is

Integrity of neurocognitive networks in dementing disorders as measured with simultaneous PET/fMRI

Background: Functional magnetic resonance imaging (fMRI) studies have reported altered integrity of large-scale neurocognitive networks (NCNs) in dementing disorders. However, findings on specificity of these alterations in patients with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are still very limited. Recently, NCNs have been successfully captured using positron emission tomography (PET) with F18-fluordesoxyglucose (FDG). Methods: Network integrity was measured in 72 individuals (38 male) with mild AD, bvFTD, and healthy controls using a simultaneous resting state fMRI and FDG-PET. Indices of network integrity were calculated for each subject, network, and imaging modality. Results: In either modality, independent component analysis revealed four major NCNs: anterior default mode network (DMN), posterior DMN, salience network, and right central executive network (CEN). In fMRI data, integrity of posterior DMN was found to be significantly reduced in both patient groups relative to controls. In the AD group anterior DMN and CEN appeared to be additionally affected. In PET data, only integrity of posterior DMN in patients with AD was reduced, while three remaining networks appeared to be affected only in patients with bvFTD. In a logistic regression analysis, integrity of anterior DMN as measured with PET alone accurately differentiated between the patient groups. A correlation between indices of two imaging modalities was overall low. Conclusion: FMRI and FDG-PET capture partly different aspects of network integrity. A higher disease specificity of NCNs as derived from PET data supports metabolic connectivity imaging as a promising diagnostic tool.




is

Reshaping the amyloid buildup curve in Alzheimer's disease? - Partial volume effect correction of longitudinal amyloid PET data

It was hypothesized that the brain β-amyloid buildup curve plateaus at an early symptomatic Alzheimer's disease (AD) stage. Atrophy-related partial volume effects (PVEs) degrade signal in hot-spot imaging techniques, such as amyloid positron emission tomography (PET). This longitudinal analysis of amyloid-sensitive PET data investigated the shape of the β-amyloid curve in AD applying PVE correction (PVEC). We analyzed baseline and 2-year follow-up data of 216 symptomatic individuals on the AD continuum (positive amyloid status) enrolled in Alzheimer's Disease Neuroimaging Initiative (17 AD dementia, 199 mild cognitive impairment), including 18F-florbetapir PET, magnetic resonance imaging and mini mental state examination (MMSE) scores. For PVEC, the modified Müller-Gärtner method was performed. Compared to non-PVE-corrected data, PVE-corrected data yielded significantly higher regional and composite standardized uptake value ratio (SUVR) changes over time (P=0.0002 for composite SUVRs). Longitudinal SUVR changes in relation to MMSE decreases showed a significantly higher slope of the regression line in the PVE-corrected as compared to the non-PVE-corrected PET data (F=7.1, P=0.008). These PVEC results indicate that the β-amyloid buildup curve does not plateau at an early symptomatic disease stage. A further evaluation of the impact of PVEC on the in-vivo characterization of time-dependent AD pathology, including the reliable assessment and comparison of other amyloid tracers, is warranted.




is

177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer

Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted.




is

NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma

In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile.




is

Confirmation of 123I-FP-CIT-SPECT (ioflupane) quantification methods in dementia with Lewy body and other neurodegenerative disorders

Rationale: To conduct a retrospective study comparing three 123I-FP-CIT-SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathological findings. Methods: 123I-FP-CIT-SPECT and neuropathological findings among patients with neurodegenerative syndromes from the Mayo Alzheimer's Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT-SPECT quantitative assessment Methods: MIMneuro (MIM Software Inc.), DaTQUANT (GE Healthcare), and manual region of interest (ROI) creation on an Advantage Workstation (GE Healthcare) were compared to neuropathological findings describing the presence or absence of Lewy body disease (LBD). Striatum to background ratios (SBRs) generated by DaTQUANT were compared to the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro the left, right, total and average SBRs and z-scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients [20 (83%) male, aged 75.4 +/- 10.0 at death]. The antemortem clinical diagnoses were Alzheimer’s disease dementia (ADem, N = 6), probable dementia with Lewy bodies (pDLB, N = 12), mixed ADem/pDLB (N = 1), Parkinson’s disease with mild cognitive impairment (N = 2), corticobasal syndrome (N = 1), idiopathic rapid eye movement sleep behavior disorder (iRBD) (N = 1) and behavioral variant frontotemporal dementia (N = 1). Seventeen (71%) had LBD pathology. All three 123I-FP-CIT-SPECT quantitative methods had area under the receiver operating characteristics (AUROC) values above 0.93 and up to 1.000 (p<0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed, p<.001. There was no significant difference between the accuracy of the regions in discriminating the two groups, with good discrimination for both caudate and putamen. Conclusion: All three 123I-FP-CIT-SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z-scores.




