is The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non–opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone. Full Article
is Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. SIGNIFICANCE STATEMENT Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. Full Article
is Glycoconjugation as a Promising Treatment Strategy for Psoriasis [Minireviews] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Despite the progress in the development of novel treatment modalities, a significant portion of patients with psoriasis remains undertreated relative to the severity of their disease. Recent evidence points to targeting the glucose transporter 1 and sugar metabolism as a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. In this review, we discuss glycoconjugation, an approach that facilitates the pharmacokinetics of cytotoxic molecules and ensures their preferential influx through glucose transporters. We propose pathways of glycoconjugate synthesis to increase effectiveness, cellular selectivity, and tolerability of widely used antipsoriatic drugs. The presented approach exploiting the heightened glucose requirement of proliferating keratinocytes bears the potential to revolutionize the management of psoriasis. SIGNIFICANCE STATEMENT Recent findings concerning the fundamental role of enhanced glucose metabolism and glucose transporter 1 overexpression in the pathogenesis of psoriasis brought to light approaches that proved successful in cancer treatment. Substantial advances in the emerging field of glycoconjugation highlight the rationale for the development of glucose-conjugated antipsoriatic drugs to increase their effectiveness, cellular selectivity, and tolerability. The presented approach offers a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. Full Article
is Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS. SIGNIFICANCE STATEMENT Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections. Full Article
is A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden. SIGNIFICANCE STATEMENT Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period. Full Article
is COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis. SIGNIFICANCE STATEMENT PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension. Full Article
is Mouse Colonic Epithelial Cells Functionally Express the Histamine H4 Receptor [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow–chimeric mice were generated from H4R knockout (H4R–/–) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R–/– and WT mice using chopstick electrodes. Bone marrow–chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype. SIGNIFICANCE STATEMENT The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate–induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity. Full Article
is Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive-compulsive disorder [RESEARCH] By learnmem.cshlp.org Published On :: 2020-04-15T06:30:12-07:00 In obsessive–compulsive disorder (OCD), functional behaviors such as checking that a door is locked become dysfunctional, maladaptive, and debilitating. However, it is currently unknown how aversive and appetitive motivations interact to produce functional and dysfunctional behavior in OCD. Here we show a double dissociation in the effects of anxiogenic cues and sensitivity to rewarding stimuli on the propensity to develop functional and dysfunctional checking behavior in a rodent analog of OCD, the observing response task (ORT). While anxiogenic manipulations of perceived threat (presentation of threat-associated contextual cues) and actual threat (punishment of incorrect responding on the ORT) enhanced functional checking, dysfunctional checking was unaffected. In contrast, rats that had previously been identified as "sign-trackers" on an autoshaping task—and therefore were highly sensitive to the incentive salience of appetitive environmental cues—selectively showed elevated levels of dysfunctional checking under a range of conditions, but particularly so under conditions of uncertainty. These data indicate that functional and dysfunctional checking are dissociable and supported by aversive and appetitive motivational processes, respectively. While functional checking is modulated by perceived and actual threat, dysfunctional checking recruits appetitive motivational processes, possibly akin to the "incentive habits" that contribute to drug-seeking in addiction. Full Article
