ng

Method to facilitate opportunity charging of an electric vehicle

A method for electrically charging a high-voltage battery of a subject vehicle includes resolving a geographic location of the subject vehicle at a remote charging site, electrically charging the high-voltage battery through a connection of the subject vehicle to an electric power outlet at the remote charging site, monitoring cumulative electric power flow to the high-voltage battery of the subject vehicle, communicating the cumulative electric power flow to a central server, and reconciling billing for the cumulative electric power flow between an owner of the subject vehicle and an owner of the remote charging site.




ng

Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.




ng

Systems and methods for in-vehicle charging of pallet jack batteries

Systems and methods for in-vehicle charging of pallet jack batteries are provided. An example system allows using a power source of a host vehicle configured to provide power at voltage levels lower than the operating voltage of the pallet jack battery stack. The system may allow, for example, charging a 24 volts pallet jack battery stack from a 12 volts power source of the host vehicle. The system may further comprise an interconnecting circuit having a plurality of contactors electrically coupling the batteries in parallel for charging and serially for discharging. The system may further comprise a voltage monitoring circuit to detect whether the pallet jack is connected to the host vehicle power source for charging. Based on the detection, the voltage monitoring circuit may reconfigure the interconnecting circuit to electrically couple the pallet jack batteries in parallel.




ng

Battery charging apparatus

An apparatus for charging an automobile battery is presented. The device provides a surface charge with a time limited window in which to start a vehicle. Use of used batteries provides for environmentally effective manner in which to deal with the tremendous amount of used batteries that are discarded worldwide each year. The apparatus may optionally include a charging circuit to allow for recharging the used batteries. An LED display may be included to provide indication when a target battery has sufficient surface charge to warrant an attempt to start an engine. The apparatus is a small portable device that can be stored anywhere in a vehicle.




ng

System and method for protecting a power consuming circuit

A system for protecting a power consuming circuit, the system comprising two terminals for receiving power and two terminals for providing received power. Between one of the receiving terminals and a providing terminal, a transistor is provided which is controlled by a Zener diode and to break the connection between one of the receiving terminals and a providing terminal, if a voltage over the providing terminals or the receiving terminals exceeds the breakdown voltage of the Zener diode.




ng

Battery system and energy storage system including same

A battery system is disclosed. The battery system includes a plurality of battery cells, and a battery cell balancing unit, configured to adjust voltages across each of the battery cells to reduce variation among the voltages across the battery cells. The battery cell balancing unit includes a controller configured to receive a DC reference current and to generate an AC current based on the DC reference current, a transformer, a rectifier circuit including a rectifier connected to the output coil, and a switching unit including a plurality of switches, each configured to selectively connect the rectifier to one of the battery cells.




ng

Charging apparatus and method for controlling charging apparatus

A charging apparatus including a charging unit adapted to charge, in a non-contact manner, an apparatus to be charged placed in a charging region, a detector adapted to detect a charged state of the apparatus to be charged placed in the charging region, and a controller adapted to change a mode of the apparatus to be charged to a mode that inhibits vibration, according to the charged state detected by the detector.




ng

System and method for managing load distribution across a power grid

A method for scheduling a charge of a plug-in electric vehicle (PEV) includes receiving, by a load management system, PEV information from a PEV plugged into an electric vehicle supply equipment (EVSE); transformer information from a transformer management system, the transformer information relating to a transformer associated with the EVSE; determining, by the charging information based on the PEV information and transformer information; providing the charging information to the PEV.




ng

Battery pack having improved strength

Disclosed herein is a battery pack including a battery cell array including two or more battery cells, each of which has an electrode assembly of a cathode/separator/anode structure disposed in a battery case together with an electrolyte in a sealed state, arranged in a lateral direction, a protection circuit module (PCM) connected to an upper end of the battery cell array to control an operation of the battery pack, a pack case in which the battery cell array and the protection circuit module are disposed, and a plate-shaped reinforcing member mounted between the pack case and the battery cell array to increase mechanical strength of the pack case.