is

Interim PET evaluation in diffuse large B-cell lymphoma employing published recommendations: Comparison of the Deauville 5-point scale and the {Delta}SUVmax method

The value of interim 18F-fluorodeoxyglucose positron emission tomography (iPET) guided treatment decisions in patients with diffuse large B-cell lymphoma (DLBCL) has been the subject of much debate. This investigation focuses on a comparison of the Deauville score and the deltaSUVmax (SUVmax) approach – two methods to assess early metabolic response to standard chemotherapy in DLBCL. Methods: Of 609 DLBCL patients participating in the Positron Emission Tomography-guided Therapy of Aggressive non-Hodgkin Lymphomas (PETAL) trial, iPET scans of 596 patients originally evaluated using the SUVmax method were available for post-hoc assessment of the Deauville score. A commonly used definition of an unfavorable iPET result according to the Deauville score is an uptake greater than that of the liver, whereas an unfavorable iPET scan with regard to the SUVmax approach is characterized as a relative reduction of the maximum standardized uptake value between baseline and iPET staging of less than or equal to 66%. We investigated the two methods’ correlation and concordance by Spearman’s rank correlation coefficient and the agreement in classification, respectively. We further used Kaplan-Meier curves and Cox regression to assess differences in survival between patient subgroups defined by the pre-specified cut-offs. Time-dependent receiver operating curve analysis provided information on the methods’ respective discrimination performance. Results: Deauville score and SUVmax approach differed in their iPET-based prognosis. The SUVmax approach outperformed the Deauville score in terms of discrimination performance – most likely due to a high number of false-positive decisions by the Deauville score. Cut-off-independent discrimination performance remained low for both methods, but cut-off-related analyses showed promising results. Both favored the SUVmax approach, e.g. for the segregation by iPET response, where the event-free survival hazard ratio was 3.14 (95% confidence interval (CI): 2.22 – 4.46) for SUVmax and 1.70 (95% CI: 1.29 – 2.24) for the Deauville score. Conclusion: When considering treatment intensification, the currently used Deauville score cut-off of an uptake above that of the liver seems to be inappropriate and associated with potential harm for DLBCL patients. The SUVmax criterion of a relative reduction of the maximum standardized uptake value of less than or equal to 66% should be considered as an alternative.




is

Discussions with Leaders: A Conversation Between Johnese Spisso and Johannes Czernin




is

Violent Extremist Groups in Africa: Local and Global Factors

Research Event

10 October 2019 - 5:00pm to 6:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Professor Stig Jarle Hansen, Professor, Norwegian University of Life Sciences; Author, Horn, Sahel and Rift: Fault-lines of the African Jihad
Bulama Bukarti, PhD Candidate, SOAS, University of London; Analyst, Tony Blair Institute for Global Change
Chair: Aoife McCullough, PhD Candidate, LSE

Islamist-inspired radical organizations in Africa have had a historical presence that extends well beyond the more recent emergence of groups including Al Shabaab, Boko Haram, Ansar Dine and Al-Qaeda in the Islamic Maghreb.
  
Despite more than three decades of international efforts to immobilize these organizations, they have proven to be adaptable and resilient, continuing to engage in insurgent campaigns against the state and employing terrorist violence against civilians. As they operate within and across different states and regions, the key to understanding this persistence – as well as the challenges of responding to it – often lies in the interaction between global dynamics and frequently underappreciated local factors.
 
At this event, which will launch the book Horn, Sahel and Rift: Fault-lines of the African Jihad, speakers will discuss key factors leading to the emergence of radical Islamist violence in Africa, its impact and the outlook ahead for African and other actors in addressing these issues.
 
THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED. 

Yusuf Hassan

Parliamentary and Media Outreach Assistant, Africa Programme
+44 (0) 20 7314 3645




is

Can the New European Commission Deliver on Its Promises to Africa?

4 December 2019

Fergus Kell

Projects Assistant, Africa Programme

Damir Kurtagic

Former Academy Robert Bosch Fellow, Africa Programme
Familiar promises of equal partnership must be backed by bolder action, including an expanded budget, internal reform and a rethink of its approach to trade negotiations.

2019-12-03-Urpilainen.jpg

Jutta Urpilainen, new EU commissioner for international partnerships, at the European Parliament in Brussels in October. Photo: Getty Images.

The new European Commission, headed by Ursula von der Leyen, assumed office on 1 December, and there are early signs that Africa will begin near the top of their foreign policy priorities. Policy towards Africa under the new EU administration is yet to be fully defined, but its contours are already visible in the selection of commissioners and assignment of portfolios.  

