation of the corresponding cationic pyridinium-fused 1,2,4-seleno­diazole, namely, 3-(propan-2-yl)-1,2,4-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride, C9H11N2Se+·Cl−, in high yield (89%). The structure of the compound, established by means of single-crystal X-ray analysis at 100 K, has monoclinic (P21/c) symmetry and revealed the presence of bifurcated chalcogen-hydrogen bonding Se⋯Cl−⋯H—Cl, and these non-covalent contacts were analysed by DFT calculations followed by a topological analysis of the electron-density distribution (ωB97XD/6-311++G** level of theory).




ty

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




ty

Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino­naphthalene through two-step reactions of acetyl­ation and nitration. The mol­ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl­amino group (C-6). In the crystal, the mol­ecules are assembled into two-dimensional sheet-like structures by inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.




ty

Crystal structure of (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone

The structure of (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone, C13H13ClFNO4, at 100 K has monoclinic (P21) symmetry. The compound has a polymeric structure propagated by a screw axis parallel to the b axis with N—H⋯O hydrogen bonding. It is of inter­est with respect to efforts in the synthesis of a candidate anti­cancer drug, parsaclisib.




ty

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




ty

Bis[tris­(diiso­butyl­dithio­carbamato)-μ3-sulfido-tri-μ2-di­sulfido-trimolybdenum(IV)] sulfide tetra­hydro­furan monosolvate

The title compound, [Mo3(C9H18NS2)3(S2)3S]2S, crystallizes on a general position in the monoclinic space group P21/n (No. 14). The cationic [Mo3S7(S2CNiBu2)3]+ fragments are joined by a mono­sulfide dianion that forms close S⋯S contacts to each of the di­sulfide ligands on the side of the Mo3 plane opposite the μ32− ligand. The two Mo3 planes are inclined at an angle of 40.637 (15)°, which gives the assembly an open clamshell-like appearance. One μ6-S2−⋯S22− contact, at 2.4849 (14) Å, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)–2.8077 (14) Å.




ty

Synthesis, crystal structure and anti­cancer activity of the complex chlorido­(η2-ethyl­ene)(quinolin-8-olato-κ2N,O)platinum(II) by experimental and theoretical methods

The complex [Pt(C9H6NO)Cl(C2H4)], (I), was synthesized and structurally characterized by ESI mass spectrometry, IR, NMR spectroscopy, DFT calculations and X-ray diffraction. The results showed that the deprotonated 8-hy­droxy­quinoline (C9H6NO) coordinates with the PtII atom via the N and O atoms while the ethyl­ene coordinates in the η2 manner and in the trans position compared to the coordinating N atom. The crystal packing is characterized by C—H⋯O, C—H⋯π, Cl⋯π and Pt⋯π inter­actions. Complex (I) showed high selective activity against Lu-1 and Hep-G2 cell lines with IC50 values of 0.8 and 0.4 µM, respectively, 54 and 33-fold more active than cisplatin. In particular, complex (I) is about 10 times less toxic to normal cells (HEK-293) than cancer cells Lu-1 and Hep-G2. Furthermore, the reaction of complex (I) with guanine at the N7 position was proposed and investigated using the DFT method. The results indicated that replacement of the ethyl­ene ligand with guanine is thermodynamically more favorable than the Cl ligand and that the reaction occurs via two consecutive steps, namely the replacement of ethyl­ene with H2O and the water with the guanine mol­ecule.




ty

Crystal structure, Hirshfeld surface analysis, calculations of inter­molecular inter­action energies and energy frameworks and the DFT-optimized mol­ecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(prop-1-en-2-yl)-1H-b

The benzimidazole entity of the title mol­ecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual mol­ecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) inter­actions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




ty

Mixed occupancy: the crystal structure of scheelite-type LiLu[MoO4]2

Coarse colorless single crystals of lithium lutetium bis­[orthomolybdate(VI)], LiLu[MoO4]2, were obtained as a by-product from a reaction aimed at lithium derivatives of lutetium molybdate. The title compound crystallizes in the scheelite structure type (tetra­gonal, space group I41/a) with two formula units per unit cell. The Wyckoff position 4b (site symmetry overline{4}) comprises a mixed occupancy of Li+ and Lu3+ cations in a 1:1 ratio. In comparison with a previous powder X-ray study [Cheng et al. (2015). Dalton Trans. 44, 18078–18089.] all atoms were refined with anisotropic displacement parameters.




ty

Crystal structure of (6,9-diacetyl-5,10,15,20-tetra­phenyl­secochlorinato)nickel(II)