is Rapid acquisition through fast mapping: stable memory over time and role of prior knowledge [RESEARCH] By learnmem.cshlp.org Published On :: 2020-04-15T06:30:12-07:00 In recent years, there have been intensive debates on whether healthy adults acquire new word knowledge through fast mapping (FM) by a different mechanism from explicit encoding (EE). In this study, we focused on this issue and investigated to what extent retention interval, prior knowledge (PK), and lure type modulated memory after FM and EE. Healthy young participants were asked to learn novel word-picture associations through both FM and EE. Half of the pictures were from familiar categories (i.e., high PK) and the other half were from unfamiliar categories (i.e., low PK). After 10 min and 1 wk, the participants were tested by forced-choice (FC) tasks, with lures from different categories (Experiment 1) or from the same categories of the target pictures (Experiment 2). Pseudowords were used to denote names of the novel pictures and baseline performance was controlled for each task. The results showed that in both Experiments 1 and 2, memory performance remained stable after FM, while it declined after EE from 10 min to 1 wk. Moreover, the effect of PK appeared at 10 min after FM while at 1 wk after EE in Experiment 2. PK enhanced memory of word-picture associations when the lures were from the same categories (Experiment 2), rather than from different categories (Experiment 1). These results were largely confirmed in Experiment 3 when encoding condition was manipulated as a between-subjects factor, while lure type as a within-subjects factor. The findings suggest that different from EE, FM facilitates rapid acquisition and consolidation of word-picture knowledge, and highlight that PK plays an important role in this process by enhancing access to detailed information. Full Article
is The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-30T01:09:45-07:00 Xiaofei Cao, Sergio Lilla, Zhenbo Cao, Marie Anne Pringle, Ojore B. V. Oka, Philip J. Robinson, Tomasz Szmaja, Marcel van Lith, Sara Zanivan, and Neil J. Bulleid Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins. Full Article
is The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Dalton Buysse, Anna-Katharina Pfitzner, Matt West, Aurelien Roux, and Greg Odorizzi The ESCRT-III protein complex executes reverse-topology membrane scission. The scission mechanism is unclear but is linked to remodeling of ESCRT-III complexes at the membrane surface. At endosomes, ESCRT-III mediates the budding of intralumenal vesicles (ILVs). In Saccharomyces cerevisiae, ESCRT-III activity at endosomes is regulated through an unknown mechanism by Doa4, an ubiquitin hydrolase that deubiquitylates transmembrane proteins sorted into ILVs. We report that the non-catalytic N-terminus of Doa4 binds Snf7, the predominant ESCRT-III subunit. Through this interaction, Doa4 overexpression alters Snf7 assembly status and inhibits ILV membrane scission. In vitro, the Doa4 N-terminus inhibits association of Snf7 with Vps2, which functions with Vps24 to arrest Snf7 polymerization and remodel Snf7 polymer structure. In vivo, Doa4 overexpression inhibits Snf7 interaction with Vps2 and also with the ATPase Vps4, which is recruited by Vps2 and Vps24 to remodel ESCRT-III complexes by catalyzing subunit turnover. Our data suggest a mechanism by which the deubiquitylation machinery regulates ILV biogenesis by interfering with ESCRT-III remodeling. Full Article
is Tubulin-Binding 3,5-Bis(styryl)pyrazoles as Lead Compounds for the Treatment of Castration-Resistant Prostate Cancer [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:10-07:00 The microtubule-binding taxanes, docetaxel and cabazitaxel, are administered intravenously for the treatment of castration-resistant prostate cancer (CRPC) as the oral administration of these drugs is largely hampered by their low and highly variable bioavailabilities. Using a simple, rapid, and environmentally friendly microwave-assisted protocol, we have synthesized a number of 3,5-bis(styryl)pyrazoles 2a-l, thus allowing for their screening for antiproliferative activity in the androgen-independent PC3 prostate cancer cell line. Surprisingly, two of these structurally simple 3,5-bis(styryl)pyrazoles (2a and 2l) had concentrations which gave 50% of the maximal inhibition of cell proliferation (GI50) in the low micromolar range in the PC3 cell line and were thus selected for extensive further biologic evaluation (apoptosis and cell cycle analysis, and effects on tubulin and microtubules). Our findings from these studies show that 3,5-bis[(1E)-2(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l 1) caused significant effects on the cell cycle in PC3 cells, with the vast majority of treated cells in the G2/M phase (89%); 2) induces cell death in PC3 cells even after the removal of the compound; 3) binds to tubulin [dissociation constant (Kd) 0.4 ± 0.1 μM] and inhibits tubulin polymerization in vitro; 4) had no effect upon the polymerization of the bacterial cell division protein FtsZ (a homolog of tubulin); 5) is competitive with paclitaxel for binding to tubulin but not with vinblastine, crocin, or colchicine; and 6) leads to microtubule depolymerization in PC3 cells. Taken together, these results suggest that 3,5-bis(styryl)pyrazoles warrant further investigation as lead compounds for the treatment of CRPC. SIGNIFICANCE STATEMENT The taxanes are important components of prostate cancer chemotherapy regimens, but their oral administration is hampered by very low and highly variable oral bioavailabilities resulting from their poor absorption, poor solubility, high first-pass metabolism, and efficient efflux by P-glycoprotein. New chemical entities for the treatment of prostate cancer are thus required, and we report here the synthesis and investigation of the mechanism of action of some bis(styryl)pyrazoles, demonstrating their potential as lead compounds for the treatment of prostate cancer. Full Article