ng

Energy storage system and method of controlling the same

An energy storage system and a method of controlling the same is provided. The energy storage system may directly provide generated DC power or DC power stored in a battery to a DC load without performing a DC/AC conversion or an AC/DC conversion. Furthermore, in the case where a grid operates abnormally (e.g. power interruption) and the energy storage system functions as an uninterruptible power supply (UPS), power stored in a battery may be selectively provided to loads according to power remaining in a battery, and thus stored power may be used stably.




ng

Battery charge management using a scheduling application

According to some embodiments, battery charge management using a scheduling application is disclosed. A first parameter may be received from a scheduling application running on a mobile computing device having a battery pack. Based on at least the first parameter and battery pack data, a required charge percentage for the battery pack may be determined and the remaining capacity of the battery pack may be determined. If the remaining capacity of the battery pack is less than the required charge percentage, a charge termination voltage may be determined and the battery pack may be charged to the charge termination voltage.




ng

Apparatus for minimizing self-discharge of a smart battery pack

An apparatus for minimizing self-discharge of a smart battery pack is provided. During initial storage of the smart battery pack (100), prior to be being charged, a self-discharge protection circuit (110) disables smart battery circuitry (130). A minimal current drain is maintained while the smart battery circuitry (130) is disabled. Upon coupling of the smart battery pack (100) to a charger, the protections circuit (110) enables the smart battery circuitry (130). Battery packs having to be shipped with partially drained cells as part of shipping precaution requirements are no longer faced with the additional drainage problem previously caused by the smart battery circuitry (130) during storage.




ng

Battery pack with integral non-contact discharging means and electronic device including the same

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.




ng

Wireless self-sufficient monitoring system for a door lock mechanism

The invention relates to a monitoring system for monitoring a state of a door lock mechanism of a door or of a closure of a storage space of a means of transportation, comprising a generator and a sensor/actuator. The generator produces electrical energy from vibration energy, and the sensor detects the state of the door lock mechanism. The sensor uses the kinetic energy that is produced by the actuation of the door lock to generate an electrical signal, which is then transmitted to a microcontroller.




ng

Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module

There is provided a battery module including: a power storage unit storing power; a first authentication unit carrying out first authentication via a first authentication route; a second authentication unit carrying out second authentication via a second authentication route; and a discharging control unit controlling discharging from the power storage unit to an external appliance, wherein the first authentication unit is operable, when the first authentication has succeeded, to share key information to be used in the second authentication with an authentication party for the second authentication, the second authentication unit carries out the second authentication using the key information shared with the authentication party, and the discharging control unit is operable, when the second authentication has succeeded, to permit discharging from the power storage unit.




ng

Battery voltage detector having pull-up resistor

A battery voltage detector includes, but is not limited to: a voltage detection circuit; and a voltage processor. The voltage detection circuit includes, but is not limited to: a capacitor configured to be charged by a battery cell; a pair of output terminals; an output switch; and a voltage processor. While the capacitor is charged, the output switch is configured to be off-state and insulate the capacitor from the pair of the output terminals. After the capacitor is charged, the output switch is configured to be on-state and connect the capacitor to the pair of the output terminals. The voltage processor is configured to obtain, as a cell voltage, a voltage between the output terminals of the voltage detection circuit while the output switch is on-state. A high-potential output terminal of the pair of the output terminals is connected to a power line via a pull-up resistor.




ng

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




ng

Charging device, image forming apparatus, and computer program product

An charging device includes: capacitors connected in series; a charging unit that charges the capacitors; bypass units, each respectively connects in parallel to each capacitors, wherein each bypass unit causes, when a charged voltage of any capacitor has reached a set voltage, a charging current to bypass the capacitor whose charged voltage has reached the set voltage; and a control unit that controls the charging unit to charge the capacitors in such a manner that, when a charging voltage of the any capacitor has reached the set voltage, the control unit causes the charging unit to reduce the charging current, and if a predetermined period has elapsed since the charging voltage has reached the set voltage, and if a charging voltage of any of the other capacitors has not reached the set voltage after the predetermined period, the control unit causes the charging unit to increase the charging current.




ng

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




ng

Automatic start and stop of a portable engine driven power source

The present embodiments provide a control system and method that is able to automatically start and/or stop a portable engine-driven power source. For example, in one embodiment, a system includes an engine-driven power source having an engine, a compressor driven by the engine, a sensor configured to generate a first signal indicative of a demand for air pressure from the compressor and a second signal indicative of no demand for air pressure from the compressor. The engine-driven power source also includes a controller configured to stop the engine in response to the second signal.




