s:

Table of Contents: Issues in Informing Science and Informing Technology. Volume 21, 2024

Table of Contents for IISIT Volume 21, 2024




s:

TQM for Information Systems: Are Indian Organizations Ready?




s:

Printable Table of Contents: IJIKM, Volume 1, 2006




s:

Information Retrieval Systems: A Human Centered Approach




s:

Printable Table of Contents: IJIKM, Volume 2, 2007




s:

From Tailored Databases to Wikis: Using Emerging Technologies to Work Together More Efficiently




s:

Performance Attributions: A Cross Cultural Study Comparing Singapore, Japan and US Companies




s:

Printable Table of Contents: IJIKM, Volume 3, 2008




s:

Printable Table of Contents: IJIKM, Volume 4, 2009




s:

Understanding ICT Based Advantages: A Techno Savvy Case Study




s:

Interest in ICT Studies and Careers: Perspectives of Secondary School Female Students from Low Socioeconomic Backgrounds




s:

Printable Table of Contents: IJIKM, Volume 5, 2010




s:

A Return on Investment as a Metric for Evaluating Information Systems: Taxonomy and Application




s:

Socio-Technical Knowledge Management and Epistemological Paradigms: Theoretical Connections at the Individual and Organisational Level




s:

Printable Table of Contents: IJIKM, Volume 6, 2011




s:

Barriers to the Effective Deployment of Information Assets: An Executive Management Perspective




s:

Perceived Organizational ERP Benefits for SMEs: Middle Eastern Perspective

This study aims to examine the impact of organizational environment (top management support, company-wide support, business process reengineering, effective project management, and organizational culture) and enterprise resource planning (ERP) vendor environment (ERP vendor support) on ERP perceived benefits. In order to achieve the study’s aim, a questionnaire was developed based on the extant literature to collect relevant data from the research informants. The population for this research consisted of all users of Microsoft Dynamics Great Plains (a typical type of enterprise system), which is frequently used in Jordanian companies in Amman City. A random sample of 30% of the research population was selected. The results revealed that business process reengineering, effective project management, company-wide support, and organizational culture have a positive correlation with ERP perceived benefits, whereas top management support does not. In addition, there is a significant positive correlation between vendor support and ERP perceived benefits. Academic and practical recommendations are provided.




s:

Employees’ Involuntary Non-Use of ICT Influenced by Power Differences: A Case Study with the Grounded Theory Approach

Power differences affect implementation of information and communication technology (ICT) in a way that creates differences in ICT use. Involuntary non-use of new ICT at work occurs when employees want to use the new technology, but are unable to due to factors beyond their control. Findings from an in-depth qualitative study show how involuntary non-use of new ICT can be attributed to power differences between occupational groups in the same organization. The findings suggest that experience is a moderating variable and that closeness to formal power holders as well as closeness to the new technology increases the probability for expert control of the ICT-organization processes. These power differences favor ICT experts over ICT novices and result in a high-quality learning environment for the ICT experts characterized by autonomy, inclusion, and adequate work processes and technological solutions. The ICT novices try to navigate in a learning-hostile work environment characterized by marginalization through expert control, isolation, and inadequate work processes and technological solutions. This led to involuntary non-use by the ICT novices, while the experts became more proficient in ICT use. These findings give managers facing a technological organizational change tools to understand important mechanisms for implementing the change in their own organization, and help them take the right actions to integrate new technology and new organization of work.




s:

KenVACS: Improving Vaccination of Children through Cellular Network Technology in Developing Countries

Health Data collection is one of the major components of public health systems. Decision makers, policy makers, and medical service providers need accurate and timely data in order to improve the quality of health services. The rapid growth and use of mobile technologies has exerted pressure on the demand for mobile-based data collection solutions to bridge the information gaps in the health sector. We propose a prototype using open source data collection frameworks to test its feasibility in improving the vaccination data collection in Kenya. KenVACS, the proposed prototype, offers ways of collecting vaccination data through mobile phones and visualizes the collected data in a web application; the system also sends reminder short messages service (SMS) to remind parents on the date of the next vaccination. Early evaluation demonstrates the benefits of such a system in supporting and improving vaccination of children. Finally, we conducted a qualitative study to assess challenges in remote health data collection and evaluated usability and functionality of KenVACS.




s:

Knowledge Management in Nigerian Universities: A Conceptual Model

Universities have traditionally been leaders in the field of knowledge production, research, and societal development. They are expected to be drivers of innovation, thereby contributing to the development of a learning society. The array of challenges facing universities in Nigeria and other developing countries forces one to question their levels of innovation. While knowledge management has been identified as a strategy for driving innovative processes in business organizations, there is a paucity of literature on its application in Nigerian universities. This paper, therefore, proposes a conceptual model which Nigerian universities could adopt, in order to drive innovation and performance. As the paper is conceptual in nature, a literature survey was conducted to examine the concept of knowledge management and its application in higher education institutions. Findings from the literature informed the development of a conceptual model describing ways in which universities can adopt knowledge management practices and strategies in order to drive innovation and improve performance. The conceptual model proposed in this paper could serve as a basis for empirical investigations on knowledge management processes in universities. The paper concludes that, while knowledge management has the potential for improving performance within universities, the proposed model must be subjected to empirical validation for further amendments and improvements.




s:

Analogical Thinking for Generation of Innovative Ideas: An Exploratory Study of Influential Factors

Analogical thinking is one of the most effective tools to generate innovative ideas. It enables us to develop new ideas by transferring information from well-known domains and utilizing them in a novel domain. However, using analogical thinking does not always yield appropriate ideas, and there is a lack of consensus among researchers regarding the evaluation methods for assessing new ideas. Here, we define the appropriateness of generated ideas as having high structural and low superficial similarities with their source ideas. This study investigates the relationship between thinking process and the appropriateness of ideas generated through analogical thinking. We conducted four workshops with 22 students in order to collect the data. All generated ideas were assessed based on the definition of appropriateness in this study. The results show that participants who deliberate more before reaching the creative leap stage and those who are engaged in more trial and error for deciding the final domain of a new idea have a greater possibility of generating appropriate ideas. The findings suggest new strategies of designing workshops to enhance the appropriateness of new ideas.




s:

Accounting Information Systems Effectiveness: Evidence from the Nigerian Banking Sector

Aim/Purpose: The purpose of this study is to investigate the interrelationship among the quality measures of information system success, including system quality, information, quality, and service quality, that eventually influence accounting information systems effectiveness. Background: It is generally believed that investment in an information system offers opportunities to organizations for business process efficiency and effectiveness. Despite huge investments in accounting information systems, banks in Nigeria have not realized the full potential benefits of using these systems because of persistent failures. Few studies have been conducted to address the problem. Methodology: A survey research design was used to collect data, and a total of 287 questionnaires were retrieved from respondents in the Nigerian banking sector. Contribution: This study contributes to the understanding of the most important antecedent factors of the quality measures, the interrelationship among the quality measures, and the influence of these measures on the accounting information systems effectiveness. Findings: The result of the study revealed that security, ease of use, and efficiency are key features of system quality, while the information quality dimension includes accuracy, timeliness, and completeness. The result of the study further revealed that information quality and system quality have significant influences on accounting information systems effectiveness. Recommendations for Practitioners: This study provides practitioners with important measures for evaluation of AIS effectiveness in the context of Nigerian banks. Recommendation for Researchers: Future researchers may build on the findings of current study to conduct fur-ther research in the area of AIS effectiveness in different contexts. Future Research: This study examines only three quality measures of Delone and Mclean model and antecedents of information and system quality measures, neglecting contingency factor. Therefore, future study should include other factors to the AIS effectiveness model to help in developing more specific theory in AIS domain.




s:

Text Classification Techniques: A Literature Review

Aim/Purpose: The aim of this paper is to analyze various text classification techniques employed in practice, their strengths and weaknesses, to provide an improved awareness regarding various knowledge extraction possibilities in the field of data mining. Background: Artificial Intelligence is reshaping text classification techniques to better acquire knowledge. However, in spite of the growth and spread of AI in all fields of research, its role with respect to text mining is not well understood yet. Methodology: For this study, various articles written between 2010 and 2017 on “text classification techniques in AI”, selected from leading journals of computer science, were analyzed. Each article was completely read. The research problems related to text classification techniques in the field of AI were identified and techniques were grouped according to the algorithms involved. These algorithms were divided based on the learning procedure used. Finally, the findings were plotted as a tree structure for visualizing the relationship between learning procedures and algorithms. Contribution: This paper identifies the strengths, limitations, and current research trends in text classification in an advanced field like AI. This knowledge is crucial for data scientists. They could utilize the findings of this study to devise customized data models. It also helps the industry to understand the operational efficiency of text mining techniques. It further contributes to reducing the cost of the projects and supports effective decision making. Findings: It has been found more important to study and understand the nature of data before proceeding into mining. The automation of text classification process is required, with the increasing amount of data and need for accuracy. Another interesting research opportunity lies in building intricate text data models with deep learning systems. It has the ability to execute complex Natural Language Processing (NLP) tasks with semantic requirements. Recommendations for Practitioners: Frame analysis, deception detection, narrative science where data expresses a story, healthcare applications to diagnose illnesses and conversation analysis are some of the recommendations suggested for practitioners. Recommendation for Researchers: Developing simpler algorithms in terms of coding and implementation, better approaches for knowledge distillation, multilingual text refining, domain knowledge integration, subjectivity detection, and contrastive viewpoint summarization are some of the areas that could be explored by researchers. Impact on Society: Text classification forms the base of data analytics and acts as the engine behind knowledge discovery. It supports state-of-the-art decision making, for example, predicting an event before it actually occurs, classifying a transaction as ‘Fraudulent’ etc. The results of this study could be used for developing applications dedicated to assisting decision making processes. These informed decisions will help to optimize resources and maximize benefits to the mankind. Future Research: In the future, better methods for parameter optimization will be identified by selecting better parameters that reflects effective knowledge discovery. The role of streaming data processing is still rarely explored when it comes to text classification.




s:

The Adoption of CRM Initiative among Palestinian Enterprises: A Proposed Framework

