and Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points 5-HT2B agonists stimulate AhR transcriptional activation in human macrophages. Serotonin-induced expression of AhR target genes is 5-HT2B dependent in macrophages. Full Article
and Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points The augmented ISG profile of RdRP mice develops largely postnatally. Elevated ISG expression is then maintained through adulthood. The ISG signature in adults requires persistent type I IFN signaling. Full Article
and Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points ApoE was found in complex with C4d in RA patient SF. Deposited ApoE activates complement whereas ApoE in solution is inhibitory. Posttranslational modifications alter ApoE's capacity to bind FH and C4BP. Full Article
and Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points L. donovani induces histone lysine methyltransferases/demethylases in the host. L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization. Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host. Full Article
and T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Lack of Tfh cells renders the mice susceptible to C. rodentium infection. Tfh cell–dependent protective Abs are essential to control C. rodentium. Tfh cells regulate IgG1 response to C. rodentium infection. Full Article
and Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Virulent and avirulent parasites significantly differ in their proteome profiles. Avirulent parasites fail to inhibit CD40 signaling. Avirulent parasite strain is a potential antileishmanial vaccine candidate. Full Article
and Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH. CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem. IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells. Full Article
and Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Kupffer cells phagocytose both bacteria and CRP–VLDL complexes. High levels of CRP–VLDL complexes delay bacterial clearance. Pch disrupts CRP–VLDL complexes to improve bacterial clearance. Full Article
and IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth [CLINICAL AND HUMAN IMMUNOLOGY] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points IRAK1 is hyperactivated in human preterm birth and in mouse and rhesus IUI models. IRAK1 deletion and inhibition reduces preterm birth. IRAK1 induces preterm birth by upregulating COX-2. Full Article
and Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development [AUTOIMMUNITY] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points STAT1-pS727 is required for SLE-associated AFC, GC, and autoantibody responses. STAT1-pS727 in B cells promotes autoimmune AFC, GC, and autoantibody responses. STAT1-pS727 is not required for foreign Ag– or gut microbiota–driven responses. Full Article
and The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine. Full Article
and LuxS/AI-2 Quorum Sensing System in Edwardsiella piscicida Promotes Biofilm Formation and Pathogenicity [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 LuxS/AI-2 is an important quorum sensing system which affects the growth, biofilm formation, virulence, and metabolism of bacteria. LuxS is encoded by the luxS gene, but how this gene is associated with a diverse array of physiological activities in Edwardsiella piscicida (E. piscicida) is not known. Here, we constructed an luxS gene mutant strain, the luxS strain, to identify how LuxS/AI-2 affects pathogenicity. The results showed that LuxS was not found in the luxS gene mutant strain, and this gene deletion decreased E. piscicida growth compared to that of the wild-type strain. Meanwhile, the wild-type strain significantly increased penetration and motility in mucin compared to levels with the luxS strain. The 50% lethal dose (LD50) of the E. piscicida luxS strain for zebrafish was significantly higher than that of the wild-type strain, which suggested that the luxS gene deletion could attenuate the strain’s virulence. The AI-2 activities of EIB202 were 56-fold higher than those in the luxS strain, suggesting that the luxS gene promotes AI-2 production. Transcriptome results demonstrated that between cells infected with the luxS strain and those infected with the wild-type strain 46 genes were significantly differentially regulated, which included 34 upregulated genes and 12 downregulated genes. Among these genes, the largest number were closely related to cell immunity and signaling systems. In addition, the biofilm formation ability of EIB202 was significantly higher than that of the luxS strain. The supernatant of EIB202 increased the biofilm formation ability of the luxS strain, which suggested that the luxS gene and its product LuxS enhanced biofilm formation in E. piscicida. All results indicate that the LuxS/AI-2 quorum sensing system in E. piscicida promotes its pathogenicity through increasing a diverse array of physiological activities. Full Article
and Early Endothelial Activation Precedes Glycocalyx Degradation and Microvascular Dysfunction in Experimentally Induced Plasmodium falciparum and Plasmodium vivax Infection [Host Response and Inflammation] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Endothelial activation and microvascular dysfunction are key pathogenic processes in severe malaria. We evaluated the early role of these processes in experimentally induced Plasmodium falciparum and P. vivax infection. Participants were enrolled in induced blood-stage malaria clinical trials. Plasma osteoprotegerin, angiopoietin-2, and von Willebrand Factor (vWF) levels were measured as biomarkers of endothelial activation. Microvascular function was assessed using peripheral arterial tonometry and near-infrared spectroscopy, and the endothelial glycocalyx was assessed by sublingual videomicroscopy and measurement of biomarkers of degradation. Forty-five healthy, malaria-naive participants were recruited from 5 studies. Osteoprotegerin and vWF levels increased in participants following inoculation with P. vivax (n = 16) or P. falciparum (n = 15), with the angiopoietin-2 level also increasing in participants following inoculation with P. falciparum. For both species, the most pronounced increase was seen in osteoprotegerin. This was particularly marked in participants inoculated with P. vivax, where the osteoprotegerin level correlated with the levels of parasitemia and the malaria clinical score. There were no changes in measures of endothelial glycocalyx or microvascular function. Plasma biomarkers of endothelial activation increased in early P. falciparum and P. vivax infection and preceded changes in the endothelial glycocalyx or microvascular function. The more pronounced increase in osteoprotegerin suggests that this biomarker may play a role in disease pathogenesis. Full Article
