el

Glycoprotein 5 Is Cleaved by Cathepsin E during Porcine Reproductive and Respiratory Syndrome Virus Membrane Fusion [Virus-Cell Interactions]

Porcine reproductive and respiratory syndrome (PRRS) is a serious viral disease affecting the global swine industry. Its causative agent, PRRS virus (PRRSV), is an enveloped virus, and therefore membrane fusion between its envelope and host cell target membrane is critical for viral infection. Though much research has focused on PRRSV infection, the detailed mechanisms involved in its membrane fusion remain to be elucidated. In the present study, we performed confocal microscopy in combination with a constitutively active (CA) or dominant negative (DN) mutant, specific inhibitors, and small interfering RNAs (siRNAs), as well as multiple other approaches, to explore PRRSV membrane fusion. We first observed that PRRSV membrane fusion occurred in Rab11-recycling endosomes during early infection using labeled virions and subcellular markers. We further demonstrated that low pH and cathepsin E in Rab11-recycling endosomes are critical for PRRSV membrane fusion. Moreover, PRRSV glycoprotein 5 (GP5) is identified as being cleaved by cathepsin E during this process. Taken together, our findings provide in-depth information regarding PRRSV pathogenesis, which support a novel basis for the development of antiviral drugs and vaccines.

IMPORTANCE PRRS, caused by PRRSV, is an economically critical factor in pig farming worldwide. As PRRSV is a lipid membrane-wrapped virus, merging of the PRRSV envelope with the host cell membrane is indispensable for viral infection. However, there is a lack of knowledge on its membrane fusion. Here, we first explored when and where PRRSV membrane fusion occurs. Furthermore, we determined which host cell factors were involved in the process. Importantly, PRRSV GP5 is shown to be cleaved by cathepsin E during membrane fusion. Our work not only provides information on PRRSV membrane fusion for the first time but also deepens our understanding of the molecular mechanisms of PRRSV infection, which provides a foundation for future applications in the prevention and control of PRRS.




el

Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex [Virus-Cell Interactions]

For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the A56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.

IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter’s G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.




el

T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species [Vaccines and Antiviral Agents]

Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.

IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.




el

Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex [Virus-Cell Interactions]

The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.

IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.




el

Priming of Antiviral CD8 T Cells without Effector Function by a Persistently Replicating Hepatitis C-Like Virus [Pathogenesis and Immunity]

Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV.

IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics.




el

Asking young children to “do science” instead of “be scientists” increases science engagement in a randomized field experiment [Psychological and Cognitive Sciences]

Subtle features of common language can imply to young children that scientists are a special and distinct kind of person—a way of thinking that can interfere with the development of children’s own engagement with science. We conducted a large field experiment (involving 45 prekindergarten schools, 130 teachers, and over 1,100...




el

Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology]

Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2...




el

Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+{delta} [Physics]

High magnetic fields have revealed a surprisingly small Fermi surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of such a state and its relationship to the principal pseudogap and...




el

Detecting electronic coherences by time-domain high-harmonic spectroscopy [Physics]

Ultrafast spectroscopy is capable of monitoring electronic and vibrational states. For electronic states a few eV apart, an X-ray laser source is required. We propose an alternative method based on the time-domain high-order harmonic spectroscopy where a coherent superposition of the electronic states is first prepared by the strong optical...




el

In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques [Neuroscience]

One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI...




el

Covert sleep-related biological processes are revealed by probabilistic analysis in Drosophila [Neuroscience]

Sleep pressure and sleep depth are key regulators of wake and sleep. Current methods of measuring these parameters in Drosophila melanogaster have low temporal resolution and/or require disrupting sleep. Here we report analysis tools for high-resolution, noninvasive measurement of sleep pressure and depth from movement data. Probability of initiating activity,...




el

Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy [Medical Sciences]

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have...




el

Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells [Immunology and Inflammation]

Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell...




el

A nonlinear beam model of photomotile structures [Engineering]

Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables....




el

Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling [Cell Biology]

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with...




el

MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway [Cell Biology]

The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo...




el

Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody [Biochemistry]

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and...




el

High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry [Biochemistry]

Toward the goal of increasing the throughput of high-resolution mass characterization of intact antibodies, we developed a RapidFire–mass spectrometry (MS) assay using electrospray ionization. We achieved unprecedented screening throughput as fast as 15 s/sample, which is an order of magnitude improvement over conventional liquid chromatography (LC)-MS approaches. The screening enabled...




el

New HST data and modeling reveal a massive planetesimal collision around Fomalhaut [Astronomy]

The apparent detection of an exoplanet orbiting Fomalhaut was announced in 2008. However, subsequent observations of Fomalhaut b raised questions about its status: Unlike other exoplanets, it is bright in the optical and nondetected in the infrared, and its orbit appears to cross the debris ring around the star without...




el

Emergence of self-organized multivortex states in flocks of active rollers [Applied Physical Sciences]

Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a...




el

Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism [Neuroscience]

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such “early activation” genes silent have been a mystery. In the course...




el

Water lilies, loss of woodiness, and model systems [Plant Biology]

The delicate necklace of threaded petals from the tomb of Rameses II, midnineteenth century glass houses built for the newly discovered Victoria amazonica, and Monet’s giant canvases in the Musée de l'Orangerie all testify to a deep human attraction to water lilies: beguiling plants with showy flowers that seem to...




el

Bringing light to ER contacts and a new phase in organelle communication [Cell Biology]

Functioning cells depend on the outward-facing plasma membrane (PM) effectively contacting the endoplasmic reticulum (ER), which serves as a central hub for contacts with mitochondria and other intracellular organelles. The contact sites are critical to intracellular communication because they mediate intermembrane exchange of lipids, ions, and other small molecules that...




el

NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.




el

AKT Regulates Mitotic Progression of Mammalian Cells by Phosphorylating MASTL, Leading to Protein Phosphatase 2A Inactivation [Research Article]

Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl) kinase, has an important role in the regulation of mitosis. By inhibiting protein phosphatase 2A (PP2A), it plays a crucial role in activating one of the most important mitotic kinases, known as cyclin-dependent kinase 1 (CDK1). MASTL has been seen to be upregulated in various types of cancers and is also involved in tumor recurrence. It is activated by CDK1 through phosphorylations in the activation/T-loop, but the complete mechanism of its activation is still unclear. Here, we report that AKT phosphorylates MASTL at residue T299, which plays a critical role in its activation. Our results suggest that AKT increases CDK1-mediated phosphorylation and hence the activity of MASTL, which, in turn, promotes mitotic progression through PP2A inhibition. We also show that the oncogenic potential of AKT is augmented by MASTL activation, since AKT-mediated proliferation in colorectal cell lines can be attenuated by inhibiting and/or silencing MASTL. In brief, we report that AKT plays an important role in the progression of mitosis in mammalian cells and that it does so through the phosphorylation and activation of MASTL.




el

Correction for Dietz et al., "2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission"




el

Phages Actively Challenge Niche Communities in Antarctic Soils

ABSTRACT

By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.

IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.