Title compound 1Ni, [Ni(C46H32N4O2)], a secochlorin nickel complex, was prepared by diol cleavage of a precursor trans-di­hydroxy­dimethyl­chlorin. Two crystallographically independent mol­ecules in the structure are related by pseudo-A lattice centering, with mol­ecules differing mainly by a rotation of one of the acetyls and an adjacent phenyl groups. The two mol­ecules have virtually identical conformations characterized by noticeable in-plane deformation in the A1g mode and a prominent out-of-plane deformation in the B1u (ruffling) mode. Directional inter­actions between mol­ecules are scarce, limited to just a few C—H⋯O contacts, and inter­molecular inter­actions are mostly dispersive in nature.




ty

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.




ty

Crystal structure of bis­[(η5-tert-butyl­cyclo­pentadien­yl)tri­carbonyl­molybdenum(I)](Mo—Mo)

The dinuclear mol­ecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclo­penta­dienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, inter­molecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.




ty

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




ty

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




ty

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




ty

Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br)

During our studies of the oxidation of gold(I) complexes of tri­alkyl­phosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis­(tri­alkyl­phosphane chalcogenido)gold(I) tetra­halogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These corres­pond to the addition of one halogen atom per gold atom of the AuI precursor. Com­pound 1, bis­(triiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aur­ate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­bromi­doaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis­(tert-butyl­diiso­propyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis­(tri-tert-butyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors. There are several short intra­molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl inter­actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.




ty

Structural multiplicity in a solvated hydrate of the anti­retroviral protease inhibitor Lopinavir

Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-di­methyl­phen­oxy)acetamido]-4-hy­droxy-1,6-di­phenyl­hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 mol­ecules. The stoichiometric ratio of this crystal is eight Lopinavir mol­ecules [8(C37H48N4O5)], three ethane-1,2-diol mol­ecules [3(C2H6O2)] and seven water mol­ecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms.




ty

Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited

The major principles and requirements of asymmetric and inclined double-crystal monochromators are re-examined and presented to guide their design and development for significantly reducing heat load density and gradient on the monochromators of fourth-generation synchrotron light sources and X-ray free-electron lasers.




ty

Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography

Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects.




ty

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




ty

Crystals in the community and the classroom

The growing pressure on school curricula has meant crystals and the science of crystallography have been cut from or made optional for many educational programs. This omission is a serious disservice to the history and understanding of modern sciences, given that crystallography underpins many of the greatest advancements in science over the past century, is a critical component of many modern research papers and patents, and has 29 Nobel Prizes awarded in the field. This contribution describes a simple activity to target classroom and public engagement with crystallography, using marshmallows or equivalent sweets/candy to represent atoms and cocktail sticks to represent bonds, together with examples of how crystals are studied and how they are useful. Though it has a simple basis, this activity can be extended in numerous ways to reflect the aims of the demonstrator, and a few of these are described.




ty

A note on the Hendrickson–Lattman phase probability distribution and its equivalence to the generalized von Mises distribution

Hendrickson & Lattman [Acta Cryst. (1970), B26, 136–143] introduced a method for representing crystallographic phase probabilities defined on the unit circle. Their approach could model the bimodal phase probability distributions that can result from experimental phase determination procedures. It also provided simple and highly effective means to combine independent sources of phase information. The present work discusses the equivalence of the Hendrickson–Lattman distribution and the generalized von Mises distribution of order two, which has been studied in the statistical literature. Recognizing this connection allows the Hendrickson–Lattman distribution to be expressed in an alternative form which is easier to interpret, as it involves the location and concentration parameters of the component von Mises distributions. It also allows clarification of the conditions for bimodality and access to a simplified analytical method for evaluating the trigonometric moments of the distribution, the first of which is required for computing the best Fourier synthesis in the presence of phase, but not amplitude, uncertainty.




ty

Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector

The maximum range of perpendicular momentum transfer (qz) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the qz direction on liquid surfaces up to qz = 7 Å−1 is presented, with liquid copper serving as a reference system for benchmarking purposes.




ty

X-Ray Calc 3: improved software for simulation and inverse problem solving for X-ray reflectivity

This work introduces X-Ray Calc (XRC), an open-source software package designed to simulate X-ray reflectivity (XRR) and address the inverse problem of reconstructing film structures on the basis of measured XRR curves. XRC features a user-friendly graphical interface that facilitates interactive simulation and reconstruction. The software employs a recursive approach based on the Fresnel equations to calculate XRR and incorporates specialized tools for modeling periodic multilayer structures. This article presents the latest version of the X-Ray Calc software (XRC3), with notable improvements. These enhancements encompass an automatic fitting capability for XRR curves utilizing a modified flight particle swarm optimization algorithm. A novel cost function was also developed specifically for fitting XRR curves of periodic structures. Furthermore, the overall user experience has been enhanced by developing a new single-window interface.