ng

Vehicle rotary electric machine capable of safely starting synchronous rectification

A rotary electric machine for a vehicle that is capable of starting synchronous rectification through switching elements after having ensured absence of a short circuit fault. The rotary electric machine includes a multi-phase armature winding, a switching element set that includes a plurality of pairs of upper-arm and lower-arm switching elements to form a bridge rectification circuit together with the armature winding, an on/off-timing setter that sets on/off-timing of each switching element, a switching element driver that drives each switching element at the on/off-timing set by the on/off-timing setter; and a synchronous control start determiner that determines timing when an energization period for the upper-arm switching element and an energization period for the lower-arm switching element occur alternately as start timing of the synchronous rectification.




ng

Control system of wind power generator, wind farm, and method for controlling wind power generator

A wind power generator generates power through a rotation of a rotor and is interconnected, and operated with its power generation output previously limited in order to be able to further supply the power to a power system in response to a decrease in system frequency. Thus, a concentrated control system derives a required restricted amount corresponding to a power generation output required to respond to the decrease in system frequency, derives a value by subtracting an amount corresponding to a latent power generation output with which the power generation output can be increased, from the required restricted amount, and sets a restricted amount of the power generation output in each wind power generator to perform the operation with the power generation output previously limited to respond to the decrease in system frequency, based on the above value.




ng

Method and device for primary frequency regulation based on bang-bang control

The present invention provides a method and a device for primary frequency regulation based on bang-bang control, the method comprises: obtaining in real-time a power grid frequency of a steam turbine generator set; performing a subtraction operation on a rated power grid frequency and said power grid frequency to generate a power grid frequency difference; performing a dead zone process on the power grid frequency difference according to a dead zone fixed value to generate a frequency difference; performing a frequency difference compensation operation on the frequency difference to generate a frequency difference compensation instruction; and combining an original primary frequency regulation output instruction with the frequency difference compensation instruction and outputting the result to a steam turbine speed regulation system when a selecting switch is 1.




ng

System and method for determining pole shift

A generator airgap monitoring system includes a first proximity sensor disposed in a first location of a stator and configured to transmit a first signal representative of a first distance between the first proximity sensor and a plurality of rotor poles of a rotor, and a controller communicatively coupled to the first proximity sensor. The controller is configured to derive a first plurality of instantaneous airgaps based on the first signal and to determine a difference between a first instantaneous airgap of the first plurality of instantaneous airgaps and a second instantaneous airgap of the first plurality of instantaneous airgaps. The first plurality of instantaneous airgaps includes a first plurality of measurements of airgaps between the stator and the plurality of rotor poles when the rotor is rotating. The first instantaneous airgap and the second instantaneous airgaps include measurements for respective rotor poles.




ng

Control system, method and program, and floating wind turbine generator provided therewith

The control system of this floating wind turbine generator is a control system of a floating wind turbine generator in which the control system controls a pitch angle control section by a pitch angle instruction value calculated on the basis of signals detected by a second sensor detecting a relative angle between a nacelle and a tower and a third sensor detecting a yaw angle from a reference position of the tower so that a signal detected by a first sensor detecting wind direction deviation relative to a vertical direction of a rotation plane of wind turbine blades indicates an angle within a predetermined range from the vertical direction of the rotation plane of the wind turbine blades, and controls a yaw driving device by a yaw driving instruction value calculated on the basis of the signals detected by the second sensor and the third sensor.




ng

DC chopper and DC chopping method for doubly fed induction generator system

A DC chopper comprising a control unit and a power circuit and a DC chopping method for a DFIG (doubly fed induction generator) system are provided. The input terminal of the control unit is coupled to a DC capacitor of a converter to detect a DC voltage. The power circuit includes input terminals, an overvoltage protection module, a rectifier module and output terminals. The overvoltage protection module comprises at least one discharge unit formed from a discharge resistor and a switch element, and the rectifier module is coupled in parallel to the overvoltage protection module. When a grid voltage drops, the control unit outputs a corresponding control signal to drive the switch element to be ON or OFF, and the output terminal of the power circuit absorbs a portion of rotor inrush current, so as to impose over-current protection.