Although rumours of a dedicated commissioner for Africa were unfounded, the appointment of Jutta Urpilainen to the new role of commissioner for international partnerships – replacing the former post of development commissioner – is a strong signal of ongoing change in EU development thinking, away from bilateral aid towards trade and investment, including by the private sector. 

This may have significant consequences for the EU’s relationship with Africa. In her mission letter to Urpilainen in September, von der Leyen listed the first objective as a new ‘comprehensive strategy for Africa’. Urpilainen, Finland’s finance minister before being posted to Ethiopia as special representative on mediation, has also described her appointment as an opportunity to move on from traditional measures of aid delivery. 

Ambition or incoherence? 

However, this ambition may be at odds with other EU priorities and practices, notably managing migration and institutions and instruments for governing EU–Africa relations that remain rooted in a ‘traditional’ model of North–South development cooperation rather than equitable partnership.

Another newly created post will see Margaritis Schinas assume the role of vice-president for promoting the European way of life – formerly ‘protecting our European way of life’ before a backlash saw it changed – a reminder that migration will remain high on the EU’s foreign policy agenda. The new high representative for foreign and security policy and chief EU diplomat, Josep Borrell, has highlighted the need for bilateral partnership with countries of origin and transit, mainly in Africa. 

Negotiations also continue to stall on a replacement to the Cotonou Agreement, the 20-year partnership framework between the EU and the African, Caribbean and Pacific (ACP) group of states, which now looks certain to be extended for at least 12 months beyond its expiry in February 2020.

Ambiguities in the EU’s negotiating approach have certainly contributed to the delay: having pushed initially for a separate regional pillar for Africa that would be opened to the North African countries (who are not ACP members) and include a loosely defined role for the African Union, this would later be abandoned in favour of a dual-track process on separate new agreements with the AU and ACP respectively.

The EU also continues to pursue controversial economic partnership agreements under the aegis of Cotonou, despite their increasing appearance of incompatibility with the pathbreaking African Continental Free Trade Area (AfCFTA) – one of the clearest expressions to date of African agency.

The EU has so far attempted to gloss over this incoherence, claiming that EPAs can somehow act as the ‘building blocks’ for Africa-wide economic integration. But tensions are appearing between EU departments and within the commission, with the European External Action Service inclined to prioritize a more strategic continental relationship with the AU, while the Directorate-General for International Cooperation and Development remains committed to the ACP as the conduit for financial support and aid delivery.

And it is unlikely to get away with such incoherence for much longer. Change is now urgent, as numerous countries in sub-Saharan Africa continue to attract the strategic and commercial interests of the EU’s competitors: from established players such as China and potentially in future the UK, which is intent on remodelling its Africa ties post-Brexit, to emerging actors such as Turkey or Russia, which held its first Africa summit in October. 

The need for delivery

If the EU is serious about its rhetoric on equal partnership, it must therefore move beyond convoluted hybrid proposals. Delivering on the Juncker administration’s proposal to increase funding for external action by 30 per cent for 2021–27 would mark an important first step, particularly as this involves streamlining that would see the European Development Fund – the financial instrument for EU-ACP relations – incorporated into the main EU budget.

The new commission should therefore continue to exert pressure on the European Council and European Parliament to adopt this proposal, as negotiations on this financial framework have been repeatedly subject to delay and may not be resolved before the end of the year. 

Beyond this, proactive support for the AfCFTA and for structural transformation more broadly must be prioritized ahead of vague promises for a continent-to-continent free trade agreement, as held out by Juncker in his final State of the Union address in 2018. 

The significance of internal EU reforms for Africa should also not be discounted. The EU’s Common Agricultural Policy, for instance, has placed the African sector at a particular disadvantage and has made it harder to compete even in domestic markets, let alone in the distant EU export markets. EU efforts to stimulate inflows of private investments into the African agricultural sector, abolish import tariffs and offer technical support for African producers to satisfy EU health and safety regulations will be of little use if they are undermined by heavy subsidies across Europe.

Ultimately, changes to job titles alone will be insufficient. The new commission’s rhetoric, while ambitious, differs little from that of the previous decade – Africa has heard the promise of a ‘partnership of equals’ and of ‘shared ownership’ since before the advent of the Joint Africa–EU Strategy in 2007. Now is the time for truly bold steps to implement this vision.




is

Africa’s Long-standing Leaders Are Disappearing

3 January 2020

Dr Alex Vines OBE

Managing Director, Ethics, Risk & Resilience; Director, Africa Programme
Leaders who cling to power are being pushed out across the continent, and the trend looks set to continue in 2020.

2020-01-03-Zim.jpg

A man holds a portrait of Robert Mugabe during his official funeral ceremony. Photo: Getty Images.