Aim/Purpose: This study aimed to examine the relationships among compatibility, relative advantage, complexity, IT Infrastructure, security, top Management Support, financial Support, information Policies, employee engagement, customer pressure, competitive pressure, information integrity, information sharing, attitude toward adopting technology factors, and CRM adoption Background: Customer relationship management (CRM) refers to the use of the process, information, technology, and people for the management of the interactions between the organization and its customers. Therefore, there is a need for SMEs to implement CRM practices in their businesses for competitive advantage. However, in developing nations, the adoption rate of such practices remains low. This low rate may be attributed to the lack of important factors that guide CRM adoption, and as such, the present study attempts to investigate the factors affecting CRM adoption in Palestinian SMEs. This paper used the Diffusion of Innovation Theory (DOI), Resource-Based View (RBV), and Technology, Organization, and Environment Framework (TOE) framework to identify the determinant factors from the technological, organizational, environmental, and information culture perspectives. Methodology: This study uses a quantitative approach to investigate the relationships between the variables. A questionnaire was designed to collect data from 420 SMEs in Palestine. 331respondents completed and returned the survey. The Partial Least Square-Structural Equation Model (PLS-SEM) approach was used to assess both the measurement and structural models. Contribution: This study contributes to both theory and practitioners by providing insights into factors that affect CRM adoption in Palestinian SMEs, which did not explore before. Future research suggestions are also provided. Findings: The results of the study prove that the adoption of CRM depends on compatibility (CMP), security (SEC), top management support (TMS), information policies (INP), financial resources (FR), employee engagement (EEN), competitive pressure (COP), customers pressure (CUP), attitude toward adopting technology (ATA), information integrity (INI), and information sharing (INS). Surprisingly, complexity (CMX), IT infrastructure (ITI), and relative advantage (RLA) do not play any role in CRM adoption in Palestine. Recommendations for Practitioners: This study provides practitioners with the important factors for CRM adoption upon its successful implementation in the context of Palestinian SMEs. Recommendation for Researchers: Our findings may be used to conduct further studies about compatibility, security, top management support, information policies, financial resources, employee engagement, competitive pressure, customers pressure, attitude toward adopting technology, information integrity, information sharing factors, and CRM adoption by using different countries, procedure, and context. Impact on Society: The proposed framework provides insights for SMEs which have significant effects for research and practice to help facilitate the adoption of CRM Future Research: The findings may also be compared to other studies conducted in different contexts and provide deeper insights into the influence of the examined contexts on the employees’ intention toward CRM adoption in banking and universities. It would be fruitful to test whether the results hold true in developed and developing countries.




s:

Crisis and Disaster Situations on Social Media Streams: An Ontology-Based Knowledge Harvesting Approach

Aim/Purpose: Vis-à-vis management of crisis and disaster situations, this paper focuses on important use cases of social media functions, such as information collection & dissemination, disaster event identification & monitoring, collaborative problem-solving mechanism, and decision-making process. With the prolific utilization of disaster-based ontological framework, a strong disambiguation system is realized, which further enhances the searching capabilities of the user request and provides a solution of unambiguous in nature. Background: Even though social media is information-rich, it has created a challenge for deriving a decision in critical crisis-related cases. In order to make the whole process effective and avail quality decision making, sufficiently clear semantics of such information is necessary, which can be supplemented through employing semantic web technologies. Methodology: This paper evolves a disaster ontology-based system availing a framework model for monitoring uses of social media during risk and crisis-related events. The proposed system monitors a discussion thread discovering whether it has reached its peak or decline after its root in the social forum like Twitter. The content in social media can be accessed through two typical ways: Search Application Program Interfaces (APIs) and Streaming APIs. These two kinds of API processes can be used interchangeably. News content may be filtered by time, geographical region, keyword occurrence and availability ratio. With the support of disaster ontology, domain knowledge extraction and comparison against all possible concepts are availed. Besides, the proposed method makes use of SPARQL to disambiguate the query and yield the results which produce high precision. Contribution: The model provides for the collection of crisis-related temporal data and decision making through semantic mapping of entities over concepts in a disaster ontology we developed, thereby disambiguating potential named entities. Results of empirical testing and analysis indicate that the proposed model outperforms similar other models. Findings: Crucial findings of this research lie in three aspects: (1) Twitter streams and conventional news media tend to offer almost similar types of news coverage for a specified event, but the rate of distribution among topics/categories differs. (2) On specific events such as disaster, crisis or any emergency situations, the volume of information that has been accumulated between the two news media stands divergent and filtering the most potential information poses a challenging task. (3) Relational mapping/co-occurrence of terms has been well designed for conventional news media, but due to shortness and sparseness of tweets, there remains a bottleneck for researchers. Recommendations for Practitioners: Though metadata avails collaborative details of news content and it has been conventionally used in many areas like information retrieval, natural language processing, and pattern recognition, there is still a lack of fulfillment in semantic aspects of data. Hence, the pervasive use of ontology is highly suggested that build semantic-oriented metadata for concept-based modeling, information flow searching and knowledge exchange. Recommendation for Researchers: The strong recommendation for researchers is that instead of heavily relying on conventional Information Retrieval (IR) systems, one can focus more on ontology for improving the accuracy rate and thereby reducing ambiguous terms persisting in the result sets. In order to harness the potential information to derive the hidden facts, this research recommends clustering the information from diverse sources rather than pruning a single news source. It is advisable to use a domain ontology to segregate the entities which pose ambiguity over other candidate sets thus strengthening the outcome. Impact on Society: The objective of this research is to provide informative summarization of happenings such as crisis, disaster, emergency and havoc-based situations in the real world. A system is proposed which provides the summarized views of such happenings and corroborates the news by interrelating with one another. Its major task is to monitor the events which are very booming and deemed important from a crowd’s perspective. Future Research: In the future, one shall strive to help to summarize and to visualize the potential information which is ranked high by the model.




s:

Contextualist Inquiry into E-Commerce Institutionalization in Developing Countries: The Case of Mozambican Women-led SMMES

Aim/Purpose: This study explores how women-led SMMEs in developing countries, specifically in the Mozambican context, institutionalise e-commerce by focusing on the ongoing interaction between the SMME, its context, and process of e-commerce institutionalization. Background: It is believed that institutionalization of e-commerce provides significant benefits of unlimited access to new markets, and access to new, improved, inexpensive and convenient operational methods of transacting. Although prior studies have examined the adoption of e-commerce and the enabling and constraining factors, few have examined e-commerce (i) institutionalization (that is, post-adoption), and (ii) from a gender perspective. This study aims to respond to this paucity in the literature by exploring how women-led SMMEs in developing countries, specifically in the Mozambican context, institutionalise e-commerce. Methodology: The study follows a qualitative inquiry approach for both data collection and analysis. Semi-structured interviews were adopted for data collection and thematic analysis implemented on the data. SMMEs were purposively sampled to allow for the selection of information-rich SMMEs for study and specifically those that have gone through the experience of adoption and in some cases have institutionalized e-commerce. Contribution: The empirical findings explain how the institutionalization process from interactive e-commerce to transactive e-commerce unfolds in the Mozambican context. Findings: Transition from interactive to transactive e-commerce is firstly influenced by (i) the type of business the SMME is engaged in; and (ii) customer and trading partner’s readiness for e-commerce. Secondly, the transition process is influenced by the internal factors of (i) manager’s demographic factors; (ii) mimetic behaviour arising from exposure to (foreign) organizations in the same industry that have mature forms of e-commerce; (iii) the business networks developed with some of these organizations that have mature forms of e-commerce; (iv) access to financial resources; and (v) social media technologies. Thirdly, the process is influenced by external contextual factors of (i) limited government intervention towards e-commerce endeavors; (ii) limited to lack of financial institutions readiness for e-commerce; (iii) lack of local available IT expertise; (iv) consumer’s low purchasing power due to economic recessions; (vi) international competitive pressure; and (vii) sociocultural practices. Recommendations for Practitioners: The study provides SMME managers, practitioners, and other stakeholders concerned with women’s development with a better understanding of the process in order to develop appropriate policies and interventions that are suitable for the reality of women-led SMMEs in Mozambique and other developing countries with similar contextual characteristics. Recommendation for Researchers: The study contributes to the existing debate of e-commerce and the use of ICT for development in developing countries by providing a distinct contribution of the institutionalization process and how the contextual structures influence this process. Impact on Society: Women-led SMME managers can learn from the different experiences, and compare their e-commerce efforts with SMMEs that were able to institutionalize and make strategies for improvements within their organizations. Future Research: The manner in which women-led SMMEs employ e-commerce requires further investigation to understand how issues related to gender, the cultural context, and different regions or countries impact this process.




s:

Knowledge Sharing Process and Innovation Success: Evidence from Public Organisations in Southern Nigeria

Aim/Purpose: This study investigates the relationship between knowledge sharing process and innovation success with specific emphasis on tacit knowledge. Based on the literature review, we hypothesised that knowledge donating and collecting have a positive relationship with innovation success. Methodology: The hypotheses were empirically tested using the partial least square path modelling with data collected from twelve state-owned public organisations operating in Southern Nigeria. Contribution: The research made distinct empirical contributions to the burgeoning literature on knowledge sharing and innovation from the public sector and developing country context. Findings: Knowledge donating and collecting contribute to innovation success positively and significantly. Knowledge donating effect on innovation success was found to be more significantly positive than the effect of knowledge collecting on innovation success. Recommendations for Practitioners: Public organisations should promote a supportive culture to spur innovation through the frequent share of experiences, information and skills among the various knowledge actors. Public managers should convey the importance of knowledge sharing and its value to knowledge users in clear terms and attend to creating conditions or contexts that encourage people to share knowledge freely and willingly with others. It is apt to improve organisational commitment and support for knowledge sharing activities such as mentorship programs, workshops, conferences, seminars and other related training and development programs in order to provide opportunities for employees to develop innovation competencies from the transfer of tacit knowledge developed over time from experience. To optimise innovation outcomes from knowledge sharing practices, knowledge sharing should be in tandem with the industry or global best practices. Future Research: Future studies should add interviews to provide depth in terms of insights and substance to the questionnaire, and may extend to public organisation with different ownership structure.




s:

The Relationship between Ambidextrous Knowledge Sharing and Innovation within Industrial Clusters: Evidence from China