el

Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078

ABSTRACT

Insights into the interaction between phages and their bacterial hosts are crucial for the development of phage therapy. However, only one study has investigated global gene expression of Clostridioides (formerly Clostridium) difficile carrying prophage, and transcriptional reprogramming during lytic infection has not been studied. Here, we presented the isolation, propagation, and characterization of a newly discovered 35,109-bp phage, JD032, and investigated the global transcriptomes of both JD032 and C. difficile ribotype 078 (RT078) strain TW11 during JD032 infection. Transcriptome sequencing (RNA-seq) revealed the progressive replacement of bacterial host mRNA with phage transcripts. The expressed genes of JD032 were clustered into early, middle, and late temporal categories that were functionally similar. Specifically, a gene (JD032_orf016) involved in the lysis-lysogeny decision was identified as an early expression gene. Only 17.7% (668/3,781) of the host genes were differentially expressed, and more genes were downregulated than upregulated. The expression of genes involved in host macromolecular synthesis (DNA/RNA/proteins) was altered by JD032 at the level of transcription. In particular, the expression of the ropA operon was downregulated. Most noteworthy is that the gene expression of some antiphage systems, including CRISPR-Cas, restriction-modification, and toxin-antitoxin systems, was suppressed by JD032 during infection. In addition, bacterial sporulation, adhesion, and virulence factor genes were significantly downregulated. This study provides the first description of the interaction between anaerobic spore-forming bacteria and phages during lytic infection and highlights new aspects of C. difficile phage-host interactions.

IMPORTANCE C. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile.




el

Cervical Spondylotic Myelopathy: A Guide to Diagnosis and Management

Cervical spondylotic myelopathy (CSM) is a neurologic condition that develops insidiously over time as degenerative changes of the spine result in compression of the cord and nearby structures. It is the most common form of spinal cord injury in adults; yet, its diagnosis is often delayed. The purpose of this article is to review the pathophysiology, natural history, diagnosis, and management of CSM with a focus on the recommended timeline for physicians suspecting CSM to refer patients to a spine surgeon. Various processes underlie spondylotic changes of the canal and are separated into static and dynamic factors. Not all patients with evidence of cord compression will present with symptoms, and the progression of disease varies by patient. The hallmark symptoms of CSM include decreased hand dexterity and gait instability as well as sensory and motor dysfunction. magnetic resonance imaging is the imaging modality of choice in patients with suspected CSM, but computed tomography myelography may be used in patients with contraindications. Patients with mild CSM may be treated surgically or nonoperatively, whereas those with moderate-severe disease are treated operatively. Due to the long-term disability that may result from a delay in diagnosis and management, prompt referral to a spine surgeon is recommended for any patient suspected of having CSM. This review provides information and guidelines for practitioners to develop an actionable awareness of CSM.




el

Factors Influencing Uptake of Changes to Clinical Preventive Guidelines

Background:

Despite widespread recognition that adherence to clinical preventive guidelines improves patient outcomes, clinicians struggle to implement guideline changes in a timely manner. Multiple factors influence guideline adoption and effective implementation. However, few studies evaluate their collective and inter-related effects. This qualitative study provides a comprehensive picture of the interplay between multiple factors on uptake of new or changed preventive guidelines.

Methods:

Semistructured interviews conducted in 2018 with a diverse sample of clinicians and practice leaders sought to understand patient, clinician, practice, health system, environment, and guideline factors of influence. An immersion-crystallization approach was used to identify emergent themes.

Results:

Interviewees expressed motivation to adhere to guidelines but also valued sharing decisions with patients. Personal biases and fears affected both clinician and patient guideline adoption. Practices facilitated implementation through workflow optimization and encouraging a culture of evidence-based practice while a key health system function was to maintain electronic health record alerts. More traditional environmental factors, such as insurance coverage or transportation, were less of a barrier to guideline adoption and implementation than the influence of media and specialists. Various specific guideline characteristics also affected ease of adoption and implementation. Different settings expressed greater health system, practice, or clinician-centric approaches to guideline implementation.

Conclusions:

Guideline uptake is influenced by a complex interplay of multiple levels of factors including the patient, clinician, practice, health system, environment, and guideline levels. Comprehensively understanding all levels of influence for each specific clinical setting may help to determine the optimal intervention(s) for improving uptake of evidence-based guidelines.




el

Eliminating Patient Identified Barriers to Decrease Medicaid Inpatient Admission Rates and Improve Quality of Care

Background and Objectives:

The goal of this study was to decrease admission and readmission rate for the 2296 Medicaid patients in our clinic. Our focus was to eliminate patient identified barriers to care that led to decreased quality of care. The identified barriers for our clinic included distance to care, poor same-day access, communication, and fragmented care. A team-based, collaborative approach using members from all aspects of patient care.