ng

Systems for wound field synchronous machines with zero speed rotor position detection during start for motoring and improved transient response for generation

An electrical machine includes a stator having a main armature winding, an exciter field winding, and a transformer primary winding. A rotor is operatively connected to rotate relative to the stator, wherein the rotor includes an exciter armature winding operatively connected to the exciter armature winding for field excitation therebetween, a main field winding operatively connected to the main armature winding for field excitation therebetween, and a transformer secondary winding operatively connected to the transformer primary winding to form a rotating transformer. A generator control unit is operatively connected to the main armature winding, exciter field winding, and transformer primary winding to control the main armature and exciter field windings based on excitation in the primary winding received from the transformer secondary winding.




ng

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from condensers

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated by extracting thermal energy from a gas to condense the gas into a liquid and transferring the thermal energy to the electrically polarizable material. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material in thermal communication with a heat source, wherein the heat source is a condenser. An apparatus is also described which comprises a chamber, one or more conduits inside the chamber for conveying a cooling fluid and an electrically polarizable material sandwiched between electrodes on an outer surface of the conduit. A gas introduced into the chamber condenses on the conduits and thermal energy is thereby transferred from the gas to the electrically polarizable material.




ng

Method of controlling speed of a variable speed generator

Some embodiments relate to a method of controlling speed of a variable speed generator. The method includes detecting a load of the variable speed generator and determining a target speed for the variable speed generator based on the load supplied by the variable speed generator. The method further includes using a controller to adjust the speed of the variable speed generator based on the target speed. The method may further include correcting the target speed by calculating a correction factor that corrects the target speed based on a voltage produced by the variable speed generator.




ng

Methods and systems for monitoring excitation of a generator based on a faulty status of a generator breaker

Systems and methods for monitoring excitation of a generator based on a faulty status of a generator breaker are provided. According to one embodiment, a system may include a controller and a processor communicatively coupled to the controller. The processor may be configured to receive, from a contact associated with a generator breaker, a reported status of the generator breaker, receive operational data associated with one or more parameters of a generator associated with the generator breaker, and correlate the reported status of the generator breaker and the operational data. Based on the correlation, the processor may establish an actual status of the generator breaker, and, based on the actual status, selectively modify a mode of excitation of the generator.




ng

Method of operating a wind turbine, wind turbine, wind turbine controlling system, and processing system

According to an embodiment, a method of operating a wind turbine comprising a DC-to-AC voltage converter is provided, the wind turbine being connectable to a grid via the DC-to-AC voltage converter, the method comprising: determining a line voltage of a power line connecting the DC-to-AC voltage converter to the grid; if the determined line voltage exceeds a predefined voltage threshold value, injecting reactive current into the power line, wherein the amount of reactive current injected is chosen such that an output voltage of the DC-to-AC voltage converter is kept within a predetermined voltage range.




ng

Method of controlling rotating main field converter

A generator system includes a generator having a stationary portion and a rotating portion. An exciter field winding and a main armature winding are disposed on the stationary portion. An exciter armature winding and a main field winding are disposed on the rotating portion. A frequency demodulator is configured to extract a frequency modulated control signal from the exciter armature winding and to demodulate the frequency modulated control signal to generate a demodulated control signal. The generator includes a main field rotating power converter to selectively control current in the main field winding in response to the demodulated command signal. The generator system includes a generator control unit in electrical communication with the generator to monitor the output voltage at the main armature winding and to output an exciter current including the frequency modulated control signal to the exciter field winding based on the output voltage.




ng

DC motor assembly with soft starting capability

A DC motor assembly (10) with soft starting capability is provided. The assembly (10) comprises a DC motor (12) including an armature (14) and a field winding (16) adapted to be excited separately from the armature; and circuitry configured to controllably increase current flow through the field winding of the DC motor as a function of time during starting of the DC motor.