Aim/Purpose: This study examines the influence of ambidextrous knowledge sharing in industrial clusters on innovation performance from the perspective of knowledge-based dynamic capabilities. Background: The key factor to improving innovation performance in an enterprise is to share knowledge with other enterprises in the same cluster and use dynamic capabilities to absorb, integrate, and create knowledge. However, the relationships among these concepts remain unclear. Based on the dynamic capability theory, this study empirically reveals how enterprises drive innovation performance through knowledge sharing. Methodology: Survey data from 238 cluster enterprises were used in this study. The sample was collected from industrial clusters in China’s Fujian province that belong to the automobile, optoelectronic, and microwave communications industries. Through structural equation modeling, this study assessed the relationships among ambidextrous knowledge sharing, dynamic capabilities, and innovation performance. Contribution: This study contributes to the burgeoning literature on knowledge management in China, an important emerging economy. It also enriches the exploration of innovation performance in the cluster context and expands research on the dynamic mechanism from a knowledge perspective. Findings: Significant relationships are found between ambidextrous knowledge sharing and innovation performance. First, ambidextrous knowledge sharing positively influences the innovation performance of cluster enterprises. Further, knowledge absorption and knowledge generation capabilities play a mediating role in this relationship, which confirms that dynamic capabilities are a partial mediator in the relationship between ambidextrous knowledge sharing and innovation performance. Recommendations for Practitioners: The results highlight the crucial role of knowledge management in contributing to cluster innovation and management practices. They indicate that cluster enterprises should consider the importance of knowledge sharing and dynamic capabilities for improving innovation performance and establish a multi-agent knowledge sharing platform. Recommendation for Researchers: Researchers could further explore the role of other mediating variables (e.g., organizational agility, industry growth) as well as moderating variables (e.g., environmental uncertainty, learning orientation). Impact on Society: This study provides a reference for enterprises in industrial clusters to use knowledge-based capabilities to enhance their competitive advantage. Future Research: Future research could collect data from various countries and regions to test the research model and conduct a comparative analysis of industrial clusters.




s:

The Effect of Marketing Knowledge Management on Bank Performance Through Fintech Innovations: A Survey Study of Jordanian Commercial Banks

Aim/Purpose: This study aimed to examine the effect of marketing knowledge management (MKM) on bank performance via the mediating role of the Fintech innovation in Jordanian commercial banks. Background: An extensive number of studies found a significant relationship between Marketing knowledge management and bank performance (e.g., Akroush & Al-Mohammad, 2010; Hou & Chien 2010; Rezaee & Jafari, 2015; Veismoradi et al., 2013). However, there remains a lack of clarity regarding the relationship between marketing knowledge management (MKM) and bank performance (BP). Furthermore, the linkage between MKM and BP is not straightforward but, instead, includes a more complicated relationship. Therefore, it is argued that managing marketing knowledge management assets and capabilities can enhance performance via the role of financial innovation as a mediating factor on commercial banks; to date, however, there is no empirical evidence. Methodology: Based on a literature review, knowledge-based theory, and financial innovation theory, an integrated conceptual framework has been developed to guide the study. A quantitative approach was used, and the data was collected from 336 managers and employees in all 13 Jordanian commercial banks using online and in hand instruments. Structural equation modeling (SEM) was used to analyze and verify the study variables. Contribution: This article contributes to theory by filling a gap in the literature regarding the role of marketing knowledge management assets and capabilities in commercial banks operating in a developing country like Jordan. It empirically examined and validated the role of Fintech innovation as mediators between marketing knowledge management and bank performance Findings: The main findings revealed that marketing knowledge management had a significant favorable influence on bank performance. Fintech innovation acted as partial mediators in this relationship. Recommendations for Practitioners: Commercial banks should be fully aware of the importance of knowledge management practices to enhance their financial innovation and bank performance. They should also consider promoting a culture of practicing knowledge management processes among their managers and employees by motivating and training to promote innovations. Recommendation for Researchers: The result endorsed Fintech innovation’s mediating effect on the relationship between the independent variable, marketing knowledge management (assets and capabilities), and the dependent variable bank performance, which was not addressed before; thus, it needs further validation. Future Research: The current designed research model can be applied and assessed further in other sectors, including banking and industrial sectors across developed and developing countries. It would also be of interest to introduce other variables in the study model that can act as consequences of MKM capabilities, such as financial and non-financial performance measures




s:

The Effect of Rational Based Beliefs and Awareness on Employee Compliance with Information Security Procedures: A Case Study of a Financial Corporation in Israel

Aim/Purpose: This paper examines the behavior of financial firm employees with regard to information security procedures instituted within their organization. Furthermore, the effect of information security awareness and its importance within a firm is explored. Background: The study focuses on employees’ attitude toward compliance with information security policies (ISP), combined with various norms and personal abilities. Methodology: A self-reported questionnaire was distributed among 202 employees of a large financial Corporation Contribution: As far as we know, this is the first paper to thoroughly explore employees’ awareness of information system procedures, among financial organizations in Israel, and also the first to develop operative recommendations for these organizations aimed at increasing ISP compliance behavior. The main contribution of this study is that it investigates compliance with information security practices among employees of a defined financial corporation operating under rigid regulatory governance, confidentiality and privacy of data, and stringent requirements for compliance with information security procedures. Findings: Our results indicate that employees’ attitudes, normative beliefs and personal capabilities to comply with firm’s ISP, have positive effects on the firm’s ISP compliance. Also, employees’ general awareness of IS, as well as awareness to ISP within the firm, positively affect employees’ ISP compliance. Recommendations for Practitioners: This study can help information security managers identify the motivating factors for employee behavior to maintain information security procedures, properly channel information security resources, and manage appropriate information security behavior. Recommendation for Researchers: Researchers can see that corporate rewards and sanctions have significant effects on employee security behavior, but other motivational factors also reinforce the ISP’s compliance behavior. Distinguishing between types of corporations and organizations is essential to understanding employee compliance with information security procedures. Impact on Society: This study offers another level of understanding of employee behavior with regard to information security in organizations and comprises a significant contribution to the growing knowledge in this area. The research results form an important basis for IS policymakers, culture designers, managers, and those directly responsible for IS in the organization. Future Research: Future work should sample employees from another type of corporation from other fields and should apply qualitative analysis to explore other aspects of behavioral patterns related to the subject matter.




s:

Consumer Engagement in Online Brand Communities: Community Values, Brand Symbolism and Social Strategies

Aim/Purpose: This study examines the kind of community value companies should provide when strengthening the relationship between customers and brands through the establishment of an online brand community, and how this kind of community value promotes customers’ sense of community engagement and willingness to spread brand reputation. The paper also discusses how an enterprise’s brand symbolism affects the relationship between community value and customers’ engagement in online brand community. This study explored the important role of brand symbolism in the establishment of an online brand community. Background: Many companies want to create online brand communities to strengthen their relationships with consumers as well as to provide better service and value to consumers, for example, Huawei’s Huafen community (club.huawei.com), Apple’s support community (support.apple.com/zh-cn), and Samsung’s Galaxy community (samsungmembers.cn). However, these brand communities may have different interests and consumer engagement about the kind of community value to offer to their customers. Methodology: This study uses data collection from questionnaire surveys to design a quantitative research method. An online questionnaire survey of mobile phone users in China was conducted to collect data on social value, cognitive value, brand symbolism, customer community engagement, and brand recommendation. The brands of mobile phone include Apple, Huawei, Samsung, OPPO, VIVO, MI, and Meizu. The researcher purchased a sample service of WJX, an online survey company (www.wjx.cn), and WJX company distributed the questionnaire to research participants. The WJX company randomly selected 240 subjects from their sample database and then sent the questionnaire link to research participants’ mobile phones. Among the 240 research participants, the researcher excluded participants who lacked online brand community experience or had invalid data to qualify for data collection. After the researcher excluded participants who did not qualify for data collection, only 203 qualified questionnaire surveys advanced to the data collection and analysis phase, which was the questionnaire recovery rate of 84.58%. For the model analysis and hypotheses testing, the researcher used statistical software IBM SPSS Statistics and AMOS 21 and Smartpls3. Contribution: This study deepens the body of literature knowledge by combining online brand community value and brand symbolic value to explore issues that companies should consider when establishing an online brand community for their products and services. This study confirms that brands with high symbolic value establish communities and strengthen social values in the online brand community rather than reducing brand symbolism. Online brand community involves a horizontal interaction (peer interaction) among peers, which can have an effect on the symbolic value of brand (social distance). Findings: First, online brand community value (both cognitive and social value) has a positive impact on customer community engagement. Second, customer community engagement has a positive impact on customers’ brand recommend intention. Third, the customer community engagement is a mediator between the online brand community value and the customer brand recommend intention. Most importantly, fourth, the symbolic value of the brand controls the relationship between community value and customer community engagement. For brands with high symbolic value, the community value should emphasize cognitive value rather than social value. For brands with a low symbolic value, the community provides cognitive or social value, which is not affected by the symbolism of the brand. Recommendations for Practitioners: Practitioners can share best practices with the corporate sectors. Brand owners can work with researchers to explore the characteristics of their online brand communities. On this basis, brand owners and researchers can jointly build and manage online brand communities. Recommendation for Researchers: Researchers can explore different perspectives and factors of brand symbolism that involve brand owners when establishing an online brand community to advance consumer engagement, community value, and brand symbolism. Impact on Society: Online brand community is relevant for brand owners to establish brand symbolism, community value, and customer engagement. Readers of this paper can gain an understanding that cognitive and social values are two important drivers of individual participation in online brand communities. The discussion of these two factors can give readers and brand owners the perception to gain more understanding on social and behavior activities in online brand communities. Future Research: Practitioners and researchers could follow-up in the future with a study to provide more understanding and updated research information from different perspectives of research samples and hypotheses on online brand community.




s:

Modelling End Users’ Continuance Intention to Use Information Systems in Academic Settings: Expectation-Confirmation and Stress Perspective