Methods:

An initial survey identified which barriers to care our patients felt obstructed their care. With this data, along with a national literature review, our team used biweekly quality team meetings with LEAN methodology and Plan-Do-Study-Act cycles to create a 4-phase quality improvement project. A home-visit program to decrease distance to care, walk-in clinic to improve same-day access, strengthened collaboration with outside care managers and clinic staff to improve communication, and the introduction of an in-house phlebotomist to improve fragmented care were created and studied between June 2015 and December 2018. Admission rate, avoidable readmission rate, as well as other quality of care measurements were assessed with electronic medical record reports and through North Carolina Medicaid data reports.

Results:

Overall Medicaid admissions decreased 32.7% from starting numbers, 40.2% below expected benchmarks. Avoidable readmissions decreased 41.8%, 53.8% below the expected benchmark. Improvements in same-day access numbers and lab completion rate were also seen.

Discussion:

The team-based approach to eliminating patient-identified barriers decreased both admissions and avoidable readmissions for our Medicaid patients. It also improved quality-of-care measures. This approach has been shown to be beneficial at our clinic and can easily be replicated in other settings.




el

Lowering Gestational Diabetes Risk by Prenatal Weight Gain Counseling

Purpose:

Excess weight gain during pregnancy is at epidemic proportions, and pregnancy complications are also on the rise. We sought to determine whether better weight gain counseling of expectant mothers will improve obstetric outcomes.

Methods:

Our historic control study design included 2 years of preintervention data, then 6 months of physician and staff training in prenatal weight gain counseling in accordance with 2009 Institute of Medicine guidelines, and finally, 2 more years of data collection for postintervention outcomes. Seven family medicine residency clinics monitored 1571 continuity prenatal cases. Counseling recommendations were noted and the following outcomes were analyzed: gestational age, birth weight, route of delivery, and the incidences of hypertension and gestational diabetes. Multiple logistic regression was used to control for demographic variables and body mass index at enrollment.

Results:

Institute of Medicine congruent counseling increased from 10% to 63% (P < .01). Excess weight gain decreased from 46.4% to 41.5% (adjusted odds ratio [AOR] = 0.85; 95% CI, 0.63–1.16; P = .10). Gestational diabetes decreased significantly from 11.5% to 7.3% (P = .008). The difference remained statistically significant even after adjusting for prepregnancy obesity and other clinical and demographic characteristics (AOR = 0.54; 95% CI, 0.32–0.91; P = .02). Differences in gestational age, birth weight, hypertension, primary cesarean, and shoulder dystocia were not statistically significant.

Conclusions:

Improved weight gain counseling of prenatal patients by physicians did reduce the pregnancy complication of gestational diabetes. This occurred even though the trend toward less excess weight gain was not statistically significant.




el

Complexities in Integrating Social Risk Assessment into Health Care Delivery




el

When and How Do We Need Permission to Help Patients Address Social Risk?




el

Do Patients Want Help Addressing Social Risks?

Evaluations of health care–based screening programs for social risks often report that a relatively small proportion of patients screening positive for social risk factors are interested in receiving assistance from their health care teams to address them. The relatively low number of patients who desire assistance is relevant to the growing number of initiatives in US health care settings designed to collect data on and address patients’ social risks. We highlight multiple studies that have found differences between positive risks screens and desire for assistance. We explore possible explanations for those differences—focusing on the fallibility of screening tools as well as patient preferences, priorities, and lived experiences—and the potential implications for health equity.




el

Forest protects Heliconius butterflies from climate extremes [INSIDE JEB]

Kathryn Knight




el

The glue produced by Drosophila melanogaster for pupa adhesion is universal [RESEARCH ARTICLE]