and Immune Profile of the Nasal Mucosa in Patients with Cutaneous Leishmaniasis [Fungal and Parasitic Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Localized skin lesions are characteristic of cutaneous leishmaniasis (CL); however, Leishmania (Viannia) species, which are responsible for most CL cases in the Americas, can spread systemically, sometimes resulting in mucosal disease. Detection of Leishmania has been documented in healthy mucosal tissues (conjunctiva, tonsils, and nasal mucosa) and healthy skin of CL patients and in individuals with asymptomatic infection in areas of endemicity of L. (V.) panamensis and L. (V.) braziliensis transmission. However, the conditions and mechanisms that favor parasite persistence in healthy mucosal tissues are unknown. In this descriptive study, we compared the cell populations of the nasal mucosa (NM) of healthy donors and patients with active CL and explored the immune gene expression signatures related to molecular detection of Leishmania in this tissue in the absence of clinical signs or symptoms of mucosal disease. The cellular composition and gene expression profiles of NM samples from active CL patients were similar to those of healthy volunteers, with a predominance of epithelial over immune cells, and within the CD45+ cell population, a higher frequency of CD66b+ followed by CD14+ and CD3+ cells. In CL patients with molecular evidence of Leishmania persistence in the NM, genes characteristic of an anti-inflammatory and tissue repair responses (IL4R, IL5RA, POSTN, and SATB1) were overexpressed relative to NM samples from CL patients in which Leishmania was not detected. Here, we report the first immunological description of subclinically infected NM tissues of CL patients and provide evidence of a local anti-inflammatory environment favoring parasite persistence in the NM. Full Article
and Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer’s disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069cap) through allelic exchange following natural transformation. HS069cap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069cap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069cap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs. Full Article
and Towards Innovative Design and Application of Recombinant Eimeria as a Vaccine Vector [Minireviews] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond. Full Article
and Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections. Full Article
and The Legionella pneumophila Metaeffector Lpg2505 (MesI) Regulates SidI-Mediated Translation Inhibition and Novel Glycosyl Hydrolase Activity [Molecular Pathogenesis] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Legionella pneumophila, the etiological agent of Legionnaires’ disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector. Full Article
and Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion [Cellular Microbiology: Pat By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor. Full Article
and The Paralogous Transcription Factors Stp1 and Stp2 of Candida albicans Have Distinct Functions in Nutrient Acquisition and Host Interaction [Molecular Pathogenesis] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Nutrient acquisition is a central challenge for all organisms. For the fungal pathogen Candida albicans, utilization of amino acids has been shown to be critical for survival, immune evasion, and escape, while the importance of catabolism of host-derived proteins and peptides in vivo is less well understood. Stp1 and Stp2 are paralogous transcription factors (TFs) regulated by the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing system and have been proposed to have distinct, if uncertain, roles in protein and amino acid utilization. We show here that Stp1 is required for proper utilization of peptides but has no effect on amino acid catabolism. In contrast, Stp2 is critical for utilization of both carbon sources. Commensurate with this observation, we found that Stp1 controls a very limited set of genes, while Stp2 has a much more extensive regulon that is partly dependent on the Ssy1 amino acid sensor (amino acid uptake and catabolism) and partly Ssy1 independent (genes associated with filamentous growth, including the regulators UME6 and SFL2). The ssy1/ and stp2/ mutants showed reduced fitness in a gastrointestinal (GI) colonization model, yet induced greater damage to epithelial cells and macrophages in a manner that was highly dependent on the growth status of the fungal cells. Surprisingly, the stp1/ mutant was better able to colonize the gut but the mutation had no effect on host cell damage. Thus, proper protein and amino acid utilization are both required for normal host interaction and are controlled by an interrelated network that includes Stp1 and Stp2. Full Article
and De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host. Full Article
and Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling [Molecular Pathogenesis] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Peptidoglycan, the sugar-amino acid polymer that composes the bacterial cell wall, requires a significant expenditure of energy to synthesize and is highly immunogenic. To minimize the loss of an energetically expensive metabolite and avoid host detection, bacteria often recycle their peptidoglycan, transporting its components back into the cytoplasm, where they can be used for subsequent rounds of new synthesis. The peptidoglycan-recycling substrate binding protein (SBP) MppA, which is responsible for recycling peptidoglycan fragments in Escherichia coli, has not been annotated for most intracellular pathogens. One such pathogen, Chlamydia trachomatis, has a limited capacity to synthesize amino acids de novo and therefore must obtain oligopeptides from its host cell for growth. Bioinformatics analysis suggests that the putative C. trachomatis oligopeptide transporter OppABCDF (OppABCDFCt) encodes multiple SBPs (OppA1Ct, OppA2Ct, and OppA3Ct). Intracellular pathogens often encode multiple SBPs, while only one, OppA, is encoded in the E. coli opp operon. We hypothesized that the putative OppABCDF transporter of C. trachomatis functions in both oligopeptide transport and peptidoglycan recycling. We coexpressed the putative SBP genes (oppA1Ct, oppA2Ct, oppA3Ct) along with oppBCDFCt in an E. coli mutant lacking the Opp transporter and determined that all three chlamydial OppA subunits supported oligopeptide transport. We also demonstrated the in vivo functionality of the chlamydial Opp transporter in C. trachomatis. Importantly, we found that one chlamydial SBP, OppA3Ct, possessed dual substrate recognition properties and is capable of transporting peptidoglycan fragments (tri-diaminopimelic acid) in E. coli and in C. trachomatis. These findings suggest that Chlamydia evolved an oligopeptide transporter to facilitate the acquisition of oligopeptides for growth while simultaneously reducing the accumulation of immunostimulatory peptidoglycan fragments in the host cell cytosol. The latter property reflects bacterial pathoadaptation that dampens the host innate immune response to Chlamydia infection. Full Article
and Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 x 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 x 103 CFU (50 LD50) of virulent Y. pestis. This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development. Full Article
and B Cells Inhibit CD4+ T Cell-Mediated Immunity to Brucella Infection in a Major Histocompatibility Complex Class II-Dependent Manner [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ~100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella. Using B and T cell-deficient Rag1–/– animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection. Full Article
and Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile [Host Response and Inflammation] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum. Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum. Full Article
and Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression. Full Article
and Putative {beta}-Barrel Outer Membrane Proteins of the Bovine Digital Dermatitis-Associated Treponemes: Identification, Functional Characterization, and Immunogenicity [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Bovine digital dermatitis (BDD), an infectious disease of the bovine foot with a predominant treponemal etiology, is a leading cause of lameness in dairy and beef herds worldwide. BDD is poorly responsive to antimicrobial therapy and exhibits a relapsing clinical course; an effective vaccine is therefore urgently sought. Using a reverse vaccinology approach, the present study surveyed the genomes of the three BDD-associated Treponema phylogroups for putative β-barrel outer membrane proteins and considered their potential as vaccine candidates. Selection criteria included the presence of a signal peptidase I cleavage site, a predicted β-barrel fold, and cross-phylogroup homology. Four candidate genes were overexpressed in Escherichia coli BL21(DE3), refolded, and purified. Consistent with their classification as β-barrel OMPs, circular-dichroism spectroscopy revealed the adoption of a predominantly β-sheet secondary structure. These recombinant proteins, when screened for their ability to adhere to immobilized extracellular matrix (ECM) components, exhibited a diverse range of ligand specificities. All four proteins specifically and dose dependently adhered to bovine fibrinogen. One recombinant protein was identified as a candidate diagnostic antigen (disease specificity, 75%). Finally, when adjuvanted with aluminum hydroxide and administered to BDD-naive calves using a prime-boost vaccination protocol, these proteins were immunogenic, eliciting specific IgG antibodies. In summary, we present the description of four putative treponemal β-barrel OMPs that exhibit the characteristics of multispecific adhesins. The observed interactions with fibrinogen may be critical to host colonization and it is hypothesized that vaccination-induced antibody blockade of these interactions will impede treponemal virulence and thus be of therapeutic value. Full Article
and Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa. Full Article
and Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins. Full Article
and An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model [Transformation and Oncogenesis] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro. The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro. An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic 3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. 3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. 3A and WT tumors expressed equivalent levels of EBNA2 and p16, but 3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, 3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus 3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice. IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro. In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (3A) and wild-type EBV. The 3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, 3A tumors had less LMP1. Our analysis suggested that 3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors. Full Article
and Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design [Structure and Assembly] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen. IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development. Full Article
and Bottleneck Size-Dependent Changes in the Genetic Diversity and Specific Growth Rate of a Rotavirus A Strain [Genetic Diversity and Evolution] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences. IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated. Full Article
and Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-vNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-vNr-13 showed similar growth kinetics; however, at early time points, HVT-vNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-vNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells. IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek’s disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication. Full Article
and The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1 [Genome Replication and Regulation of Viral Gene Expression] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo. Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes. IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers. Full Article
and Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells [Genome Replication and Regulation of Viral Gene Expression] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 The Epstein-Barr virus (EBV) causes human cancers, and epidemiological studies have shown that lytic replication is a risk factor for some of these tumors. This fits with the observation that EBV M81, which was isolated from a Chinese patient with nasopharyngeal carcinoma, induces potent virus production and increases the risk of genetic instability in infected B cells. To find out whether this property extends to viruses found in other parts of the world, we investigated 22 viruses isolated from Western patients. While one-third of the viruses hardly replicated, the remaining viruses showed variable levels of replication, with three isolates replicating at levels close to that of M81 in B cells. We cloned one strongly replicating virus into a bacterial artificial chromosome (BAC); the resulting recombinant virus (MSHJ) retained the properties of its nonrecombinant counterpart and showed similarities to M81, undergoing lytic replication in vitro and in vivo after 3 weeks of latency. In contrast, B cells infected with the nonreplicating Western B95-8 virus showed early but abortive replication accompanied by cytoplasmic BZLF1 expression. Sequencing confirmed that rMSHJ is a Western virus, being genetically much closer to B95-8 than to M81. Spontaneous replication in rM81- and rMSHJ-infected B cells was dependent on phosphorylated Btk and was inhibited by exposure to ibrutinib, opening the way to clinical intervention in patients with abnormal EBV replication. As rMSHJ contains the complete EBV genome and induces lytic replication in infected B cells, it is ideal to perform genetic analyses of all viral functions in Western strains and their associated diseases. IMPORTANCE The Epstein-Barr virus (EBV) infects the majority of the world population but causes different diseases in different countries. Evidence that lytic replication, the process that leads to new virus progeny, is linked to cancer development is accumulating. Indeed, viruses such as M81 that were isolated from Far Eastern nasopharyngeal carcinomas replicate strongly in B cells. We show here that some viruses isolated from Western patients, including the MSHJ strain, share this property. Moreover, replication of both M81 and of MSHJ was sensitive to ibrutinib, a commonly used drug, thereby opening an opportunity for therapeutic intervention. Sequencing of MSHJ showed that this virus is quite distant from M81 and is much closer to nonreplicating Western viruses. We conclude that Western EBV strains are heterogeneous, with some viruses being able to replicate more strongly and therefore being potentially more pathogenic than others, and that the virus sequence information alone cannot predict this property. Full Article
and Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1. IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus. Full Article
and Establishment of a Reverse Genetics System for Influenza D Virus [Genome Replication and Regulation of Viral Gene Expression] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Influenza D virus (IDV) was initially isolated in the United States in 2011. IDV is distributed worldwide and is one of the causative agents of the bovine respiratory disease complex (BRDC), which causes high morbidity and mortality in feedlot cattle. The molecular mechanisms of IDV pathogenicity are still unknown. Reverse genetics systems are vital tools not only for studying the biology of viruses, but also for use in applications such as recombinant vaccine viruses. Here, we report the establishment of a plasmid-based reverse genetics system for IDV. We first verified that the 3'-terminal nucleotide of each 7-segmented genomic RNA contained uracil (U), contrary to previous reports, and we were then able to successfully generate recombinant IDV by cotransfecting 7 plasmids containing these genomic RNAs along with 4 plasmids expressing polymerase proteins and nucleoprotein into human rectal tumor 18G (HRT-18G) cells. The recombinant virus had a growth deficit compared to the wild-type virus, and we determined the reason for this growth difference by examining the genomic RNA content of the viral particles. We found that the recombinant virus incorporated an unbalanced ratio of viral RNA segments into particles compared to that of the wild-type virus, and thus we adjusted the amount of each plasmid used in transfection to obtain a recombinant virus with the same replicative capacity as the wild-type virus. Our work here in establishing a reverse genetics system for IDV will have a broad range of applications, including uses in studies focused on better understanding IDV replication and pathogenicity, as well as in those contributing to the development of BRDC countermeasures. IMPORTANCE The bovine respiratory disease complex (BRDC) causes high mortality and morbidity in cattle, causing economic losses worldwide. Influenza D virus (IDV) is considered to be a causative agent of the BRDC. Here, we developed a reverse genetics system that allows for the generation of IDV from cloned cDNAs and the introduction of mutations into the IDV genome. This reverse genetics system will become a powerful tool for use in studies related to understanding the molecular mechanisms of viral replication and pathogenicity and will also lead to the development of new countermeasures against the BRDC. Full Article
