ac

Chiral versus achiral crystal structures of 4-benzyl-1H-pyrazole and its 3,5-di­amino derivative

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di­amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti­omers easily inter­convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)—C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N—H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N—H protons as donors in N—H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N—H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra­molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.




ac

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




ac

Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluoro­lactonization products from the reaction of oleanolic acid with SelectfluorTM

The X-ray crystal structure data of 12-α-fluoro-3β-hy­droxy­olean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hy­droxy­taraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluoro­lactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13.




ac

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O']

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and π–π inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.




ac

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.




ac

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




ac

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




ac

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




ac

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




ac

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




ac

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




ac

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




ac

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




ac

Color center creation by dipole stacking in crystals of 2-meth­oxy-5-nitro­aniline

This work describes the X-ray structure of orange–red crystals of 2-meth­oxy-5-nitro­aniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an inter­molecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align anti­parallel. Stacked mol­ecules inter­act with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV.




ac

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.




ac

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C inter­actions.




ac

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




ac

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




ac

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




ac

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




ac

8-Hy­droxy­quinolinium tri­chlorido­(pyridine-2,6-di­carb­oxy­lic acid-κ3O,N,O')copper(II) dihydrate

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hy­droxy­quinoline (8-HQ), and solid pyridine-2,6-di­carb­oxy­lic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro­chloric acid. The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry, coordinating two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand and three chloride atoms; the nitro­gen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water mol­ecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak inter­actions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.




ac

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




ac

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




ac

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).




ac

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular π–π inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular π–π inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.




ac

Crystal structures of two different multi-component crystals consisting of 1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline and fumaric acid

Two different multi-component crystals consisting of papaverine [1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline, C20H21NO4] and fumaric acid [C4H4O4] were obtained. Single-crystal X-ray structure analysis revealed that one, C20H21NO4·1.5C4H4O4 (I), is a salt co-crystal composed of salt-forming and non-salt-forming mol­ecules, and the other, C20H21NO4·0.5C4H4O4 (II), is a salt–co-crystal inter­mediate (i.e., in an inter­mediate state between a salt and a co-crystal). In this study, one state (crystal structure at 100 K) within the salt–co-crystal continuum is defined as the ‘inter­mediate’.




ac

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.




ac

Crystal structure of an aceto­nitrile solvate of 2-(3,4,5-triphen­ylphen­yl)acetic acid

Crystal growth of 2-(3,4,5-triphen­ylphen­yl)acetic acid (1) from aceto­nitrile yields a monosolvate, C26H20O2·CH3CN, of the space group P1. In the crystal, the title mol­ecule adopts a conformation in which the three phenyl rings are arranged in a paddlewheel-like fashion around the central arene ring and the carboxyl residue is oriented nearly perpendicular to the plane of this benzene ring. Inversion-symmetric dimers of O—H⋯O-bonded mol­ecules of 1 represent the basic supra­molecular entities of the crystal structure. These dimeric mol­ecular units are further linked by C—H⋯O=C bonds to form one-dimensional supra­molecular aggregates running along the crystallographic [111] direction. Weak Car­yl—H⋯N inter­actions occur between the mol­ecules of 1 and aceto­nitrile.




ac

Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro­phen­yl)meth­yl]-3-methyl-6-oxopyridazin-1-yl}-N-phenyl­acetamide

In the title mol­ecule, C20H18ClN3O2, the 2-chloro­phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl­acetamide moiety is nearly planar due to a weak, intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking inter­actions between pyridazine and phenyl rings form helical chains of mol­ecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions to dominate the inter­molecular contacts in the crystal.




ac

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].




ac

Crystal structure and Hirshfeld surface analysis of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.




ac

Review and experimental comparison of speckle-tracking algorithms for X-ray phase contrast imaging

This review focuses on low-dose near-field X-ray speckle phase imaging in the differential mode introducing the existing algorithms with their specifications and comparing their performances under various experimental conditions.