is CXL146, a Novel 4H-Chromene Derivative, Targets GRP78 to Selectively Eliminate Multidrug-Resistant Cancer Cells [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:10-07:00 The 78-kDa glucose-regulated protein (GRP78), an endoplasmic reticulum (ER) chaperone, is a master regulator of the ER stress. A number of studies revealed that high levels of GRP78 protein in cancer cells confer multidrug resistance (MDR) to therapeutic treatment. Therefore, drug candidate that reduces GRP78 may represent a novel approach to eliminate MDR cancer cells. Our earlier studies showed that a set of 4H-chromene derivatives induced selective cytotoxicity in MDR cancer cells. In the present study, we elucidated its selective mechanism in four MDR cancer cell lines with one lead candidate (CXL146). Cytotoxicity results confirmed the selective cytotoxicity of CXL146 toward the MDR cancer cell lines. We noted significant overexpression of GRP78 in all four MDR cell lines compared with the parental cell lines. Unexpectedly, CXL146 treatment rapidly and dose-dependently reduced GRP78 protein in MDR cancer cell lines. Using human leukemia (HL) 60/mitoxantrone (MX) 2 cell line as the model, we demonstrated that CXL146 treatment activated the unfolded protein response (UPR); as evidenced by the activation of inositol-requiring enzyme 1α, protein kinase R–like ER kinase, and activating transcription factor 6. CXL146-induced UPR activation led to a series of downstream events, including extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase activation, which contributed to CXL146-induced apoptosis. Targeted reduction in GRP78 resulted in reduced sensitivity of HL60/MX2 toward CXL146. Long-term sublethal CXL146 exposure also led to reduction in GRP78 in HL60/MX2. These data collectively support GRP78 as the target of CXL146 in MDR treatment. Interestingly, HL60/MX2 upon long-term sublethal CXL146 exposure regained sensitivity to mitoxantrone treatment. Therefore, further exploration of CXL146 as a novel therapy in treating MDR cancer cells is warranted. SIGNIFICANCE STATEMENT Multidrug resistance is one major challenge to cancer treatment. This study provides evidence that cancer cells overexpress 78-kDa glucose-regulated protein (GRP78) as a mechanism to acquire resistance to standard cancer therapies. A chromene-based small molecule, CXL146, selectively eliminates cancer cells with GRP78 overexpression via activating unfolded protein response–mediated apoptosis. Further characterization indicates that CXL146 and standard therapies complementarily target different populations of cancer cells, supporting the potential of CXL146 to overcome multidrug resistance in cancer treatment. Full Article
is More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-23T09:05:28-07:00 Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine’s major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. Significance Statement Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose. Full Article
is Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-20T10:40:35-07:00 Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. Significance Statement Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway. Full Article
is Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-06T10:34:34-08:00 The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1–4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease. Significance Statement The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes. Full Article
is Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-05T08:17:23-08:00 Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. Significance Statement Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage. Full Article
is Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-02-27T12:11:24-08:00 Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. Significance Statement The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention. Full Article
is Image Quality and Activity Optimization in Oncologic 18F-FDG PET Using the Digital Biograph Vision PET/CT System By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 The first Biograph Vision PET/CT system (Siemens Healthineers) was installed at the University Medical Center Groningen. Improved performance of this system could allow for a reduction in activity administration or scan duration. This study evaluated the effects of reduced scan duration in oncologic 18F-FDG PET imaging on quantitative and subjective imaging parameters and its influence on clinical image interpretation. Methods: Patients referred for a clinical PET/CT scan were enrolled in this study, received a weight-based 18F-FDG injected activity, and underwent list-mode PET acquisition at 180 s per bed position (s/bp). Acquired PET data were reconstructed using the vendor-recommended clinical reconstruction protocol (hereafter