Aim/Purpose: The main aim of this study is to identify the factors that influence the continuance intention of use of innovative systems by non-academic employees of a private university and associated academic institutions in Bangladesh. Background: The targeted academic institutions have introduced many new online services aimed at improving students’ access to information and services, including a new online library, ERP or online forum, and the jobs-tracking system (JTS). This research is focused only on the JTS for two reasons. First, it is one of the most crucial systems for the Daffodil Family, as it enables efficient working across many institutes spread across the country and abroad. Second, it is employed in a wide variety of organisational institutes, not just the university. This study aims to discover negative factors that lead to a decrease in users’ intentions to continue using the system. The ultimate goal is to improve the motivation among administrative staff to use technology-related innovation by reducing or eliminating the problems. Methodology: G* power analysis was employed to determine the expected sample size. A questionnaire survey was conducted of 211 users of a new job tracking system from a private university in Bangladesh, to collect data for testing the suggested research model. The data was analysed using the structural equation technique, which is a powerful multivariate analysis mechanism. Contribution: This research contributes to the body of literature and helps better understand users’ continuance intention in the post-implementation phase of the JTS. It complements the micro-level examinations of continuance intention of using IT, by building on our understanding of the phenomenon at the individual level. Specifically, this study examines the role of technostress where organisations invest in IT to make their users more comfortable with innovative and new technologies like the JTS. Findings: This research develops a theoretical advancement of the expectation-confirmation theory, with implications for IT managers and senior management dealing with IT-related behaviour. All proposed hypotheses were supported. Specifically, the predictors of exhaustion – work overload, work–life balance, and role ambiguity – are significant. The core factors for satisfaction, perceived usefulness, and confirmation, are also found to be significant. Finally, satisfaction and exhaustion significantly influence continuance intention, in both positive and negative ways. Recommendations for Practitioners: This study gives an idea about some of the difficulties that people face when implementing new and innovative IT, particularly in academia in Bangladesh. It offers insights into strategies the management may want to follow when implementing new technology like the JTS. This study suggests strategies to increase satisfaction and reduce technostress among new users to enhance organisational support for change. Recommendation for Researchers: Methodologically, the study provides researchers about the technique that reduces the threat of the common method bias. First, it created a psychological separation between criterion and predictor variables. Second, the threat of common method variance was actively controlled by modelling a latent method factor and by using marker variables that researchers can use in their work. This study complements the micro-level examinations of continuance intention of using IT by building on our understanding of the phenomenon at the individual level. Researchers can extend this model by integrating other theories. Impact on Society: The findings of the study indicate that work overload, work–life conflict, and role ambiguity create tiredness, leading to lower user satisfaction with the system. Perceived usefulness and confirmation have an increasingly similar effect on users’ satisfaction with the system and their subsequent continuance intention. These findings tell university administrators what measures they should take to improve continuance intention of using innovative technology. Future Research: Future studies could conceptualise a five-factor personality model from the personal perspective of users. This model can also be extended by including the dimensions of absorptive capacity, i.e., the dynamic capabilities of users. Absorptive capacity of understanding, assimilating, and applying might influence the user’s perception of usefulness and confirmation of using JTS.




s:

A Systematic Literature Review of Business Intelligence Framework for Tourism Organizations: Functions and Issues

Aim/Purpose: The main goal of this systematic literature review was to look for studies that provide information relevant to business intelligence’s (BI) framework development and implementation in the tourism sector. This paper tries to classify the tourism sectors where BI is implemented, group various BI functionalities, and identify common problems encountered by previous research. Background: There has been an increased need for BI implementation to support decision-making in the tourism sector. Tourism stakeholders such as management of destination, accommodation, transportation, and public administration need a guideline to understand functional requirements before implementation. This paper addresses the problem by comprehensively reviewing the functionalities and issues that need to be considered based on previous business intelligence framework development and implementation in tourism sectors. Methodology: We have conducted a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Guidelines for Meta-Analysis (PRISMA) method. The search is conducted using online academic database platforms, resulting in 543 initial articles published from 2002 to 2022. Contribution: The paper could be of interest to relevant stakeholders in the tourism industry because it provides an overview of the capabilities and limitations of business intelligence for tourism. To our knowledge, this is the first study to identify and classify the BI functionalities needed for tourism sectors and implementation issues related to organizations, people, and technologies that need to be considered. Findings: BI functionalities identified in this study include basic functions such as data analysis, reports, dashboards, data visualization, performance metrics, and key performance indicator, and advanced functions such as predictive analytics, trend indicators, strategic planning tools, profitability analysis, benchmarking, budgeting, and forecasting. When implementing BI, the issues that need to be considered include organizational, people and process, and technological issues. Recommendations for Practitioners: As data is a major issue in BI implementation, tourism stakeholders, especially in developing countries, may need to build a tourism data center or centralized coordination regulated by the government. They can implement basic functions first before implementing more advanced features later. Recommendation for Researchers: We recommend further studying the BI implementation barriers by employing a perspective of an adoption framework such as the technology, organization, and environment (TOE) framework. Impact on Society: This research has a potential impact on improving the tourism industry’s performance by providing insight to stakeholders about what is needed to help them make more accurate decisions using business intelligence. Future Research: Future research may involve collaboration between practitioners and academics in developing various BI architectures specific to each tourism industry, such as destination management, hospitality, or transportation.




s:

The Influence of Crisis Management, Risk-Taking, and Innovation in Sustainability Practices: Empirical Evidence From Iraq

Aim/Purpose: This study examines the impact of decision-making, crisis management, and decision-making on sustainability through the mediation of open innovation in the energy sector. Background: Public companies study high-performance practices, requiring overcoming basic obstacles such as financial crises that prevent the adoption and development of sustainability programs. Methodology: Due to the COVID-19 pandemic, which has led to the closure of businesses in Iraq, a survey was distributed. To facilitate responses, free consultations were offered to help complete the questionnaire quickly. Of the 435 questionnaires answered, 397 were used for further analysis. Contribution: The impact of crises that impede the energy sector from adopting sustainable environmental regulations is investigated in this study. Its identification of specific constraints to open innovation leads to the effectiveness of adopting environmentally friendly policies and reaching high levels of sustainable performance. Findings: The impacts of risk-taking, crisis management, and decision-making on sustainability have been explored. Results show that open innovation fully mediates the relationship between the factors of risk-taking, crisis management, decision-making, and sustainability. Recommendations for Practitioners: The proposed model can be used by practitioners to develop and improve sustainable innovation practices and achieve superior performance. Recommendation for Researchers: Researchers are recommended to conduct in-depth studies of the phenomenon based on theoretical and empirical foundations, especially in light of the relationship between crisis management, decision-making, and risk-taking and their impact on sustainability based on linear and non-compensatory relationships. Impact on Society: This study provides a reference for organizations with similar cultural backgrounds in adopting sustainable practices to minimize pollution in the Iraqi context. Future Research: A more in-depth study can be performed using a larger sample, which not only includes the energy industry but also other industries.




s:

Determinants of Online Behavior Among Jordanian Consumers: An Empirical Study of OpenSooq

Aim/Purpose: This study identifies the elements that influence intentions to purchase from the most popular Arabic online classifieds platform, OpenSooq.com. Background: Online purchasing has become popular among consumers in the past two decades, with perceived risk and trust playing key roles in consumers’ intention to purchase online. Methodology: A questionnaire survey was conducted of Internet users from three Jordanian districts to investigate how they used the OpenSooq platform in their e-commerce activities. In total, 202 usable responses were collected, and the data were analyzed with PLS-SEM for hypothesis testing and model validation. Contribution: Though online trading is increasingly popular, the factors that impact the behavior of consumers when purchasing high-value products have not been adequately investigated. Therefore, this study examined the factors affecting perceived risk, and the potential impact of privacy concerns on the perceived risk of online smartphone buyers. The study framework can help explore online behavior in various situations to ascertain similarities and differences and probe other aspects of online buying. Findings: Perceived risk negatively correlates with online purchasing behavior and trust. However, privacy concern and perceived risk, transaction security and trust, and trust and online purchasing behavior exhibited positive correlations. Recommendations for Practitioners: Customers can complete and retain online purchases in a range of settings illuminated in this study’s methods and procedures. Moreover, businesses can manage their IT arrangements to make Internet shopping more convenient and build processes for online shopping that allow for engagement, training, and ease of use, thus improving their customers’ online purchasing behavior. Recommendation for Researchers: Given the insight into the understanding and integration of variables including perceived risk, privacy issues, trust, transaction security, and online purchasing behavior, academics can build on the groundwork of this research paradigm to investigate underdeveloped countries, particularly Jordan, further. Impact on Society: Understanding the characteristics that influence online purchasing behavior can help countries realize the full potential of online shopping, particularly the benefits of safe, fast, and low-cost financial transactions without the need for an intermediary. Future Research: Future research can examine the link between online purchase intent, perceived risk, privacy concerns, trust, and transaction security to see if the findings of this study in Jordan can be applied to a broader context in other countries.




s:

The Effect of Perceived Support on Repatriate Knowledge Transfer in MNCs: The Mediating Role of Repatriate Adjustment

Aim/Purpose: The present study examines the effect of perceived organisational and co-worker support on the adjustment of repatriates and its impact on their intention to transfer knowledge in multinational companies (MNCs). It also examines the relationship between perceived organisational support, co-worker support, and knowledge transfer through the mediating role of repatriate adjustment. Background: The ability of acquiring and utilising international knowledge is one of the core competitive advantages of MNCs. This knowledge is transferred by MNCs across their subsidiaries efficiently through repatriates, which will result in superior performance when compared to their local competitors. But in MNCs the expatriation process has been given more emphasis than the repatriation process; therefore, there is limited knowledge about repatriation knowledge transfer. Practically, the knowledge transferred by repatriates is not managed properly by the MNCs. Methodology: The proposed model was supported by Uncertainty Reduction Theory, Organisational Socialisation Theory, Organisational Support Theory, and Socialisation Resource Theory. The data were gathered from 246 repatriates working in Indian MNCs in the manufacturing and information technology sectors who had been on an international assignment for at least one year. The data obtained were analysed using Structural Equation Modeling (SEM) using AMOS 21 software. Contribution: The present study expands prior research on repatriate knowledge transfer by empirically investigating the mediating role of repatriate adjustment between perceived support and repatriate knowledge transfer in MNCs. The present study also highlights that organisational and co-worker support during repatriation is beneficial for repatriate knowledge transfer. It is important that MNCs initiate support practices during repatriation to motivate repatriates to transfer international knowledge. Findings: The results revealed that both perceived organisational and co-worker support had a significant role in predicting repatriate adjustment in MNCs. Furthermore, the results also revealed that perceived organisational and co-worker support increases repatriate knowledge transfer through repatriate adjustment in MNCs. Recommendations for Practitioners: This study indicates the role of management in motivating repatriates to transfer their knowledge to the organisation. The management of MNCs develop HR policies and strategies leading to high perceived organisational support, co-worker support, and repatriate adjustment. They need to pay particular attention to the factors that affect the repatriates’ intention to share knowledge with others in the organisation. Recommendation for Researchers: Researchers can use the validated measurement instrument which could be essential for the advancement of future empirical research on repatriate knowledge transfer. Impact on Society: The present study will assist MNCs in managing their repatriates during the repatriation process by developing an appropriate repatriation support system. This will help the repatriates to better adjust to their repatriation process which will motivate them to transfer the acquired knowledge. Future Research: Future research can adopt a longitudinal style to test the different levels of the adjustment process which will help in better understanding the repatriate adjustment process. Additionally, this model can be tested with the repatriates of other countries and in diverse cultures to confirm its external validity. Furthermore, future research can be done with the repatriates who go on an international assignment through their own initiative (self-initiated expatriates).