Africa’s dinosaur leaders are members of an increasingly small and unstable club. Popular protests last year forced Algeria’s president, Abdelaziz Bouteflika, out of office after almost 20 years in power, as well as Sudan’s president, Omar al-Bashir, who ruled for 30 years. In 2017, Robert Mugabe was deposed in a military coup (although this was denied) after 40 years. 
And in 2011, mass protests led to the downfall of Tunisia’s president, Zine el-Abidine Ben Ali, after he had been in power for 23 years.

Somewhat smoother are the political transitions in Angola and the Democratic Republic of the Congo (DRC). José Eduardo dos Santos, after almost 38 years in power, stepped down from office in 2017 as his term ended. So did his younger neighbour, Joseph Kabila, in January 2019, after 18 years in the presidency.

What the six former leaders had in common was that they wanted to remain heads of state and considered succession planning or stepping down only as a last resort. This year will be crucial for the six countries in political transition particularly as the reform-window period is short.

From A to Z 

Algeria: Tens of thousands of protesters have rallied in the capital Algiers and other cities against the December 2019 elections, rejecting what they see as sham transitional politics. A soft landing for Algeria in 2020 is unlikely, and what happens in the year has significant regional implications.

Angola: A transition is under way, led by President João Lourenço. This shift is smoother than many others, but 2020 will be the watershed year. The country has been in economic recession for four years but is predicted to see gross domestic product growth in 2020. Investment and job creation will determine the pace of change. The honeymoon period has ended and there are signs of increasing frustration among the urban youth and the middle class.

DRC: Despite his constitutionally mandated term expiring in December 2016, Joseph Kabila continued his presidency by continuously postponing elections until 30 December 2018. This election saw a three-way contest between the Union for Democracy and Social Progress (UDSP), the Engagement for Citizenship and Development party and the People’s Party for Reconstruction and Democracy (PPRD). Fèlix Tshisekedi of the UDSP was declared the winner by the Independent National Electoral Commission on January 10 last year with 38.6% votes. He was followed by Martin Fayulu of the Engagement for Citizenship and Development party, with 34.8%. He denounced the election results. In third place was Emmanuel Ramazani Shadary, of the PPRD, a key ally of Kabila.

Although this was the first peaceful transition of power in DRC, there were widespread electoral inconsistencies and some observers believed that Fayulu was the legitimate winner. In 2020 it will become clearer whether a genuine transition from Kabila’s influence is taking place.

Sudan: More promising than the DRC or Algeria, a 39-month transitional administration led by a technocratic prime minister, Abdalla Hamdok, has been established and enjoys domestic and international goodwill. This honeymoon is likely to be short, and the transitional administration needs to show results. The United States can help by removing Sudan from its terror list, thereby lifting the de facto ban on Sudan’s access to the dollar-based international financial system.

Tunisia: A low-profile, conservative law professor beat a charismatic media magnate released from prison in the presidential election runoff in October 2019. Kais Saied won 70% of the vote and his victory and the putting together of a new governing coalition is another step forward in an open-ended democratic transition that started in 2011 after Ben Ali fell.

Zimbabwe: This is a deeply troubled transition with an acute foreign exchange liquidity crisis, a deteriorating economy, hyperinflation and underperforming government. The state’s clinics and hospitals are closed or turn away patients as medical supplies run out and the doctors’ strike over decimated wages continues. There are power outages and almost half of the people face hunger and starvation as a result of drought and the economic crisis.

Zimbabwe’s 2020 looks bleak, a far cry from the euphoria of two years ago when a “military assisted transition” removed Mugabe and replaced him with Emmerson Mnangagwa.

More changes coming

So what do these political developments in 2019 tell us more broadly?

Long-standing leaders have been persistent in Africa, despite the end of single-party rule in favour of a multiparty system. About a fifth of all African heads of state since independence can be classed as long-standing leaders — in power for more than a decade — and only five countries have never experienced one. But the trend is in decline.

It remains most resilient in central Africa and in the Great Lakes regions. Cracks are appearing in their citadels in Malabo and Kampala, but in 2019 Equatorial Guinea’s President Teodoro Obiang Mbasogo celebrated 40 years in power and Uganda’s Yoweri Museveni 33 years.

Will there be any more departures from the dinosaurs club in 2020?

One of the shortest serving members of this club, President Pierre Nkurunziza (14 years in power) has said he will not stand for the 2020 elections in Burundi, although this is uncertain given that a 2018 constitutional referendum could allow him to stay in power until 2034. Togo’s Faure Gnassingbé (14 years in power) will stand for re-election to the presidency again after Parliament in 2019 approved a constitutional change permitting him to potentially stay in office until 2030.

Amending constitutions to change term limits so that incumbent leaders can run for office is a favoured tactic. Rwanda’s Paul Kagame (19 years in office) and the Republic of Congo’s Denis Sassou Nguesso (25 years in power) have done this. But Eritrea’s Isaias Afwerki has never held an election during his 16 years in power.