Flora Borne, Alexander Kovalev, Stanislav Gorb, and Virginie Courtier-Orgogozo

Insects produce a variety of adhesives for diverse functions such as locomotion, mating, and egg or pupal anchorage to substrates. Although they are important for the biology of organisms and potentially represent a great resource for developing new materials, insect adhesives have been little studied so far. Here, we examined the adhesive properties of the larval glue of Drosophila melanogaster. This glue is made of glycosylated proteins and allows the animal to adhere to a substrate during metamorphosis. We designed an adhesion test to measure the pull-off force required to detach a pupa from a substrate and to evaluate the contact area covered by the glue. We found that the pupa adheres with similar forces to a variety of substrates (with distinct roughness, hydrophilic and charge properties). We obtained an average pull-off force of 217 mN, corresponding to 15,500 times the weight of a pupa and an adhesion strength of 137–244 kPa. Surprisingly, the pull-off forces did not depend on the contact area. Our study paves the way for a genetic dissection of the components of D. melanogaster glue that confer its particular adhesive properties.




el

Microclimate buffering and thermal tolerance across elevations in a tropical butterfly [RESEARCH ARTICLE]

Gabriela Montejo-Kovacevich, Simon H. Martin, Joana I. Meier, Caroline N. Bacquet, Monica Monllor, Chris D. Jiggins, and Nicola J. Nadeau

Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species.




el

Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell [RESEARCH ARTICLE]

Ana Gabriela Jimenez, Emily Cornelius Ruhs, Kailey J. Tobin, Katie N. Anderson, Audrey Le Pogam, Lyette Regimbald, and Francois Vezina

Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches –10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to –20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (–5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.




el

Skeletal muscle thermogenesis induction by exposure to predator odor [RESEARCH ARTICLE]

Erin Gorrell, Ashley Shemery, Jesse Kowalski, Miranda Bodziony, Nhlalala Mavundza, Amber R. Titus, Mark Yoder, Sarah Mull, Lydia A. Heemstra, Jacob G. Wagner, Megan Gibson, Olivia Carey, Diamond Daniel, Nicholas Harvey, Meredith Zendlo, Megan Rich, Scott Everett, Chaitanya K. Gavini, Tariq I. Almundarij, Diane Lorton, and Colleen M. Novak

Non-shivering thermogenesis can promote negative energy balance and weight loss. In this study, we identified a contextual stimulus that induces rapid and robust thermogenesis in skeletal muscle. Rats exposed to the odor of a natural predator (ferret) showed elevated skeletal muscle temperatures detectable as quickly as 2 min after exposure, reaching maximum thermogenesis of >1.5°C at 10–15 min. Mice exhibited a similar thermogenic response to the same odor. Ferret odor induced a significantly larger and qualitatively different response from that of novel or aversive odors, fox odor or moderate restraint stress. Exposure to predator odor increased energy expenditure, and both the thermogenic and energetic effects persisted when physical activity levels were controlled. Predator odor-induced muscle thermogenesis is subject to associative learning as exposure to a conditioned stimulus provoked a rise in muscle temperature in the absence of the odor. The ability of predator odor to induce thermogenesis is predominantly controlled by sympathetic nervous system activation of β-adrenergic receptors, as unilateral sympathetic lumbar denervation and a peripherally acting β-adrenergic antagonist significantly inhibited predator odor-induced muscle thermogenesis. The potential survival value of predator odor-induced changes in muscle physiology is reflected in an enhanced resistance to running fatigue. Lastly, predator odor-induced muscle thermogenesis imparts a meaningful impact on energy expenditure as daily predator odor exposure significantly enhanced weight loss with mild calorie restriction. This evidence signifies contextually provoked, centrally mediated muscle thermogenesis that meaningfully impacts energy balance.




el

Neev, a novel long non-coding RNA, is expressed in chaetoblasts during regeneration of Eisenia fetida [RESEARCH ARTICLE]

Surendra Singh Patel, Sanyami Zunjarrao, and Beena Pillai

Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.




el

Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands [RESEARCH ARTICLE]