ng

Charging and distribution control

A system configured for charging and distribution control is provided. The system includes a switching regulator, a control circuit and a first converter. The switching regulator is configured to be selectively operable in one of a first operative state and a second operative state based on a control signal. The first operative state and the second operative state are associated with a maximum level of an alternator output power corresponding to at least one alternator operational feature, at least one alternator operational feature being associated with the alternator output voltage and an alternator speed. The control circuit is configured to generate the control signal based at least on the at least one alternator operational feature. The first converter is configured to generate a first converter output voltage based on the regulated DC output voltage. The first converter output voltage is lower than the regulated DC output voltage.




ng

Regulator/brush-holder assembly for a motor-vehicle alternator, manufacturing process and corresponding alternator

The regulator/brush-holder assembly (1) comprises a support (2) and an electrical circuit (5, 6) comprising a regulating element (5) connected by microwires to a trace circuit (6). The electrical circuit further includes a filtering circuit (10) separate from the regulating element and connected by microwires to the trace circuit. According to one particular embodiment, the filtering circuit comprises an insulating substrate (11) and surface-mounted components (C1, C2, S1, S2, V). A ground plane (19) and/or one or more ground pads may be provided for connection to a ground trace of the trace circuit. The filtration frequencies of the filter circuit extend from 100 kHz to 1 GHz.




ng

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from various sources and a vehicle comprising the apparatus

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated using thermal energy obtained from: a combustion reaction; solar energy; a nuclear reaction; ocean water; geothermal energy; or thermal energy recovered from an industrial process. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material. The heat source used to heat the material can be: a combustion apparatus; a solar thermal collector; or a component of a furnace exhaust device. Alternatively, the heat exchanger can be a device for extracting thermal energy from the earth, the sun, ocean water, an industrial process, a combustion reaction or a nuclear reaction. A vehicle is also described which comprises an apparatus for converting heat to electrical energy connected to an electric motor.




ng

Method and arrangement for operating a wind turbine converter

A method of operating a converter of a wind turbine for providing electric energy to a utility grid includes determining a grid voltage. If the grid voltage is between a nominal voltage and a first voltage threshold, i.e. higher than the nominal voltage, a normal procedure for lowering the grid voltage is performed. If the grid voltage is above the first voltage threshold, another procedure for keeping the wind turbine connected is performed, wherein the other procedure is different from the normal procedure. Further a corresponding arrangement is described.




ng

Method and system for automatically adapting end user power usage

A system, method and apparatus for automatically adapting power grid usage by controlling internal and/or external power-related assets of one or more users in response to power regulation and/or frequency regulation functions in a manner beneficial to both the power grid itself and the users of the power grid.




ng

Electromagnetic device for generating electrical current and methods thereof

An AC current generator for generating an CA current and method therefor and includes a stator and a rotor. The stator includes an outer shell of non-magnetic material enclosing an evacuated chamber and having a distribution of a plurality of ferromagnets attached thereto. The rotor includes an inner core of non-magnetic material located at a stability location within said evacuated chamber and having a distribution of a plurality of diamagnets attached thereto. In addition, the AC current generator includes at least one magnetic flux detection unit located within at least one magnetic field generated by at least one group of ferromagnets of the plurality of ferromagnets. Displacing the rotor from the stability location towards the at least one group of ferromagnets generates a change in magnetic flux in the magnetic field thereby generating an AC current in the at least one magnetic flux detection unit.




ng

Doubly-fed induction generator wind turbine system having solid-state stator switch

Wind turbine systems and methods are provided. An exemplary system includes a wind driven doubly fed induction generator having a rotor and a stator, the stator providing AC power to a stator bus. The system further includes a power converter coupled to the rotor of the doubly fed induction generator, the power converter providing an output to a line bus, and a transformer coupled to the stator bus. The system further includes a solid-state switch coupled between the stator bus and the transformer.




ng

Generator drive system for an internal combustion engine

A generator drive system for the generator (3) of an internal combustion engine (1), including a flexible drive having a traction mechanism (5) which is guided across a generator pulley (6) driving the generator (3). The generator (3) is configured and electrically wired such that the generator (3) can be temporarily driven as a motor, and the generator (3) is coupled to the generator pulley (6) or the crankshaft pulley (7) is coupled to the crankshaft (8) via an overrunning clutch (4) which allows the generator (3), when operated as a motor, running faster than the generator pulley (6) or, taking into consideration a gear ratio, the crankshaft (8).