Attempts at dynasties have been less successful, such as with Grace Mugabe in Zimbabwe or Gamal Mubarak in Egypt, but Obiang is grooming his playboy son Teodorin to succeed him and Gabon’s Ali Bongo and Togo’s Gnassingbé both succeeded their fathers.

The year is a reminder that more of these long-standing leaders will, in 2020 and beyond, step down or die. Most long-standing leaders in Africa are over the age of 70, with Paul Biya, aged 86, having served 37 years as Cameroon’s president.

Some former leaders capitulated under internal pressure: in Algeria, Sudan, Tunisia and Zimbabwe. Only in Angola and the DRC was a transition process organized as part of an elite bargain.

What the political transitions have in common is that honeymoons are short and that, whether they are led by interim administrations or elected leaders, they need to deliver political and socioeconomic improvements to succeed, but have inherited shambolic economies. Their success depends on accountable political leadership and domestic and international support.

This article was originally published by the Mail & Guardian.




is

Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms

Research Event

21 January 2020 - 2:30pm to 3:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Hon. Manuel José Nunes Júnior, Minister of State for Economic Coordination, Republic of Angola
Chair: Dr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme, Chatham House

Minister Nunes Júnior will discuss the progress of the Angolan government’s economic stabilization plans and business reform agenda including the privatization of some state-owned enterprises. These reforms could expand Angola’s exports beyond oil and stimulate new industries and more inclusive economic growth.

THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




is

Coronavirus Risks Worsening a Food Crisis in the Sahel and West Africa

1 May 2020

Dr Leena Koni Hoffmann

Associate Fellow, Africa Programme

Paul Melly

Consulting Fellow, Africa Programme
In responding to the spread of the coronavirus, the governments of the Sahel and West Africa will need to draw on their collective experience of strategic coordination in emergency planning, and work together to prioritize the flow of food across borders.

2020-05-01-Africa-Market-Virus

An informal market in the Anyama district of Abidjan, Côte d’Ivoire, is sanitized against the coronavirus. Photo by SIA KAMBOU/AFP via Getty Images.

The COVID-19 pandemic has struck the Sahel and West Africa at a time when the region is already under severe pressure from violent insecurity and the effects of climate change on its land, food and water resources.

By the end of April, there had been 9,513 confirmed coronavirus cases across the 17 countries of the region, and some 231 deaths, with the highest overall numbers recorded in Nigeria, Ghana, Guinea, Côte d’Ivoire, Senegal, Niger and Burkina Faso. Low testing rates mean than these numbers give only a partial picture.

The Food Crisis Prevention Network (RPCA) forecast in early April that almost 17 million people in the Sahel and West Africa (7.1 million in Nigeria alone) will need food and nutritional assistance during the coming lean season in June–August, more than double the number in an average year. The combined impact of violent insecurity and COVID-19 could put more than 50 million other people across the region at risk of food and nutrition crisis.

Rippling across the region

The effects of the collapse in global commodity prices, currency depreciations, rising costs of consumer goods and disruptions to supply chains are rippling across the region. And for major oil-exporting countries such as Nigeria, Ghana, Chad and Cameroon, the wipe-out of foreign currency earnings will hammer government revenues just as the cost of food and other critical imports goes up. It is likely that the number of people who suffer the direct health impact of the coronavirus will be far outstripped by the number for whom there will be harsh social and economic costs.

In recent years, valuable protocols and capacities have been put in place by governments in West and Central Africa in response to Ebola and other infectious disease outbreaks.

But inadequate healthcare funding and infrastructure across this region compound the challenge of responding to the spread of the COVID-19 infection – which is testing the resources of even the world’s best-funded public health systems.

Over many years, however, the region has steadily built up structures to tackle humanitarian and development challenges, particularly as regards food security. It has an established system for assessing the risk of food crisis annually and coordinating emergency support to vulnerable communities. Each country monitors climate and weather patterns, transhumance, market systems and agricultural statistics, and terrorist disruption of agricultural productivity, from local community to national and regional level.

The system is coordinated and quality-controlled, using common technical data standards, by the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), a regional intergovernmental body established in 1973 in response to a devastating drought. Collective risk assessments allow emergency support to be mobilized through the RPCA.

For almost three months already, countries in Sahelian West Africa have been working with the World Health Organization to prepare national COVID-19 response strategies and strengthen health controls at their borders. Almost all governments have also opted for domestic curfews, and variations of lockdown and market restrictions.

Senegal has been a leader in rapidly developing Africa’s diagnostic capacity, and plans are under way to speed up production of test kits. Niger was swift to develop a national response strategy, to which donors have pledged €194.5 million. While the IMF has agreed emergency financial assistance to help countries address the urgent balance-of-payments, health and social programme needs linked to the COVID-19 pandemic, signing off $3.4 billion for Nigeria, $442 million for Senegal and $130 million for Mauritania.