s:

Impact of Text Diversity on Review Helpfulness: A Topic Modeling Approach

Aim/Purpose: In this study, we aim to investigate the impact of an important characteristic of textual reviews – the diversity of the review content on review helpfulness. Background: Consumer-generated reviews are an essential format of online Word-of-Month that help customers reduce uncertainty and information asymmetry. However, not all reviews are equally helpful as reflected by the varying number of helpfulness votes received by reviews. From consumers’ perspective, what kind of content is more effective and useful for making purchase decisions is unclear. Methodology: We use a data set consisting of consumer reviews for laptop products on Amazon from 2014 to 2018. A topic modeling technique is implemented to unveil the hidden topics embedded in the reviews. Based on the extracted topics, we compute the text diversity score of each review. The diversity score measures how diverse the content in a review is compared to other reviews. Contribution: In the literature, studies have examined various factors that can influence review helpfulness. However, studies that emphasized the information value of textual reviews are limited. Our study contributes to the extant literature of online word-of-mouth by establishing the connection between the diversity of the review content and consumer perceived helpfulness. Findings: Empirical results show that text diversity plays an important role in consumers’ evaluation of whether the review is helpful. Reviews that contain more diverse content tend to be more helpful to consumers. Moreover, we find a negative interaction effect between text diversity and the text depth. This result suggests that text depth and text diversity have a substitution effect. When a review contains more in-depth content, the impact of text diversity is weakened. Recommendations for Practitioners: For consumers to quickly find the informative reviews, platforms should incorporate measures such as text diversity in the ranking algorithms to rank consumer reviews. Future Research: Future study can extend the current research by examine the impact of text diversity for experienced goods and compare the results with search goods.




s:

NOTICE OF RETRACTION: The Influence of Ethical and Transformational Leadership on Employee Creativity in Malaysia's Private Higher Education Institutions: The Mediating Role of Organizational Citizenship Behaviour

Aim/Purpose: ************************************************************************ After its investigation, the Research Ethics, Integrity, and Governance team at RMIT University found that the primary author of this paper breached the Australian Code and/or RMIT Policy and requested that the article be retracted. ************************************************************************** This paper aimed to examine the influence of ethical and transformational leadership on employee creativity in Malaysia’s private higher education institutions (PHEIs) and the mediating role of organizational citizenship behavior. Background: To ensure their survival and success in today’s market, organizations need people who are creative and driven. Previous studies have demonstrated the importance of ethical leadership in fostering employee innovation and good corporate responsibility. Research on ethical leadership and transformational leadership, in particular, has played a significant role in elucidating the role of leadership in relation to organizational citizenship behavior (OCB). In this study, we have focused on ethical and transformational leadership as an antecedent for enhancing employee creativity. Despite an increase in leadership research, little is known about the underlying mechanisms that link ethical leadership and transformational leadership to OCB. Because it sheds light on factors other than ethical leadership and transformational leadership that influence employees’ extra-role activity, this research is relevant theoretically. OCB may have a mediating function between ethical leadership and transformational leadership style and employee creativity because it is associated with the greatest outcomes, but empirical research has yet to prove this. So, one of the study’s goals is to add to the hypotheses about how ethical leadership style and transformational leadership affect employee creativity by using an important mediating variable – OCB. Methodology: This study adopted a quantitative approach based on a cross-sectional survey and descriptive design to gather the data in a specific period. A convenient sampling approach was used to gauge 275 employees from Malaysia’s PHEIs. To test the hypotheses and obtain a conclusion, the acquired data was analyzed using the partial least square technique (PLS-SEM). Contribution: The study contributes to leadership literature by advancing OCB as a mediating factor that accounts for the link between ethical and transformational leadership and employee creativity in the higher education sector. Findings: According to the research, OCB has a substantial influence on the creativity of employees. Furthermore, ethical leadership boosted OCB and boosted employee creativity, according to the research. OCB and employee creativity have both been demonstrated to benefit greatly from transformational leadership. Further research revealed that OCB is a mediating factor in the link between leadership styles and creative thinking among employees. Recommendations for Practitioners: Higher education institutions should focus on developing leaders who value transparency and self-awareness in their interactions with followers and who demonstrate an inner moral perspective in addition to balanced information processing to ensure positive outcomes at the individual and organizational levels. Higher education institutions should place a priority on hiring leaders that exhibit ethical and transformational traits to raise awareness of these leadership styles among employees. Recommendation for Researchers: The new study also adds significantly to the body of knowledge by examining the relationship between ethical and transformational leadership and the creativity of the workforce. It aimed to identify the relationship between transformational leadership style and individual creativity in higher education by examining the mediating influence of OCB. Impact on Society: Higher education institutions should devise strategies for developing ethical and transformative leaders who will assist boost OCB and creativity within their workforce. Students and faculty in higher education can benefit from these leadership methods by learning to think in more diverse ways and by developing thought processes that lead to a larger pool of innovative ideas and solutions. As a consequence, employees who show creative behavior may be effectively managed by leaders who utilize ethical and transformational leadership styles and motivate them to show OCB that allow them to solve creative problems creatively. Future Research: A mixed-methods approach should be used in future research, and this should be done in public institutions in developing and developed nations to put the findings to use and generalize them even further. Future research will be able to examine other mediators to learn more about how and why ethical and transformational leadership styles affect PHEI employees’ creativity.




s:

Determinants of Knowledge Transfer for Information Technology Project Managers: A Systematic Literature Review

Aim/Purpose: The purpose of this study is to identify the key determinants hindering Knowledge Transfer (KT) practices for Information Technology Project Managers (ITPMs) Background: The failure rate of IT projects remains unacceptably high worldwide, and KT between project managers and team members has been recognized as a significant issue affecting project success. Therefore, this study tries to identify the determinants of KT within the context of IT projects for ITPMs. Methodology: A systematic review of the literature (SLR) was employed in the investigation. The SLR found 28 primary studies on KT for ITPMs that were published in Scopus and Web of Science databases between 2010 and 2023. Contribution: Social Cognitive Theory (SCT) was used to build a theoretical framework where the determinants were categorized into Personal factors, Environmental (Project organizational) factors, and other factors, such as Technological factors influencing ITPMs (Behavioral factors), to implement in KT practices. Findings: The review identified 11 key determinants categorized into three broad categories: Personal factors (i.e., motivation, absorptive capability, trust, time urgency), Project Organizational factors (i.e., team structure, leadership style, reward system, organizational culture, communication), and Technological factors (i.e., project task collaboration tool and IT infrastructure and support) that influence implementing KT for ITPMs Recommendations for Practitioners: The proposed framework in this paper can be used by project managers as a guide to adopt KT practices within their project organization. Recommendation for Researchers: The review showed that some determinants, such as Technological factors, have not been adequately explored in the existing KT model in the IT projects context and can be integrated with other relevant theories to understand how a project manager’s knowledge can be transferred and retained in the organization using technology in future research. Impact on Society: This study emphasizes the role of individual actions and project organizational and technological matters in shaping the efficacy of KT within project organizations. It offers insight that could steer business owners or executives within project organizations to closely observe the behavior of project managers, thereby securing successful project outcomes. Future Research: The determinant list provided in this paper is acquired from extensive SLR and, therefore, further research should aim to expand and deepen the investigation by validating these determinants from experts in the field of IT and project management. Future studies can also add other external technological determinants to provide a more comprehensive KT implementation framework. Similarly, this research does not include determinants identified directly from the industry, as it relies solely on determinants found in the existing literature. Although a comprehensive attempt has been made to encompass all relevant papers, there remains a potential for overlooking some research in this process.




s:

Determinants of the Intention to Use Big Data Analytics in Banks and Insurance Companies: The Moderating Role of Managerial Support

Aim/Purpose: The aim of this research paper is to suggest a comprehensive model that incorporates the technology acceptance model with the task-technology fit model, information quality, security, trust, and managerial support to investigate the intended usage of big data analytics (BDA) in banks and insurance companies. Background: The emergence of the concept of “big data,” prompted by the widespread use of connected devices and social media, has been pointed out by many professionals and financial institutions in particular, which makes it necessary to assess the determinants that have an impact on behavioral intention to use big data analytics in banks and insurance companies. Methodology: The integrated model was empirically assessed using self-administered questionnaires from 181 prospective big data analytics users in Moroccan banks and insurance firms and examined using partial least square (PLS) structural equation modeling. The results cover sample characteristics, an analysis of the validity and reliability of measurement models’ variables, an evaluation of the proposed hypotheses, and a discussion of the findings. Contribution: The paper makes a noteworthy contribution to the BDA adoption literature within the finance sector. It stands out by ingeniously amalgamating the Technology Acceptance Model (TAM) with Task-Technology Fit (TTF) while underscoring the critical significance of information quality, trust, and managerial support, due to their profound relevance and importance in the finance domain. Thus showing BDA has potential applications beyond the finance sector. Findings: The findings showed that TTF and trust’s impact on the intention to use is considerable. Information quality positively impacted perceived usefulness and ease of use, which in turn affected the intention to use. Moreover, managerial support moderates the correlation between perceived usefulness and the intention to use, whereas security did not affect the intention to use and managerial support did not moderate the influence of perceived ease of use. Recommendations for Practitioners: The results suggest that financial institutions can improve their adoption decisions for big data analytics (BDA) by understanding how users perceive it. Users are predisposed to use BDA if they presume it fits well with their tasks and is easy to use. The research also emphasizes the importance of relevant information quality, managerial support, and collaboration across departments to fully leverage the potential of BDA. Recommendation for Researchers: Further study may be done on other business sectors to confirm its generalizability and the same research design can be employed to assess BDA adoption in organizations that are in the advanced stage of big data utilization. Impact on Society: The study’s findings can enable stakeholders of financial institutions that are at the primary stage of big data exploitation to understand how users perceive BDA technologies and the way their perception can influence their intention toward their use. Future Research: Future research is expected to conduct a comparison of the moderating effect of managerial support on users with technical expertise versus those without; in addition, international studies across developed countries are required to build a solid understanding of users’ perceptions towards BDA.




s:

Content-Rating Consistency of Online Product Review and Its Impact on Helpfulness: A Fine-Grained Level Sentiment Analysis