ng

Wind turbine and method for operating a wind turbine

A method is employed for operating a wind turbine. Electrical energy is produced by means of a generator and is fed into an electrical power network. The electrical energy is fed to the secondary side of a transformer at a low voltage and is output on the primary side of the transformer at a higher voltage. The potential on the primary side of the transformer is undefined. In the method, a measured value of the voltage between the primary side of the transformer and the earth potential is first recorded. The measured value is compared with a predefined limit value. The electrical energy produced by the generator is changed if the measured value exceeds the limit value. A wind turbine is designed to carry out the method. Faults in the medium voltage network can be reacted to without an additional star point on the primary side of the transformer being required.




ng

System adapted for one or more electrically propellable vehicles (letting water pass by electrical conductors)

An arrangement adapted for letting water pass by electrical conductors and their contact surfaces related to a track of a system adapted for electrically driving a vehicle along a roadway. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be supplied with current and put under voltage. At least two or three tracks are disposed parallel to each other in a common rail structure, with at least two of these tracks being adapted to support and contain individual electrical conductors with contact surfaces put under voltage, and wherein at least one track is disposed closer to the highest point of the roadway and adjacent to a track containing one of said conductors with contact surfaces, which may be put under voltage.




ng

Spooling apparatus for survey wire

A spooling apparatus includes a spool for holding wire, the spool having a wire-retaining section and end plates, the end plates having one or more apertures. A conductive plate is positioned on an end plate of the spool opposite the wire-retaining section, and at least one conductive extension that extends through a corresponding aperture of the end plate such that the conductive extension is adjacent to the wire retaining section. Wire is spooled onto the wire-retaining section, at least a portion of the wire being uninsulated and in electrical contact with the conductive extensions of the conductive plate.




ng

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




ng

Inductively receiving electric energy for a vehicle

The invention relates to an arrangement for providing a vehicle, in particular a track bound vehicle, with electric energy, wherein the arrangement comprises a receiving device (200) adapted to receive an alternating electromagnetic field and to produce an alternating electric current by electromagnetic induction. The receiving device (200) comprises a plurality of windings and/or coils (9, 10, 11) of electrically conducting material, wherein each winding or coil (9, 10, 11) is adapted to produce a separate phase of the alternating electric current.




ng

Methods and systems for charging vehicles

This disclosure provides systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.




ng

Rolling stock system and control method thereof

A breaker 162 is opened when a pantograph 101 is lowered. The pantograph 101 is connected to an overhead wire 200. Voltage and its phase of the overhead wire are detected by a detector 161. Power is supplied from a power storage device 150c to a tertiary winding 112c via a power converter 14c such that a primary side of the main transformer 110 has the same voltage and phase as the overhead wire so as to reversely excite the main transformer 110. When the voltage of the main transformer 110 has the same phase as the voltage of the overhead wire 200, the breaker 162 is turned on and then the pantograph 101 is raised, to connect the overhead wire 200 and the main transformer 110 to each other, thereby preventing the occurrence of an excitation inrush current to the main transformer 110.




ng

System adapted for one or more electrically propellable vehicles (cleansing means)

A cleaning means related to a vehicle-related system for driving an electrically propellable vehicle along a roadway. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. The cleaning means is rotatably fastened in an upper area thereof about a horizontally oriented axis of rotation and adapted to clean the track from loose obstacles and/or yield to solid obstacles. The cleaning means and the axis of rotation are movably disposed in vertical direction by means of a resilient member. The cleaning comprises a forwardly directed edge portion oriented in the direction of travel, the edge portion comprising a point which may be brought into contact with the track and the conductor.




ng

System adapted for one or more electrically propellable vehicles (battery charging arrangement)

A vehicle-related system adapted for electrically driving a vehicle along a road-way. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. A circuit, determining instantaneous power content of the set of batteries, is adapted to connect the vehicle-external power source via a switch belonging to the electric station, in order to charge the set of batteries and/or to supply power to the vehicle motor via a control circuit, when the power content of the set of batteries is at a predetermined level of power, lying below a maximum power content, and a supply of power or voltage from the vehicle-external power source is available.