Steps are also now being taken towards the formulation of a more joined-up regional approach. Notably, Nigeria’s President Muhammadu Buhari has been chosen by an extraordinary session of the Economic Community of West African States to coordinate the regional response to COVID-19. As Africa’s biggest economy and home to its largest population, Nigeria is a critical hub for transnational flows of goods and people. Its controversial August 2019 land border closure, in a bid to address smuggling, has already painfully disrupted regional agri-food trade and value chains. The active engagement of the Buhari administration will thus be crucial to the success of a multifaceted regional response.

One of the first tough questions the region’s governments must collectively address is how long to maintain the border shutdowns that were imposed as an initial measure to curb the spread of the virus. Closed borders are detrimental to food security, and disruptive to supply chains and the livelihoods of micro, small and medium-sized entrepreneurs that rely on cross-border trade. The impact of prolonged closures will be all the more profound in a region where welfare systems are largely non-existent or, at best, highly precarious.

Nigeria, in particular, with more than 95 million people already living in extreme poverty, might do well to explore measures to avoid putting food further beyond the reach of people who are seeing their purchasing power evaporate.

In taking further actions to control the spread of the coronavirus, the region’s governments will need to show faith in the system that they have painstakingly developed to monitor and respond to the annual risk of food crisis across the Sahel. This system, and the critical data it offers, will be vital to informing interventions to strengthen the four components of food security – availability, access, stability and utilization – in the context of COVID-19, and for charting a post-pandemic path of recovery.

Above all, careful steps will need to be put in place to ensure that preventing the spread of the coronavirus does not come at the cost of even greater food insecurity for the people of the Sahel and West Africa. The region’s governments must prioritize the flow of food across borders and renew their commitment to strategic coordination and alignment.




is

Meeting the Promise of the 2010 Constitution: Devolution, Gender and Equality in Kenya

Research Event

12 May 2020 - 1:00pm to 2:00pm
Add to Calendar
Natasha Kimani, Academy Associate, Chatham House; Head of Partnerships and Programmes, Shujaaz Inc.
Chair: Tighisti Amare, Assistant Director, Africa Programme, Chatham House
While gender equality was enshrined in Kenyan law under the 2010 constitution, gender-based marginalization remains a significant issue across all levels of society. The advent of devolution in 2013 raised hopes of enhanced gender awareness in policymaking and budgeting, with the 47 newly instituted county governments expected to tackle the dynamics of inequality close to home, but implementation has so far failed to match this initial promise. As Kenya approaches the tenth anniversary of the constitution, and with the COVID-19 pandemic throwing the challenges of gender inequality into sharper relief, it is critical to ensure that constitutional pathways are followed with the requisite level of urgency, commitment and investment to address entrenched gender issues.
 
This event, which will launch the report, Meeting the Promise of the 2010 Constitution: Devolution, Gender and Equality in Kenya, will assess the current status of efforts to devolve and adopt gender-responsive budgeting and decision-making in Kenya, and the priorities and potential future avenues to tackle the implementation gap.
 
This event will be held on the record.

To express your interest in attending, please follow this link. You will receive a Zoom confirmation email should your registration be successful.

Hanna Desta

Programme Assistant, Africa Programme




is

Correction: Graph Algorithms for Condensing and Consolidating Gene Set Analysis Results. [Additions and Corrections]




is

Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition [Technological Innovation and Resources]

In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions.

We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways.

Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data.




is

Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics [Technological Innovation and Resources]

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.




is

Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State [Research]

The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state.




is

Site-specific N-glycan Analysis of Antibody-binding Fc {gamma} Receptors from Primary Human Monocytes [Research]

FcRIIIa (CD16a) and FcRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ~20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145).




is

Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion [Research]

The blue mold fungus, Penicillium expansum, is a postharvest apple pathogen that contributes to food waste by rotting fruit and by producing harmful mycotoxins (e.g. patulin). To identify genes controlling pathogen virulence, a random T-DNA insertional library was created from wild-type P. expansum strain R19. One transformant, T625, had reduced virulence in apples, blistered mycelial hyphae, and a T-DNA insertion that abolished transcription of the single copy locus in which it was inserted. The gene, Blistering1, encodes a protein with a DnaJ domain, but otherwise has little homology outside the Aspergillaceae, a family of fungi known for producing antibiotics, mycotoxins, and cheese. Because protein secretion is critical for these processes and for host infection, mass spectrometry was used to monitor proteins secreted into liquid media during fungal growth. T625 failed to secrete a set of enzymes that degrade plant cell walls, along with ones that synthesize the three final biosynthetic steps of patulin. Consequently, the culture broth of T625 had significantly reduced capacity to degrade apple tissue and contained 30 times less patulin. Quantitative mass spectrometry of 3,282 mycelial proteins revealed that T625 had altered cellular networks controlling protein processing in the endoplasmic reticulum, protein export, vesicle-mediated transport, and endocytosis. T625 also had reduced proteins controlling mRNA surveillance and RNA processing. Transmission electron microscopy of hyphal cross sections confirmed that T625 formed abnormally enlarged endosomes or vacuoles. These data reveal that Blistering1 affects internal and external protein processing involving vesicle-mediated transport in a family of fungi with medical, commercial, and agricultural importance.