and The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks. IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir. Full Article
and Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region [Virus-Cell Interactio By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex. IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections. Full Article
and A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting [Gene Delivery] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs. IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting. Full Article
and HIV-1-Specific Chimeric Antigen Receptor T Cells Fail To Recognize and Eliminate the Follicular Dendritic Cell HIV Reservoir In Vitro [Vaccines and Antiviral Agents] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV. Full Article
and Nup358 and Transportin 1 Cooperate in Adenoviral Genome Import [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA. IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes. Full Article
and Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins [Vaccines and Antiviral Agents] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system. IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine. Full Article
and Glycoprotein 5 Is Cleaved by Cathepsin E during Porcine Reproductive and Respiratory Syndrome Virus Membrane Fusion [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Porcine reproductive and respiratory syndrome (PRRS) is a serious viral disease affecting the global swine industry. Its causative agent, PRRS virus (PRRSV), is an enveloped virus, and therefore membrane fusion between its envelope and host cell target membrane is critical for viral infection. Though much research has focused on PRRSV infection, the detailed mechanisms involved in its membrane fusion remain to be elucidated. In the present study, we performed confocal microscopy in combination with a constitutively active (CA) or dominant negative (DN) mutant, specific inhibitors, and small interfering RNAs (siRNAs), as well as multiple other approaches, to explore PRRSV membrane fusion. We first observed that PRRSV membrane fusion occurred in Rab11-recycling endosomes during early infection using labeled virions and subcellular markers. We further demonstrated that low pH and cathepsin E in Rab11-recycling endosomes are critical for PRRSV membrane fusion. Moreover, PRRSV glycoprotein 5 (GP5) is identified as being cleaved by cathepsin E during this process. Taken together, our findings provide in-depth information regarding PRRSV pathogenesis, which support a novel basis for the development of antiviral drugs and vaccines. IMPORTANCE PRRS, caused by PRRSV, is an economically critical factor in pig farming worldwide. As PRRSV is a lipid membrane-wrapped virus, merging of the PRRSV envelope with the host cell membrane is indispensable for viral infection. However, there is a lack of knowledge on its membrane fusion. Here, we first explored when and where PRRSV membrane fusion occurs. Furthermore, we determined which host cell factors were involved in the process. Importantly, PRRSV GP5 is shown to be cleaved by cathepsin E during membrane fusion. Our work not only provides information on PRRSV membrane fusion for the first time but also deepens our understanding of the molecular mechanisms of PRRSV infection, which provides a foundation for future applications in the prevention and control of PRRS. Full Article
and T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species [Vaccines and Antiviral Agents] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species. IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance. Full Article
and Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates. IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2. Full Article
and Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus [Genetic Diversity and Evolution] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae. A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family Siphoviridae. IMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member. Full Article
and Priming of Antiviral CD8 T Cells without Effector Function by a Persistently Replicating Hepatitis C-Like Virus [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV. IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics. Full Article
and NF-{kappa}B and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-B transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-B complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection. IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-B p50 subunit partners with Keap1 to form the Keap1-NF-B complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV. Full Article
and Procedural justice training reduces police use of force and complaints against officers [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Existing research shows that distrust of the police is widespread and consequential for public safety. However, there is a shortage of interventions that demonstrably reduce negative police interactions with the communities they serve. A training program in Chicago attempted to encourage 8,480 officers to adopt procedural justice policing strategies. These... Full Article