ty

Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge

Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.




ty

Upgrade of crystallography beamline BL19U1 at the Shanghai Synchrotron Radiation Facility

BL19U1, an energy-tunable protein complex crystallography beamline at the Shanghai Synchrotron Radiation Facility, has emerged as one of the most productive MX beamlines since opening to the public in July 2015. As of October 2023, it has contributed to over 2000 protein structures deposited in the Protein Data Bank (PDB), resulting in the publication of more than 1000 scientific papers. In response to increasing interest in structure-based drug design utilizing X-ray crystallography for fragment library screening, enhancements have been implemented in both hardware and data collection systems on the beamline to optimize efficiency. Hardware upgrades include the transition from MD2 to MD2S for the diffractometer, alongside the installation of a humidity controller featuring a rapid nozzle exchanger. This allows users to opt for either low-temperature or room-temperature data collection modes. The control system has been upgraded from Blu-Ice to MXCuBE3, which supports website-mode data collection, providing enhanced compatibility and easy expansion with new features. An automated data processing pipeline has also been developed to offer users real-time feedback on data quality.




ty

Reconstructing the reflectivity of liquid surfaces from grazing incidence X-ray off-specular scattering data

The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire Qz-dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a Qz-dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger Qz range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor–liquid interfaces at different surface tension, and from a hexadecyltri­methyl­ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.




ty

Subgradient-projection-based stable phase-retrieval algorithm for X-ray ptychography

X-ray ptychography is a lensless imaging technique that visualizes the nano­structure of a thick specimen which cannot be observed with an electron microscope. It reconstructs a complex-valued refractive index of the specimen from observed diffraction patterns. This reconstruction problem is called phase retrieval (PR). For further improvement in the imaging capability, including expansion of the depth of field, various PR algorithms have been proposed. Since a high-quality PR method is built upon a base PR algorithm such as ePIE, developing a well performing base PR algorithm is important. This paper proposes an improved iterative algorithm named CRISP. It exploits subgradient projection which allows adaptive step size and can be expected to avoid yielding a poor image. The proposed algorithm was compared with ePIE, which is a simple and fast-convergence algorithm, and its modified algorithm, rPIE. The experiments confirmed that the proposed method improved the reconstruction performance for both simulation and real data.




ty

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.




ty

On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources

With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.




ty

DFT2FEFFIT: a density-functional-theory-based structural toolkit to analyze EXAFS spectra

This article presents a Python-based program, DFT2FEFFIT, to regress theoretical extended X-ray absorption fine structure (EXAFS) spectra calculated from density functional theory structure models against experimental EXAFS spectra. To showcase its application, Ce-doped fluorapatite [Ca10(PO4)6F2] is revisited as a representative of a material difficult to analyze by conventional multi-shell least-squares fitting of EXAFS spectra. The software is open source and publicly available.




ty

Flow-Xl: a new facility for the analysis of crystallization in flow systems

Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.




ty

Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm

Ptychography is a powerful computational imaging technique with microscopic imaging capability and adaptability to various specimens. To obtain an imaging result, it requires a phase-retrieval algorithm whose performance directly determines the imaging quality. Recently, deep neural network (DNN)-based phase retrieval has been proposed to improve the imaging quality from the ordinary model-based iterative algorithms. However, the DNN-based methods have some limitations because of the sensitivity to changes in experimental conditions and the difficulty of collecting enough measured specimen images for training the DNN. To overcome these limitations, a ptychographic phase-retrieval algorithm that combines model-based and DNN-based approaches is proposed. This method exploits a DNN-based denoiser to assist an iterative algorithm like ePIE in finding better reconstruction images. This combination of DNN and iterative algorithms allows the measurement model to be explicitly incorporated into the DNN-based approach, improving its robustness to changes in experimental conditions. Furthermore, to circumvent the difficulty of collecting the training data, it is proposed that the DNN-based denoiser be trained without using actual measured specimen images but using a formula-driven supervised approach that systemically generates synthetic images. In experiments using simulation based on a hard X-ray ptychographic measurement system, the imaging capability of the proposed method was evaluated by comparing it with ePIE and rPIE. These results demonstrated that the proposed method was able to reconstruct higher-spatial-resolution images with half the number of iterations required by ePIE and rPIE, even for data with low illumination intensity. Also, the proposed method was shown to be robust to its hyperparameters. In addition, the proposed method was applied to ptychographic datasets of a Simens star chart and ink toner particles measured at SPring-8 BL24XU, which confirmed that it can successfully reconstruct images from measurement scans with a lower overlap ratio of the illumination regions than is required by ePIE and rPIE.