Vanessa Corby-Harris, Megan E. Deeter, Lucy Snyder, Charlotte Meador, Ashley C. Welchert, Amelia Hoffman, and Bethany T. Obernesser

Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress.




el

Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats [RESEARCH ARTICLE]

Ewa Komar, Dina K. N. Dechmann, Nicolas J. Fasel, Marcin Zegarek, and Ireneusz Ruczynski

Balancing energy budgets can be challenging, especially in periods of food shortage, adverse weather conditions and increased energy demand due to reproduction. Bats have particularly high energy demands compared to other mammals and regularly use torpor to save energy. However, while torpor limits energy expenditure, it can also downregulate important processes, such as sperm production. This constraint could result in a trade-off between energy saving and future reproductive capacity. We mimicked harsh conditions by restricting food and tested the effect on changes in body mass, torpor use and seasonal sexual maturation in male parti-coloured bats (Vespertilio murinus). Food-restricted individuals managed to maintain their initial body mass, while in well-fed males, mass increased. Interestingly, despite large differences in food availability, there were only small differences in torpor patterns. However, well-fed males reached sexual maturity up to half a month earlier. Our results thus reveal a complex trade-off in resource allocation; independent of resource availability, males maintain a similar thermoregulation strategy and favour fast sexual maturation, but limited resources and low body mass moderate this latter process.




el

In vitro insulin treatment reverses changes elicited by nutrients in cellular metabolic processes that regulate food intake in fish [RESEARCH ARTICLE]

Ayelen M. Blanco, Juan I. Bertucci, Jose L. Soengas, and Suraj Unniappan

This research assessed the direct effects of insulin on nutrient-sensing mechanisms in the brain of rainbow trout (Oncorhynchus mykiss) using an in vitro approach. Cultured hypothalamus and hindbrain were exposed to 1 µmol l–1 insulin for 3 h, and signals involved in appetite regulation and nutrient-sensing mechanisms were measured. Additionally, the involvement of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the actions of insulin was studied by using the inhibitor wortmannin. Treatment with insulin alone did not elicit many changes in the appetite regulators and nutrient-sensing-related genes and enzymes tested in the hypothalamus and hindbrain. However, we found that, when insulin and nutrients were added together, insulin reversed most of the effects exerted by nutrients alone, suggesting that insulin changes responsiveness to nutrients at the central level. Effects reversed by insulin included expression levels of genes related to the sensing of both glucose (slc2a2, slc5a1, gck, pck1, pklr, g6pcb, gys1, tas1r3 and nr1h3 in the hindbrain, and slc2a2, pklr and pck1 in the hypothalamus) and fatty acid (cd36 in the hindbrain, and cd36 and acly in the hypothalamus). Nutrient-induced changes in the activity of Acly and Cpt-1 in the hindbrain and of Pepck, Acly, Fas and Hoad in the hypothalamus were also reversed by insulin. Most of the insulin effects disappeared in the presence of wortmannin, suggesting the PI3K/Akt pathway is a mediator of the effects of insulin reported here. This study adds new information to our knowledge of the mechanisms regulating nutrient sensing in fish.




el

The effects of elevated temperature and PCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus [RESEARCH ARTICLE]

Daniel P. Small, Piero Calosi, Samuel P. S. Rastrick, Lucy M. Turner, Stephen Widdicombe, and John I. Spicer

Regulation of extracellular acid–base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2. At 13°C, H. gammarus juveniles were able to fully compensate for acid–base disturbances caused by the exposure to elevated seawater PCO2 at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2, indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid–base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.




el

Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes [REVIEW]

Karen L. Carleton, Daniel Escobar-Camacho, Sara M. Stieb, Fabio Cortesi, and N. Justin Marshall

Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.




el

The teleost fish intestine is a major oxalate-secreting epithelium [SHORT COMMUNICATION]