Aim/Purpose: The objective of this research is to investigate the effect of review consistency between textual content and rating on review helpfulness. A measure of review consistency is introduced to determine the degree to which the review sentiment of textual content conforms with the review rating score. A theoretical model grounded in signaling theory is adopted to explore how different variables (review sentiment, review rating, review length, and review rating variance) affect review consistency and the relationship between review consistency and review helpfulness. Background: Online reviews vary in their characteristics and hence their different quality features and degrees of helpfulness. High-quality online reviews offer consumers the ability to make informed purchase decisions and improve trust in e-commerce websites. The helpfulness of online reviews continues to be a focal research issue regardless of the independent or joint effects of different factors. This research posits that the consistency between review content and review rating is an important quality indicator affecting the helpfulness of online reviews. The review consistency of online reviews is another important requirement for maintaining the significance and perceived value of online reviews. Incidentally, this parameter is inadequately discussed in the literature. A possible reason is that review consistency is not a review feature that can be readily monitored on e-commerce websites. Methodology: More than 100,000 product reviews were collected from Amazon.com and preprocessed using natural language processing tools. Then, the quality reviews were identified, and relevant features were extracted for model training. Machine learning and sentiment analysis techniques were implemented, and each review was assigned a consistency score between 0 (not consistent) and 1 (fully consistent). Finally, signaling theory was employed, and the derived data were analyzed to determine the effect of review consistency on review helpfulness, the effect of several factors on review consistency, and their relationship with review helpfulness. Contribution: This research contributes to the literature by introducing a mathematical measure to determine the consistency between the textual content of online reviews and their associated ratings. Furthermore, a theoretical model grounded in signaling theory was developed to investigate the effect on review helpfulness. This work can considerably extend the body of knowledge on the helpfulness of online reviews, with notable implications for research and practice. Findings: Empirical results have shown that review consistency significantly affects the perceived helpfulness of online reviews. The study similarly finds that review rating is an important factor affecting review consistency; it also confirms a moderating effect of review sentiment, review rating, review length, and review rating variance on the relationship between review consistency and review helpfulness. Overall, the findings reveal the following: (1) online reviews with textual content that correctly explains the associated rating tend to be more helpful; (2) reviews with extreme ratings are more likely to be consistent with their textual content; and (3) comparatively, review consistency more strongly affects the helpfulness of reviews with short textual content, positive polarity textual content, and lower rating scores and variance. Recommendations for Practitioners: E-commerce systems should incorporate a review consistency measure to rank consumer reviews and provide customers with quick and accurate access to the most helpful reviews. Impact on Society: Incorporating a score of review consistency for online reviews can help consumers access the best reviews and make better purchase decisions, and e-commerce systems improve their business, ultimately leading to more effective e-commerce. Future Research: Additional research should be conducted to test the impact of review consistency on helpfulness in different datasets, product types, and different moderating variables.




s:

Unveiling Roadblocks and Mapping Solutions for Blockchain Adoption by Governments: A Systematic Literature Review

Aim/Purpose: Blockchain technology (BCT) has emerged as a potential catalyst for transforming government institutions and services, yet the adoption of blockchain in governments faces various challenges, for which previous studies have yet to provide practical solutions. Background: This study aims to identify and analyse barriers, potential solutions, and their relations in implementing BC for governments through a systematic literature review (SLR). The authors grouped the challenges based on the Technology-Organisation-Environment (TOE) framework while exercising a thematic grouping for the solutions, followed by a comprehensive mapping to unveil the relationship between challenges and solutions. Methodology: This study employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 methodology, combined with the tollgate method, to improve the quality of selected articles. The authors further administer a three-level approach (open coding, axial coding, and selective coding) to analyse the challenges and solutions from the articles. Contribution: The authors argue that this study enriches the existing literature on BC adoption, particularly in the government context, by providing a comprehensive framework to analyse and address the unique challenges and solutions, thus contributing to the development of new theories and models for future research in BC adoption in government settings and fostering deeper exploration in the field. Findings: The authors have unveiled 40 adoption challenges categorised using the TOE framework. The most prevalent technological challenges include security concerns and integration & interoperability, while cultural resistance, lack of support and involvement, and employees’ capability hinder adoption at the organisational level. Notably, the environmental dimension lacks legal and standard frameworks. The study further unveils 28 potential solutions, encompassing legal frameworks, security and privacy measures, collaboration and governance, technological readiness and infrastructure, and strategic planning and adoption. The authors of the study have further mapped the solutions to the identified challenges, revealing that the establishment of legal frameworks stands out as the most comprehensive solution. Recommendations for Practitioners: Our findings provide a big picture regarding BC adoption for governments around the globe. This study charts the problems commonly encountered by government agencies and presents proven solutions in their wake. The authors endeavour practitioners, particularly those in governments, to embrace our findings as the cornerstone of BC/BCT adoption. These insights can aid practitioners in identifying existing or potential obstacles in adopting BC, pinpointing success factors, and formulating strategies tailored to their organisations. Recommendation for Researchers: Researchers could extend this study by making an in-depth analysis of challenges or solutions in specific types of countries, such as developed and developing countries, as the authors believe this approach would yield more insights. Researchers could also test, validate, and verify the mapping in this study to improve the quality of the study further and thus can be a great aid for governments to adopt BC/BCT fully. Impact on Society: This study provides a comprehensive exploration of BC adoption in the government context, offering detailed explanations and valuable insights that hold significant value for government policymakers and decision-makers, serving as a bedrock for successful implementation by addressing roadblocks and emphasising the importance of establishing a supportive culture and structure, engaging stakeholders, and addressing security and privacy concerns, ultimately enhancing the efficiency and effectiveness of BC adoption in government institutions and services. Future Research: Future research should address the limitations identified in this study by expanding the scope of the literature search to include previously inaccessible sources and exploring alternative frameworks to capture dynamic changes and contextual factors in BC adoption. Additionally, rigorous scrutiny, review, and testing are essential to establish the practical and theoretical validity of the identified solutions, while in-depth analyses of country-specific and regional challenges will provide valuable insights into the unique considerations faced by different governments.




s:

The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality

Aim/Purpose: The use of digital technology, such as an electronic records management system (ERMS), has prompted widespread changes across organizations. The organization needs to support its operations with an automation system to improve production performance. This study investigates ERMS’s potentiality to enhance organizational performance in the oil and gas industry. Background: Oil and gas organizations generate enormous electronic records that lead to difficulties in managing them without any system or digitalization procedure. The need to use a system to manage big data and records affects information security and creates several problems. This study supports decision-makers in oil and gas organizations to use ERMS to enhance organizational performance. Methodology: We used a quantitative method by integrating the typical partial least squares (SEM-PLS) approach, including measurement items, respondents’ demographics, sampling and collection of data, and data analysis. The SEM-PLS approach uses a measurement and structural model assessment to analyze data. Contribution: This study contributes significantly to theory and practice by providing advancements in identity theory in the context of big data management and electronic records management. This study is a foundation for further research on the role of ERMS in operations performance and Big Data Management (BDM). This research makes a theoretical contribution by studying a theory-driven framework that may serve as an essential lens to evaluate the role of ERMS in performance and increase its potentiality in the future. This research also evaluated the combined impacts of general technology acceptance theory elements and identity theory in the context of ERMS to support data management. Findings: This study provides an empirically tested model that helps organizations to adopt ERMS based on the influence of big data management. The current study’s findings looked at the concerns of oil and gas organizations about integrating new technologies to support organizational performance. The results demonstrated that individual characteristics of users in oil and gas organizations, in conjunction with administrative features, are robust predictors of ERMS. The results show that ERMS potentiality significantly influences the organizational performance of oil and gas organizations. The research results fit the big ideas about how big data management and ERMS affect respondents to adopt new technologies. Recommendations for Practitioners: This study contributes significantly to the theory and practice of ERMS potentiality and BDM by developing and validating a new framework for adopting ERMS to support the performance and production of oil and gas organizations. The current study adds a new framework to identity theory in the context of ERMS and BDM. It increases the perceived benefits of using ERMS in protecting the credibility and authenticity of electronic records in oil and gas organizations. Recommendation for Researchers: This study serves as a foundation for future research into the function and influence of big data management on ERMS that support the organizational performance. Researchers can examine the framework of this study in other nations in the future, and they will be able to analyze this research framework to compare various results in other countries and expand ERMS generalizability and efficacy. Impact on Society: ERMS and its impact on BDM is still a developing field, and readers of this article can assist in gaining a better understanding of the literature’s dissemination of ERMS adoption in the oil and gas industry. This study presents an experimentally validated model of ERMS adoption with the effect of BDM in the oil and gas industry. Future Research: In the future, researchers may be able to examine the impact of BDM and user technology fit as critical factors in adopting ERMS by using different theories or locations. Furthermore, researchers may include the moderating impact of demographical parameters such as age, gender, wealth, and experience into this study model to make it even more robust and comprehensive. In addition, future research may examine the significant direct correlations between human traits, organizational features, and individual perceptions of BDM that are directly related to ERMS potentiality and operational performance in the future.




s:

Adopting Green Innovation in Tourism SMEs: Integrating Pro-Environmental Planned Behavior and TOE Model

Aim/Purpose: This study investigated factors influencing the intention to engage in green innovation among small and medium enterprises (SMEs) in the tourism sector, using an integrated approach from the pro-environmental planned behavior (PEPB) and technology organization environment (TOE) models. Background: Green innovation is a long-term strategy aimed at addressing environmental challenges in the Indonesian tourism sector, especially those related to SMEs in culinary, accommodation, transportation, and creative industries. While prior research primarily focused on innovation characteristics and various behavioral intentions towards new technologies, this study pioneered an approach to understanding green innovation practices among SMEs by examining behavioral intention and the influence of internal organizational and external environmental factors. This was achieved through the PEPB model, which extends the theory of planned behavior (TPB) by incorporating perceived authority support and perceived environmental concern and integrating it with the TOE model. This comprehensive approach was crucial for understanding SME motivations, needs, and challenges in adopting green innovation, thereby supporting environmental sustainability. Methodology: Data were collected through offline and online questionnaires and interviews with 405 SMEs that had implemented green innovation as respondents. The theoretical model was tested using partial least squares structural equation modeling (PLS-SEM) with top-level constructs. Contribution: This research contributed to the development and validation of an integrated model for green innovation in SMEs, offering insights and recommendations for all stakeholders in the tourism sector to formulate effective green innovation strategies. Findings: This research revealed that the integrated model of pro-environmental planned behavior and technology organization environment successfully explained 71% of the factors influencing the intention to engage in green innovation for SMEs in the tourism sector. Perceived authority support emerged as the strongest factor, while perceived behavioral control was identified as a weaker factor. Recommendations for Practitioners: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Recommendation for Researchers: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Impact on Society: Examining the factors influencing the intention to engage in green innovation among SMEs in the tourism sector carried significant social implications. The findings contributed to recommending strategies for businesses and stakeholders such as the government, investors, and tourists to collectively strive to minimize environmental damage in tourist areas through the implementation of green innovation. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope to include diverse regions and industries and using additional approaches, such as leadership theory and management commitment theories, can increase the R-squared value. Additionally, broadening the profile of interviewees to obtain a more comprehensive understanding of the intention to engage in green innovation should be considered.