is

Molecular Basis of the Mechanisms Controlling MASTL [Research]

The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation. MASTL contains a non-conserved insertion of 550 residues within its activation loop, splitting the kinase domain, and making it unique. Here, we show that this non-conserved middle region (NCMR) of the protein is crucial for target specificity and activity. We performed a phosphoproteomic assay with different MASTL constructs identifying key phosphorylation sites for its activation and determining whether they arise from autophosphorylation or exogenous kinases, thus generating an activation model. Hydrogen/deuterium exchange data complements this analysis revealing that the C-lobe in full-length MASTL forms a stable structure, whereas the N-lobe is dynamic and the NCMR and C-tail contain few localized regions with higher-order structure. Our results indicate that truncated versions of MASTL conserving a cryptic C-Lobe in the NCMR, display catalytic activity and different targets, thus establishing a possible link with truncated mutations observed in cancer-related databases.




is

Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer [Research]

Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners.




is

Phosphoproteomic Approaches to Discover Novel Substrates of Mycobacterial Ser/Thr Protein Kinases [Reviews]

Mycobacterial Ser/Thr protein kinases (STPKs) play a critical role in signal transduction pathways that ultimately determine mycobacterial growth and metabolic adaptation. Identification of key physiological substrates of these protein kinases is, therefore, crucial to better understand how Ser/Thr phosphorylation contributes to mycobacterial environmental adaptation, including response to stress, cell division, and host-pathogen interactions. Various substrate detection methods have been employed with limited success, with direct targets of STPKs remaining elusive. Recently developed mass spectrometry (MS)-based phosphoproteomic approaches have expanded the list of potential STPK substrate identifications, yet further investigation is required to define the most functionally significant phosphosites and their physiological importance. Prior to the application of MS workflows, for instance, GarA was the only known and validated physiological substrate for protein kinase G (PknG) from pathogenic mycobacteria. A subsequent list of at least 28 candidate PknG substrates has since been reported with the use of MS-based analyses. Herein, we integrate and critically review MS-generated datasets available on novel STPK substrates and report new functional and subcellular localization enrichment analyses on novel candidate protein kinase A (PknA), protein kinase B (PknB) and PknG substrates to deduce the possible physiological roles of these kinases. In addition, we assess substrate specificity patterns across different mycobacterial STPKs by analyzing reported sets of phosphopeptides, in order to determine whether novel motifs or consensus regions exist for mycobacterial Ser/Thr phosphorylation sites. This review focuses on MS-based techniques employed for STPK substrate identification in mycobacteria, while highlighting the advantages and challenges of the various applications.




is

Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation [Technological Innovation and Resources]

The use of protein biomarkers as surrogates for clinical endpoints requires extensive multilevel validation including development of robust and sensitive assays for precise measurement of protein concentration. Multiple reaction monitoring (MRM) is a well-established mass-spectrometric method that can be used for reproducible protein-concentration measurements in biological specimens collected via microsampling. The dried blood spot (DBS) microsampling technique can be performed non-invasively without the expertise of a phlebotomist, and can enhance analyte stability which facilitate the application of this technique in retrospective studies while providing lower storage and shipping costs, because cold-chain logistics can be eliminated. Thus, precise, sensitive, and multiplexed methods for measuring protein concentrations in DBSs can be used for de novo biomarker discovery and for biomarker quantification or verification experiments. To achieve this goal, MRM assays were developed for multiplexed concentration measurement of proteins in DBSs.