ac

Development and testing of a dual-frequency, real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF

we introduce a novel approach for a real-time dual-frequency feedback system, which has been firstly used at the hard X-ray nanoprobe beamline of SSRF. The BiBEST can then efficiently stabilize X-ray beam position and stability in parallel, making use of different optical systems in the beamline.




ac

Form factor of helical structures and twisted fibres

A general formalism is presented for the isotropically averaged single-chain scattering function (form factor) of single, double, triple and higher-order helices, as well as twisted fibres consisting of concentric layers of strands. Form factors for double and triple helices with differently sized grooves have also been derived. The formulas include the longitudinal and transverse interference over the pitch and radius of the helices, respectively. The results may be useful for the analysis of small-angle scattering data of (bio)macromolecules or molecular assemblies exhibiting a helical arrangement.




ac

(U)SAXS characterization of porous microstructure of chert: insights into organic matter preservation

This study characterizes the microstructure and mineralogy of 132 (ODP sample), 1000 and 1880 million-year-old chert samples. By using ultra-small-angle X-ray scattering (USAXS), wide-angle X-ray scattering and other techniques, the preservation of organic matter (OM) in these samples is studied. The scarce microstructural data reported on chert contrast with many studies addressing porosity evolution in other sedimentary rocks. The aim of this work is to solve the distribution of OM and silica in chert by characterizing samples before and after combustion to pinpoint the OM distribution inside the porous silica matrix. The samples are predominantly composed of alpha quartz and show increasing crystallite sizes up to 33 ± 5 nm (1σ standard deviation or SD). In older samples, low water abundances (∼0.03%) suggest progressive dehydration. (U)SAXS data reveal a porous matrix that evolves over geological time, including, from younger to older samples, (1) a decreasing pore volume down to 1%, (2) greater pore sizes hosting OM, (3) decreasing specific surface area values from younger (9.3 ± 0.1 m2 g−1) to older samples (0.63 ± 0.07 m2 g−1, 1σ SD) and (4) a lower background intensity correlated to decreasing hydrogen abundances. The pore-volume distributions (PVDs) show that pores ranging from 4 to 100 nm accumulate the greater volume fraction of OM. Raman data show aromatic organic clusters up to 20 nm in older samples. Raman and PVD data suggest that OM is located mostly in mesopores. Observed structural changes, silica–OM interactions and the hydro­phobicity of the OM could explain the OM preservation in chert.




ac

Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001)

Time-resolved high-energy X-ray diffraction was used during growth of ultrathin NixFe3−xO4 films with varying Ni content (0 ≤ x ≤ 1.5) deposited on MgO(001) substrates by reactive molecular beam epitaxy, providing an insight into the growth dynamics of these films. In order to obtain structural information, reciprocal-space maps were recorded and the temporal evolution of the Bragg peaks specific to the octahedral and tetrahedral lattice sites of the inverse spinel structure of NixFe3−xO4 was observed during growth of the films. A time delay, corresponding to a coverage of 1.2–1.8 nm, between the appearance of the Bragg reflections originating from octahedral sites and reflections originating exclusively from tetrahedral sites indicates that the ferrite films grow in two stages. In the initial growth phase, a rock salt interface layer is formed. Afterwards, a structural transition occurs and the films grow in an inverse spinel structure. The thickness of the initial rock salt phase was found to increase with Ni content and to be responsible for atypical strain in the thin films. Films with Ni contents x > 1 do not show a structural transition. These films remain in a (deficient) rock salt structure consisting of a mixed Ni–Fe oxide and do not form a spinel structure at all. They show an increased number of NiO clusters as detected by X-ray photoelectron spectroscopy of the valence band, accompanied by a significant roughening of the films.




ac

An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.




ac

POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques.




ac

ProLEED Studio: software for modeling low-energy electron diffraction patterns

Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results.




ac

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




ac

The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches

Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code.




ac

Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction

The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples.




ac

Convolutional neural network approach for the automated identification of in cellulo crystals

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.