s:

Enhancing Waste Management Decisions: A Group DSS Approach Using SSM and AHP in Indonesia

Aim/Purpose: This research aims to design a website-based group decision support system (DSS) user interface to support an integrated and sustainable waste management plan in Jagatera. The main focus of this research is to design a group DSS to help Jagatera prioritize several waste alternatives to be managed so that Jagatera can make the right decisions to serve the community. Background: The Indonesian government and various stakeholders are trying to solve the waste problem. Jagatera, as a waste recycling company, plays a role as a stakeholder in managing waste. In 2024, Jagatera plans to accept all waste types, which impacts the possibility of increasing waste management costs. If Jagatera does not have a waste management plan, this will impact reducing waste management services in the community. To solve this problem, the group DSS assists Jagatera in prioritizing waste based on aspects of waste management cost. Methodology: Jagatera, an Indonesian waste recycling company, is implementing a group DSS using the soft system methodology (SSM) method. The SSM process involves seven stages, including problem identification, problem explanation using rich pictures, system design, conceptual model design, real-life comparison, changes, and improvement steps. The final result is a prototype user interface design addressing the relationship between actors and the group DSS. The analytical hierarchy process (AHP) method prioritized waste based on management costs. This research obtained primary data from interviews with Jagatera management, a literature review regarding the group DSS, and questionnaires to determine the type of waste and evaluate user interface design. Contribution: This research focuses on determining waste handling priorities based on their management. It contributes the DSS, which uses a decision-making approach based on management groups developed using the SSM and AHP methods focused on waste management decisions. It also contributes to the availability of a user interface design from the DSS group that explains the interactions between actors. The implications of the availability of DSS groups in waste recycling companies can help management understand waste prioritization problems in a structured manner, increase decision-making efficiency, and impact better-quality waste management. Combining qualitative approaches from SSM to comprehend issues from different actor perspectives and AHP to assist quantitative methods in prioritizing decisions can yield theoretical implications when using the SSM and AHP methods together. Findings: This research produces a website-based group DSS user interface design that can facilitate decision-making using AHP techniques. The user interface design from the DSS group was developed using the SSM approach to identify complex problems at waste recycling companies in Indonesia. This study also evaluated the group DSS user interface design, which resulted in a score of 91.67%. This value means that the user interface design has met user expectations, which include functional, appearance, and comfort needs. These results also show that group DSS can enhance waste recycling companies’ decision-making process. The results of the AHP technique using all waste process information show that furniture waste, according to the CEO, is given more priority, and textile waste, according to the Managing Director. Group DSS developed using the AHP method allows user actors to provide decisions based on their perspectives and authority. Recommendations for Practitioners: This research shows that the availability of a group DSS is one of the digital transformation efforts that waste recycling companies can carry out to support the determination of a sustainable waste management plan. Managers benefit from DSS groups by providing a digital decision-making process to determine which types of waste should be prioritized based on management costs. Timely and complete information in the group DSS is helpful in the decision-making process and increases organizational knowledge based on the chosen strategy. Recommendation for Researchers: Developing a group DSS for waste recycling companies can encourage strategic decision-making processes. This research integrates SSM and AHP to support a comprehensive group DSS because SSM encourages a deeper and more detailed understanding of waste recycling companies with complex problems. At the same time, AHP provides a structured approach for recycling companies to make decisions. The group DSS that will be developed can be used to identify other more relevant criteria, such as environmental impact, waste management regulations, and technological capabilities. Apart from more varied criteria, the group DSS can be encouraged to provide various alternatives such as waste paper, metal, or glass. In addition to evaluating the group DSS’s user interface design, waste recycling companies need to consider training or support for users to increase system adoption. Impact on Society: The waste problem requires the role of various stakeholders, one of which is a waste recycling company. The availability of a group DSS design can guide waste recycling companies in providing efficient and effective services so that they can respond more quickly to the waste management needs of the community. The community also gets transparent information regarding their waste management. The impact of good group DSS is reducing the amount of waste in society. Future Research: Future research could identify various other types of waste used as alternatives in the decision-making process to illustrate the complexity of the prioritization process. Future research could also identify other criteria, such as environmental impact, social aspects of community involvement, or policy compliance. Future research could involve decision-makers from other parties, such as the government, who play an essential role in the waste industry.




s:

Student Acceptance of LMS in Indonesian High Schools: The SOR and Extended GETAMEL Frameworks

Aim/Purpose: This study aims to develop a theoretical model based on the SOR (Stimulus – Organism – Response) framework and GETAMEL, which cover environmental, personal, and learning quality aspects to identify factors influencing students’ acceptance of the use of LMS in high schools, especially after COVID-19 pandemic. Background: After the COVID-19 pandemic, many high schools reopened for in-person classes, which led to a decreased reliance on e-learning. The shift from online to traditional face-to-face learning has influenced students’ perceptions of the importance of e-learning in their academic activities. Consequently, high schools are facing the challenge of ensuring that LMS can still be integrated into the teaching-learning process even after the pandemic ends. Therefore, this study proposes a model to investigate the factors that affect students’ actual use of LMS in the high school environment. Methodology: This study used 890 high school students to validate the theoretical model using Structural Equation Modeling (SEM) analysis to deliver direct, indirect, and moderating effect analysis. Contribution: This study combines SOR and acceptance theory to provide a model to explain high school students’ intention to use technology. The involvement of direct, indirect, and moderating effects analysis offers an alternative result and discussion and is considered another contribution of this study from a technical perspective. Findings: The findings show that perceived satisfaction is the most influential factor affecting the use of LMS, followed by perceived usefulness. Meanwhile, from indirect effect analysis, subjective norms and computer self-efficacy were found to indirectly affect actual use through perceived usefulness as a mediator. Content quality was also an indirect predictor of the actual use of LMS through perceived satisfaction. Further, the moderating effect of age influenced perceived satisfaction’s direct effect on actual use. Recommendations for Practitioners: This study provides practical recommendations that can be useful to high schools and other stakeholders in improving the use of LMS in educational environments. Specifically, exploring the implementation of LMS in high schools prior to and following the COVID-19 outbreak can offer valuable insights into the changing educational environment. Recommendation for Researchers: The results of this study present a significant theoretical contribution by employing a comprehensive approach to explain the adoption of LMS among high school students after the COVID-19 pandemic. This contribution extends the GETAMEL framework by incorporating environmental, personal, and learning quality aspects while also analyzing both direct and indirect effects, which have not been previously explored in this context. Impact on Society: This study provides knowledge to high schools for improving the use of LMS in educational environments post-COVID-19, leading to an enhanced teaching-learning process. Future Research: This study, however, is limited to collecting responses exclusively from Indonesian respondents. Therefore, the replication of the finding needs to consider the characteristics and culture similar to Indonesian students, which is regarded as the limitation of this study.




s:

Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success

Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field.




s:

Personalized Tourism Recommendations: Leveraging User Preferences and Trust Network