ty

A miniature X-ray diffraction setup on ID20 at the European Synchrotron Radiation Facility

We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup.




ty

In situ/operando method for energy stability measurement of synchrotron radiation

A novel in situ/operando method is introduced to measure the photon beam stability of synchrotron radiation based on orthogonal diffraction imaging of a Laue crystal/analyzer, which can decouple the energy/wavelength and Bragg angle of the photon beam using the dispersion effect in the diffraction process. The method was used to measure the energy jitter and drift of the photon beam on BL09B and BL16U at the Shanghai Synchrotron Radiation Facility. The experimental results show that this method can provide a fast way to measure the beam stability of different light sources including bending magnet and undulator with meV-level energy resolution and ms-level time response.




ty

Emerging Technologies and Trends in Identity Verification, KYC, and KYB Report 2024

The inaugural edition of the Emerging Technologies and Trends in Identity Verification (IDV), KYC, and KYB Report 2024 offers a comprehensive overview of the key technology trends and best practices in digital onboarding for consumers and businesses in 2024.




ty

Towards Seamless Payment Interoperability – Thunes Report

 ‘The Road Ahead: Towards Seamless Payments Interoperability’, an eBook from Thunes, Visa, and The Paypers, explores how payments interoperability is reshaping the future of cross-border transactions.




ty

FilmWeek: ‘The Courier,’ ‘Zack Snyder’s Justice League,’ ‘City Of Lies’ And More

Benedict Cumberbatch in “The Courier”; Credit: LIAM DANIEL / LIONSGATE / ROADSIDE ATTRACTIONS

FilmWeek Marquee

Larry Mantle and KPCC film critics Tim Cogshell, Lael Loewenstein and Andy Klein review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.




ty

Zilch securitisation facility reaches GBP 150 million

Zilch, a fintech company operating an ad-subsidised payments...




ty

TerraPay partners with Suyool to boost financial accessibility in Lebanon

TerraPay, a global money movement company,...




ty

Directors Guild finds TV diversity hiring stalled

In this Saturday, Sept. 6, 2014 file photo, Paris Barclay attends the LA Premiere Screening of "Sons Of Anarchy" at TCL Chinese Theatre, in Los Angeles. A new guild study says that women and minorities were largely shut out of the ranks of TV directors again last season. In a Wednesday, Sept. 17, 2014 statement, Directors Guild President Barclay said it can be "shockingly difficult" to persuade those who control industry hiring to make even small improvements.; Credit: Paul A. Hebert/Paul A. Hebert/Invision/AP

A new guild study says women and minorities were largely shut out of the ranks of TV directors again last season.

The Directors Guild of America report released Wednesday said employers have made no significant improvement in diversity hiring for TV series in the last four years.

According to the study, white males directed the vast majority of the 3,500 cable, broadcast and high-budget online episodes made for the 2013-14 season.

The same holds true for the three previous years, according to guild findings.

In a statement, Directors Guild President Paris Barclay said it can be "shockingly difficult" to persuade those who control industry hiring to make even small improvements.




ty

2014 Americana Music Awards with Loretta Lynn, Patty Griffin and more

The finale of the 2013 Americana Music Association Honors and Awards show.; Credit: Folk Alley

The 2014 Americana Music Awards are Wednesday at 5 p.m. Pacific/8 p.m. Eastern. You can watch the full show live from the Ryman Auditorium in Nashville, Tenn. below, including performances by Loretta Lynn, Jackson Browne, Emmylou Harris, Patty Griffin and more.

window.onload = function(){ NPR.Iframe.load("347625625",'iframeEmbed','@KPCC',{noSharingLinks: false, hideRelatedStories: true, fbShareImageUrl: 'http://a.scpr.org/i/249842800d22989eda16b048b982fc26/92154-full.jpg'}); }

Read a full list of the nominees below:

Album of the Year

• Build Me Up From Bones by Sarah Jarosz
• The Lights From The Chemical Plant by Robert Ellis
• The River And The Thread by Rosanne Cash
• Southeastern by Jason Isbell

Artist of the Year

• Rosanne Cash
• Rodney Crowell
• Robert Ellis
• Jason Isbell

Duo/Group of the Year

• The Avett Brothers
• The Devil Makes Three
• Hard Working Americans
• Lake Street Dive
• The Milk Carton Kids

Song of the Year

• "Cover Me Up" by Jason Isbell
• "A Feather's Not A Bird" by Rosanne Cash
• "Ohio" by Patty Griffin
• "Only Lies" by Robert Ellis

Emerging Act of the Year

• Hurray For The Riff Raff
• Parker Millsap
• St. Paul & The Broken Bones