Jonathan M. Whittamore

Oxalate is a common constituent of kidney stones but the mechanism of its transport across epithelia are not well understood. With prior research on the role of the intestine focused on mammals this study considered oxalate handling by teleost fish. Given the osmotic challenge of seawater (SW), teleosts have limited scope for urinary oxalate excretion relative to freshwater (FW). The marine teleost intestine was hypothesized as the principal route for oxalate elimination thus demanding epithelial secretion. To test this, intestinal 14C-oxalate flux was compared between FW- and SW-acclimated sailfin molly (Poecilia latipinna). In SW, oxalate was secreted at remarkable rates (367.90±22.95 pmol cm–2 h–1) which were similar following FW transfer (387.59±27.82 pmol cm–2 h–1), implying no regulation by salinity. Nevertheless, this ability to secrete oxalate 15-19 times higher than mammalian small intestine supports this proposal of the teleost gut as a previously unrecognized excretory pathway.




el

An {alpha}7-related nicotinic acetylcholine receptor mediates the ciliary arrest response in pharyngeal gill slits of Ciona [RESEARCH ARTICLE]

Kei Jokura, Junko M. Nishino, Michio Ogasawara, and Atsuo Nishino

Ciliary movement is a fundamental process to support animal life, and the movement pattern may be altered in response to external stimuli under the control of nervous systems. Juvenile and adult ascidians have ciliary arrays around their pharyngeal gill slits (stigmata), and continuous beating is interrupted for seconds by mechanical stimuli on other parts of the body. Although it has been suggested that neural transmission to evoke ciliary arrest is cholinergic, its molecular basis has not yet been elucidated in detail. We herein attempted to clarify the molecular mechanisms underlying this neurociliary transmission in the model ascidian Ciona. Acetylcholinesterase histochemical staining showed strong signals on the laterodistal ciliated cells of stigmata, hereafter referred to as trapezial cells. The direct administration of acetylcholine (ACh) and other agonists of nicotinic ACh receptors (nAChRs) onto ciliated cells reliably evoked ciliary arrest that persisted for seconds in a dose-dependent manner. Only one isoform among all nAChR subunits encoded in the Ciona genome, called nAChR-A7/8-1, a relative of vertebrate α7 nAChRs, was expressed by trapezial cells. Exogenously expressed nAChR-A7/8-1 on Xenopus oocytes responded to ACh and other agonists with consistent pharmacological traits to those observed in vivo. Further efforts to examine signaling downstream of this receptor revealed that an inhibitor of phospholipase C (PLC) hampered ACh-induced ciliary arrest. We herein propose that homomeric α7-related nAChR-A7/8-1 mediates neurociliary transmission in Ciona stigmata to elicit persistent ciliary arrest by recruiting intracellular Ca2+ signaling.




el

In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

Christopher T. Richards and Enrico A. Eberhard

Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




el

Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle [RESEARCH ARTICLE]

Rohini Singh and Timothy A. Linksvayer

Wolbachia is a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its hosts to favor its own transmission. Wolbachia mediated phenotypic effects are well characterized in solitary hosts, but effects in social hosts are unclear. The invasive pharaoh ant, Monomorium pharaonis, shows natural variation in Wolbachia infection between colonies and can be readily bred under laboratory conditions. We previously showed that Wolbachia-infected pharaoh ant colonies had more queen-biased sex ratios than uninfected colonies, which is expected to favor the spread of maternally-transmitted Wolbachia. Here, we further characterize the effects of Wolbachia on the short- and longer-term reproductive and life history traits of pharaoh ant colonies. First, we characterized the reproductive differences between naturally infected and uninfected colonies at three discrete time points and found that infected colonies had higher reproductive investment (i.e. infected colonies produced more new queens), particularly when existing colony queens were three months old. Next, we compared the long-term growth and reproduction dynamics of infected and uninfected colonies across their whole life cycle. Infected colonies had increased colony-level growth and early colony reproduction, resulting in a shorter colony life cycle, when compared to uninfected colonies.