Aim/Purpose: This study aims to develop a solution for personalized tourism recommendations that addresses information overload, data sparsity, and the cold-start problem. It focuses on enabling tourists to choose the most suitable tourism-related facilities, such as restaurants and hotels, that match their individual needs and preferences. Background: The tourism industry is experiencing a significant shift towards digitalization due to the increasing use of online platforms and the abundance of user data. Travelers now heavily rely on online resources to explore destinations and associated options like hotels, restaurants, attractions, transportation, and events. In this dynamic landscape, personalized recommendation systems play a crucial role in enhancing user experience and ensuring customer satisfaction. However, existing recommendation systems encounter major challenges in precisely understanding the complexities of user preferences within the tourism domain. Traditional approaches often rely solely on user ratings, neglecting the complex nature of travel choices. Data sparsity further complicates the issue, as users might have limited interactions with the system or incomplete preference profiles. This sparsity can hinder the effectiveness of these systems, leading to inaccurate or irrelevant recommendations. The cold-start problem presents another challenge, particularly with new users who lack a substantial interaction history within the system, thereby complicating the task of recommending relevant options. These limitations can greatly hinder the performance of recommendation systems and ultimately reduce user satisfaction with the overall experience. Methodology: The proposed User-based Multi-Criteria Trust-aware Collaborative Filtering (UMCTCF) approach exploits two key aspects to enhance both the accuracy and coverage of recommendations within tourism recommender systems: multi-criteria user preferences and implicit trust networks. Multi-criteria ratings capture the various factors that influence user preferences for specific tourism items, such as restaurants or hotels. These factors surpass a simple one-star rating and take into account the complex nature of travel choices. Implicit trust relationships refer to connections between users that are established through shared interests and past interactions without the need for explicit trust declarations. By integrating these elements, UMCTCF aims to provide more accurate and reliable recommendations, especially when data sparsity limits the ability to accurately predict user preferences, particularly for new users. Furthermore, the approach employs a switch hybridization scheme, which combines predictions from different components within UMCTCF. This scheme leads to a more robust recommendation strategy by leveraging diverse sources of information. Extensive experiments were conducted using real-world tourism datasets encompassing restaurants and hotels to evaluate the effectiveness of UMCTCF. The performance of UMCTCF was then compared against baseline methods to assess its prediction accuracy and coverage. Contribution: This study introduces a novel and effective recommendation approach, UMCTCF, which addresses the limitations of existing methods in personalized tourism recommendations by offering several key contributions. First, it transcends simple item preferences by incorporating multi-criteria user preferences. This allows UMCTCF to consider the various factors that users prioritize when making tourism decisions, leading to a more comprehensive understanding of user choices and, ultimately, more accurate recommendations. Second, UMCTCF leverages the collective wisdom of users by incorporating an implicit trust network into the recommendation process. By incorporating these trust relationships into the recommendation process, UMCTCF enhances its effectiveness, particularly in scenarios with data sparsity or new users with limited interaction history. Finally, UMCTCF demonstrates robustness towards data sparsity and the cold-start problem. This resilience in situations with limited data or incomplete user profiles makes UMCTCF particularly suitable for real-world applications in the tourism domain. Findings: The results consistently demonstrated UMCTCF’s superiority in key metrics, effectively addressing the challenges of data sparsity and new users while enhancing both prediction accuracy and coverage. In terms of prediction accuracy, UMCTCF yielded significantly more accurate predictions of user preferences for tourism items compared to baseline methods. Furthermore, UMCTCF achieved superior coverage compared to baseline methods, signifying its ability to recommend a wider range of tourism items, particularly for new users who might have limited interaction history within the system. This increased coverage has the potential to enhance user satisfaction by offering a more diverse and enriching set of recommendations. These findings collectively highlight the effectiveness of UMCTCF in addressing the challenges of personalized tourism recommendations, paving the way for improved user satisfaction and decision-making within the tourism domain. Recommendations for Practitioners: The proposed UMCTCF approach offers a potential opportunity for tourism recommendation systems, enabling practitioners to create solutions that prioritize the needs and preferences of users. By incorporating UMCTCF into online tourism platforms, tourists can utilize its capabilities to make well-informed decisions when selecting tourism-related facilities. Furthermore, UMCTCF’s robust design allows it to function effectively even in scenarios with data sparsity or new users with limited interaction history. This characteristic makes UMCTCF particularly valuable for real-world applications, especially in scenarios where these limitations are common obstacles. Recommendation for Researchers: The success of UMCTCF can open up new avenues in personalized recommendation research. One promising direction lies in exploring the integration of additional contextual information, such as temporal (time-based) or location-based information. By incorporating these elements, the model could be further improved, allowing for even more personalized recommendations. Furthermore, exploring the potential of UMCTCF in domains other than tourism has considerable significance. By exploring its effectiveness in other e-commerce domains, researchers can broaden the impact of UMCTCF and contribute to the advancement of personalized recommendation systems across various industries. Impact on Society: UMCTCF has the potential to make a positive impact on society in various ways. By delivering accurate and diverse recommendations that are tailored to individual user preferences, UMCTCF fosters a more positive and rewarding user experience with tourism recommendation systems. This can lead to increased user engagement with tourism platforms, ultimately enhancing overall satisfaction with travel planning. Furthermore, UMCTCF enables users to make more informed decisions through broader and more accurate recommendations, potentially reducing planning stress and leading to more fulfilling travel experiences. Future Research: Expanding upon the success of UMCTCF, future research activities can explore several promising paths. Enriching UMCTCF with various contextual data, such as spatial or location-based data, to enhance recommendation accuracy and relevance. Leveraging user-generated content, like reviews and social media posts, could provide deeper insights into user preferences and sentiments, improving personalization. Additionally, applying UMCTCF in various e-commerce domains beyond tourism, such as online shopping, entertainment, and healthcare, could yield valuable insights and enhance recommendation systems. Finally, exploring the integration of optimization algorithms could improve both recommendation accuracy and efficiency.




s:

Fostering Trust Through Bytes: Unravelling the Impact of E-Government on Public Trust in Indonesian Local Government

Aim/Purpose: This study aims to investigate the influence of e-government public services on public trust at the local government level, addressing the pressing need to understand the factors shaping citizen perceptions and trust in government institutions. Background: With the proliferation of e-government initiatives worldwide, governments are increasingly turning to digital solutions to enhance public service delivery and promote transparency. However, despite the potential benefits, there remains a gap in understanding how these initiatives impact public trust in government institutions, particularly at the local level. This study seeks to address this gap by examining the relationship between e-government service quality, individual perceptions, and public trust, providing valuable insights into the complexities of citizen-government interactions in the digital age. Methodology: Employing a quantitative approach, this study utilises surveys distributed to users of e-government services in one of the regencies in Indonesia. The sample consists of 278 individuals. Data analysis is conducted using Partial Least Squares Structural Equation Modelling, allowing for the exploration of relationships among variables and their influence on public trust. Contribution: This study provides insights into the factors influencing public trust in e-government services at the local government level, offering a nuanced understanding of the relationship between service quality, individual perceptions, and public trust. Findings: This study emphasises information quality and service quality in e-government-based public services as crucial determinants of individual perception in rural areas. Interestingly, system quality in e-government services has no influence on individual perception. In the individual perception, perceived security and privacy emerge as the strongest antecedent of public trust, highlighting the need to guarantee secure and private services for citizens in rural areas. These findings emphasise the importance of prioritising high-quality information, excellent service delivery, and robust security measures to foster and sustain public trust in e-government services. Recommendations for Practitioners: Practitioners must prioritise enhancing the quality of e-government services due to their significant impact on individual perception, leading to higher public trust. Government agencies must ensure reliability, responsiveness, and the effective fulfilment of user needs. Additionally, upholding high standards of information quality in e-government services by delivering accurate, relevant, and timely information remains crucial. Strengthening security measures through robust protocols such as data encryption and secure authentication becomes essential for protecting user data. With that in mind, the authors believe that public trust in government would escalate. Recommendation for Researchers: Researchers could investigate the relation between system quality in e-government services and individual perception in different rural settings. Longitudinal studies could also elucidate how evolving service quality, information quality, and security measures impact user satisfaction and trust over time. Comparative studies across regions or countries can reveal cultural and contextual differences in individual perceptions, identifying both universal principles and region-specific strategies for e-government platforms. Analysing user behaviour and preferences across various demographic groups can inform targeted interventions. Furthermore, examining the potential of emerging technologies such as blockchain or artificial intelligence in enhancing e-government service delivery, security, and user engagement remains an interesting topic. Impact on Society: This study’s findings have significant implications for fostering public trust in government institutions, ultimately strengthening democracy and citizen-government relations. By understanding how e-government initiatives influence public trust, policymakers can make informed decisions to improve service delivery, enhance citizen engagement, and promote transparency, thus contributing to more resilient and accountable governance structures. Future Research: Future research could opt for longitudinal studies to evaluate the long-term effects of enhancements in service quality, information quality, and security. Cross-cultural investigations can uncover universal principles and contextual differences in user experiences, supporting global e-government strategies in rural areas. Future research could also improve the research model by adding more variables, such as risk aversion or fear of job loss, to gauge individual perceptions.




s:

Decoding YouTube Video Reviews: Uncovering The Factors That Determine Video Review Helpfulness

Aim/Purpose: This study aims to identify the characteristics of YouTube video reviews that consumers utilize to evaluate review helpfulness and explores how they process such information. This study aims to investigate the effect of argument quality, review popularity, number of likes, and source credibility on consumers’ perception of YouTube’s video review helpfulness. Background: Video reviews posted on YouTube are an emerging form of online reviews, which have the potential to be more helpful than textual reviews due to their visual and audible cues that deliver more vivid information about product features and specifications. With the availability of an enormous number of video reviews with unpredictable quality, it becomes challenging for consumers to find helpful reviews without consuming significant time and effort. In addition, YouTube does not provide a specific feature that indicates a review helpfulness similar to the one found on e-commerce websites. Consequently, consumers have to examine the characteristics of video reviews that are readily available on YouTube, evaluate them, and form a perception of whether a review is helpful or not. Despite the increasing popularity of YouTube’s video reviews, video reviews’ helpfulness received inadequate attention in the literature. The antecedents of the helpfulness of online video reviews are still underinvestigated, and more research is needed to identify the characteristics that consumers depend upon to assess video review helpfulness. Furthermore, it is important to understand how consumers process the information they gain from these characteristics to form a perception of their helpfulness. Methodology: Following an extended investigation of the relevant literature, we identified four key video characteristics that consumers presumably utilize to evaluate review helpfulness on YouTube (i.e., review popularity, number of likes, source credibility, and argument quality). By employing the Elaboration Likelihood Model (ELM), we classified these characteristics along the central and peripheral routes. The central route characteristics require a high cognitive effort by consumers to process the review’s message and reach a logical decision. In contrast, the peripheral route assumes that consumers judge the review’s message based on superficial qualities without substantial cognitive effort. A research model is introduced to investigate the effect of central and peripheral cues and their corresponding video review characteristics on review helpfulness. Accordingly, argument quality is proposed in the central route of the model, while review popularity, number of likes, and source credibility are proposed in the peripheral route. Furthermore, the study investigates how consumers process the information they obtain from these routes jointly or independently. To empirically test the proposed model, a convenient sample of 361 YouTube users was obtained through an online survey. The partial least squares method was used to investigate the effect of the proposed characteristics on video review helpfulness. Contribution: This study contributes to the literature in several ways. First, it is one of the few studies that investigate online video reviews’ helpfulness. Second, this study identifies several unique characteristics of YouTube’s video reviews that span peripheral and central routes, which potentially contribute to review helpfulness. Third, this study proposes a conceptual model based on the ELM to explore the effect of central and peripheral cues and their corresponding review characteristics on review helpfulness. Fourth, the research findings provide implications for research and practice that advance the theoretical understanding of video reviews’ helpfulness and serve as guidelines to create more helpful video reviews by better understanding the consumer’s cognitive processes. Findings: The results show that among the four characteristics proposed in the research model, argument quality in the central route is the strongest determinant factor affecting video review helpfulness. Results also show that review popularity, source credibility, and the number of likes in the peripheral route have significant effects on video review helpfulness. Altogether, our results show that the effect of the peripheral route adds up to 0.463 compared to 0.430, which is the impact magnitude of the argument quality construct in the central route. Based on the comparable effect magnitude of the central and peripheral routes of the model on video review helpfulness, our results indicate that both peripheral and central cues significantly affect consumers’ perception of video review helpfulness. The two routes are not mutually exclusive, and their cues can be processed in parallel or consecutive ways. Recommendations for Practitioners: The study recommends creating a dedicated category for reviews on YouTube with a specific feature for consumers to indicate the helpfulness of a video review, similar to the helpful vote button in textual reviews. The study also recommends that reviewers deliver more appealing and convincing argument quality, work toward improving their credibility, and understand the factors that contribute to video popularity. Impact on Society: Identifying the characteristics that affect video review helpfulness on YouTube helps consumers access helpful reviews more efficiently and improves their purchase decisions. Future Research: Future research could look into different types of data that could be extracted from YouTube to investigate the helpfulness of online video reviews. Future studies could employ machine learning and sentiment analysis techniques to reach more insights. Future research could also investigate the effect of product types in the context of online video reviews.