The lower limit of quantification (LLOQ) was found to have a median total coefficient of variation (CV) of 18% for 245 proteins, whereas the median LLOQ was 5 fmol of peptide injected on column, and the median inter-day CV over 4 days for measuring endogenous protein concentration was 8%. The majority (88%) of the assays displayed parallelism, whereas the peptide standards remained stable throughout the assay workflow and after exposure to multiple freeze-thaw cycles. For 190 proteins, the measured protein concentrations remained stable in DBS stored at ambient laboratory temperature for up to 2 months. Finally, the developed assays were used to measure the concentration ranges for 200 proteins in twenty same sex, same race and age matched individuals.




is

N-glycosylation Site Analysis Reveals Sex-related Differences in Protein N-glycosylation in the Rice Brown Planthopper (Nilaparvata lugens) [Research]

Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens. Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies.




is

Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping [Research]

Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.




is

Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro [Research]

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro. Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro. Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.




is

Integration of IgA and IgG Autoantigens Improves Performance of Biomarker Panels for Early Diagnosis of Lung Cancer [Research]

Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. In our previous study, we surveyed both IgG and IgM-bound serological biomarkers and validated a panel of IgG-bound autoantigens for early LC diagnosis with 50% sensitivity at 90% specificity. To further improve the performance of these serological biomarkers, we surveyed HuProt arrays, comprised of 20,240 human proteins, for IgA-bound autoantigens because IgAs are a major immunoglobulin isotype in the lung. Integrating with IgG-bound autoantigens, we discovered and validated a combined biomarker panel using ELISA-format tests. Specifically, in Phase I, we obtained IgA-based autoimmune profiles of 69 early stage LC patients, 30 healthy subjects and 25 patients with lung benign lesions (LBL) on HuProt arrays and identified 28 proteins as candidate autoantigens that were significantly associated with early stage LC. In Phase II, we re-purified the autoantigens and converted them into an ELISA-format testing to profile an additional large cohort, comprised of 136 early stage LC patients, 58 healthy individuals, and 29 LBL patients. Integration of IgG autoimmune profiles allowed us to identify and validate a biomarker panel of three IgA autoantigens (i.e. BCL7A, and TRIM33 and MTERF4) and three IgG autoantigens (i.e. CTAG1A, DDX4 and MAGEC2) for diagnosis of early stage LC with 73.5% sensitivity at >85% specificity. In Phase III, the performance of this biomarker panel was confirmed with an independent cohort, comprised of 88 early stage LC patients, 18 LBL patients, and 36 healthy subjects. Finally, a blind test on 178 serum samples was conducted to confirm the performance of the biomarker panel. In summary, this study demonstrates for the first time that an integrated panel of IgA/IgG autoantigens can serve as valuable biomarkers to further improve the performance of early diagnosis of LC.




is

The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts [Research]

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.




is

Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology [Research]

Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.




is

Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity [Research]

C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.




is

Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker [Research]

An experimental and computational approach for identification of protein-protein interactions by ex vivo chemical crosslinking and mass spectrometry (CLMS) has been developed that takes advantage of the specific characteristics of cyanurbiotindipropionylsuccinimide (CBDPS), an affinity-tagged isotopically coded mass spectrometry (MS)-cleavable crosslinking reagent. Utilizing this reagent in combination with a crosslinker-specific data-dependent acquisition strategy based on MS2 scans, and a software pipeline designed for integrating crosslinker-specific mass spectral information led to demonstrated improvements in the application of the CLMS technique, in terms of the detection, acquisition, and identification of crosslinker-modified peptides. This approach was evaluated on intact yeast mitochondria, and the results showed that hundreds of unique protein-protein interactions could be identified on an organelle proteome-wide scale. Both known and previously unknown protein-protein interactions were identified. These interactions were assessed based on their known sub-compartmental localizations. Additionally, the identified crosslinking distance constraints are in good agreement with existing structural models of protein complexes involved in the mitochondrial electron transport chain.




is

Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms [Research]

Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.




is

Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis [Research]

In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.




is

Virtual Issue: Technological Innovations [Editorials]




is

Compliance Checklists No Longer Required at Initial Manuscript Submission [Editorials]




is

Proteomic Analysis of Salmonella-modified Membranes Reveals Adaptations to Macrophage Hosts [Research]

Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella.




is

Identification of an Unconventional Subpeptidome Bound to the Behcet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) [Research]

Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behcet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position ). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ~40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis.




is

Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism [Research]

The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.




is

Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue [Research]

Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS containing extraction buffer in combination with the single-pot solid-phase-enhanced sample preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide identifications. Microdissected FFPE human substantia nigra tissue samples (~3,000 cells) were then analyzed, using tandem mass tag (TMT) labeling and LC-MS/MS, resulting in the quantification of >5,600 protein groups. Nigral proteins were classified and analyzed by abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology (GO) terms among the higher abundance proteins. Comparison of microdissected samples with intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell subpopulations for proteomic analysis using low sample amounts.




is

An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics [Research]

Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100x) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ~2500 proteins and precise quantification of ~1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells.




is

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




is

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




is

Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism]

Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications.




is

Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease]

Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity.




is

A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway [Metabolism]

The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.




is

The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism]

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.




is

The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism]

Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues.




is

AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism]

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.




is

Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism]

The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver.




is

Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism]

Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.