referred to as "clinical"), using the clinical protocol with additional 2-mm gaussian filtering (hereafter referred to as "clinical+G2"), and—in conformance with European Association of Nuclear Medicine Research Ltd. (EARL) specifications—using different scan durations per bed position (180, 120, 60, 30, and 10 s). Reconstructed images were quantitatively assessed for comparison of SUVs and noise. In addition, clinically reconstructed images were qualitatively evaluated by 3 nuclear medicine physicians. Results: In total, 30 oncologic patients (22 men, 8 women; age: 48–88 y [range], 67 ± 9.6 y [mean ± SD]) received a single weight-based (3 MBq/kg) 18F-FDG injected activity (weight: 45–123 kg [range], 81 ± 15 kg [mean ± SD]; activity: 135–380 MBq [range], 241 ± 47.3 MBq [mean ± SD]). Significant differences in lesion SUVmax were found between the 180-s/bp images and the 30- and 10-s/bp images reconstructed using the clinical protocols, whereas no differences were found in lesion SUVpeak. EARL-compliant images did not show differences in lesion SUVmax or SUVpeak between scan durations. Quantitative parameters showed minimal deviation (~5%) in the 60-s/bp images. Therefore, further subjective image quality assessment was conducted using the 60-s/bp images. Qualitative assessment revealed the influence of personal preference on physicians’ willingness to adopt the 60-s/bp images in clinical practice. Although quantitative PET parameters differed minimally, an increase in noise was observed. Conclusion: With the Biograph Vision PET/CT system for oncologic 18F-FDG imaging, scan duration or activity administration could be reduced by a factor of 3 or more with the use of the clinical+G2 or the EARL-compliant reconstruction protocol. Full Article
is 18F-FAC PET Visualizes Brain-Infiltrating Leukocytes in a Mouse Model of Multiple Sclerosis By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Brain-infiltrating leukocytes contribute to multiple sclerosis (MS) and autoimmune encephalomyelitis and likely play a role in traumatic brain injury, seizure, and stroke. Brain-infiltrating leukocytes are also primary targets for MS disease-modifying therapies. However, no method exists for noninvasively visualizing these cells in a living organism. 1-(2'-deoxy-2'-18F-fluoroarabinofuranosyl) cytosine (18F-FAC) is a PET radiotracer that measures deoxyribonucleoside salvage and accumulates preferentially in immune cells. We hypothesized that 18F-FAC PET could noninvasively image brain-infiltrating leukocytes. Methods: Healthy mice were imaged with 18F-FAC PET to quantify if this radiotracer crosses the blood–brain barrier (BBB). Experimental autoimmune encephalomyelitis (EAE) is a mouse disease model with brain-infiltrating leukocytes. To determine whether 18F-FAC accumulates in brain-infiltrating leukocytes, EAE mice were analyzed with 18F-FAC PET, digital autoradiography, and immunohistochemistry, and deoxyribonucleoside salvage activity in brain-infiltrating leukocytes was analyzed ex vivo. Fingolimod-treated EAE mice were imaged with 18F-FAC PET to assess if this approach can monitor the effect of an immunomodulatory drug on brain-infiltrating leukocytes. PET scans of individuals injected with 2-chloro-2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosyl-adenine (18F-CFA), a PET radiotracer that measures deoxyribonucleoside salvage in humans, were analyzed to evaluate whether 18F-CFA crosses the human BBB. Results: 18F-FAC accumulates in the healthy mouse brain at levels similar to 18F-FAC in the blood (2.54 ± 0.2 and 3.04 ± 0.3 percentage injected dose per gram, respectively) indicating that 18F-FAC crosses the BBB. EAE mice accumulate 18F-FAC in the brain at 180% of the levels of control mice. Brain 18F-FAC accumulation localizes to periventricular regions with significant leukocyte infiltration, and deoxyribonucleoside salvage activity is present at similar levels in brain-infiltrating T and innate immune cells. These data suggest that 18F-FAC accumulates in brain-infiltrating leukocytes in this model. Fingolimod-treated EAE mice accumulate 18F-FAC in the brain at 37% lower levels than control-treated EAE mice, demonstrating that 18F-FAC PET can monitor therapeutic interventions in this mouse model. 18F-CFA accumulates in the human brain at 15% of blood levels (0.08 ± 0.01 and 0.54 ± 0.07 SUV, respectively), indicating that 18F-CFA does not cross the BBB in humans. Conclusion: 18F-FAC PET can visualize brain-infiltrating leukocytes in a mouse MS model and can monitor the response of these cells to an immunomodulatory drug. Translating this strategy into humans will require exploring additional radiotracers. Full Article
is Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 C-X-C motif chemokine receptor 4 (CXCR4) is expressed on the surface of various cell types involved in atherosclerosis, with a particularly rich receptor expression on macrophages and T cells. First pilot studies with 68Ga-pentixafor, a novel CXCR4-directed PET tracer, have shown promise to noninvasively image inflammation within atherosclerotic plaques. The aim of this retrospective study was to investigate the performance of 68Ga-pentixafor PET/CT for imaging atherosclerosis in comparison to 18F-FDG PET/CT. Methods: Ninety-two patients (37 women and 55 men; mean age, 62 ± 10 y) underwent 68Ga-pentixafor and 18F-FDG PET/CT for staging of oncologic diseases. In these subjects, lesions in the walls of large arteries were identified using morphologic and PET criteria for atherosclerosis (n = 652). Tracer uptake was measured and adjusted for vascular lumen (background) signal by calculation of target-to-background ratios (TBRs) by 2 investigators masked to the other PET scan. On a lesion-to-lesion and patient basis, the TBRs of both PET tracers were compared and additionally correlated to the degree of arterial calcification as quantified in CT. Results: On a lesion-to-lesion basis, 68Ga-pentixafor and 18F-FDG uptake showed a weak correlation (r = 0.28; P < 0.01). 68Ga-pentixafor PET identified more lesions (n = 290; TBR ≥ 1.6, P < 0.01) and demonstrated higher uptake than 18F-FDG PET (1.8 ± 0.5 vs. 1.4 ± 0.4; P < 0.01). The degree of plaque calcification correlated negatively with both 68Ga-pentixafor and 18F-FDG uptake (r = –0.38 vs. –0.31, both P < 0.00001). Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, with only a weak correlation between tracers. Further studies to elucidate the underlying biologic mechanisms and sources of CXCR4 positivity, and to investigate the clinical utility of chemokine receptor–directed imaging of atherosclerosis, are highly warranted. Full Article
is Intraindividual Comparison of 18F-PSMA-1007 with Renally Excreted PSMA Ligands for PSMA PET Imaging in Patients with Relapsed Prostate Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 18F-prostate-specific membrane antigen (PSMA)-1007 is excreted mainly through the liver. We benchmarked the performance of 18F-PSMA-1007 against 3 renally excreted PSMA tracers. Methods: Among 668 patients, we selected 27 in whom PET/CT results obtained with 68Ga-PSMA-11, 18F-DCFPyL (2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid), or 18F-JK-PSMA-7 (JK, Juelich-Koeln) were interpreted as equivocal or negative or as oligometastatic disease (PET-1). Within 3 wk, a second PET scan with 18F-PSMA-1007 was performed (PET-2). The confidence in the interpretation of PSMA-positive locoregional findings was scored on a 5-point scale, first in routine diagnostics (reader 1) and then by an independent second evaluation (reader 2). Discordant PSMA-positive skeletal findings were examined by contrast-enhanced MRI. Results: For both readers, 18F-PSMA-1007 facilitated the interpretability of 27 locoregional lesions. In PET-2, the clinical readout led to a significantly lower number of equivocal locoregional lesions (P = 0.024), and reader 2 reported a significantly higher rate of suspected lesions that were falsely interpreted as probably benign in PET-1 (P = 0.023). Exclusively in PET-2, we observed a total of 15 PSMA-positive spots in the bone marrow of 6 patients (22%). None of the 15 discordant spots had a morphologic correlate on the corresponding CT scan or on the subsequent MRI scan. Thus, 18F-PSMA-1007 exhibits a significantly higher rate of unspecific medullary spots (P = 0.0006). Conclusion: 18F-PSMA-1007 may increase confidence in interpreting small locoregional lesions adjacent to the urinary tract but may decrease the interpretability of skeletal lesions. Full Article
is Additional Local Therapy for Liver Metastases in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Systemic PSMA-Targeted Therapy By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 The aim of this study was to evaluate the efficacy of 177Lu-prostate-specific membrane antigen (PSMA)-617 (177Lu-PSMA) and selective internal radiation therapy (SIRT) for the treatment of liver metastases of castration-resistant prostate cancer. Methods: Safety and survival of patients with metastatic castration-resistant prostate cancer and liver metastases assigned to 177Lu-PSMA alone (n = 31) or in combination with SIRT (n = 5) were retrospectively analyzed. Additionally, a subgroup (n = 10) was analyzed using morphologic and molecular response criteria. Results: Median estimated survival was 5.7 mo for 177Lu-PSMA alone and 8.4 mo for combined sequential 177Lu-PSMA and SIRT. 177Lu-PSMA achieved discordant therapy responses with both regressive and progressive liver metastases in the same patient (best vs. worst responding metastases per patient: –35% vs. +63% diameter change; P < 0.05). SIRT was superior to 177Lu-PSMA for the treatment of liver metastases (0% vs. 56% progression). Conclusion: The combination of 177Lu-PSMA and SIRT is efficient and feasible for the treatment of advanced prostate cancer. 177Lu-PSMA alone seems to have limited response rates in the treatment of liver metastases. Full Article
is Evaluation of an Automated Module Synthesis and a Sterile Cold Kit-Based Preparation of 68Ga-PSMA-11 in Patients with Prostate Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 68Ga-labeled urea-based inhibitors of the prostate-specific membrane antigen (PSMA), such as 68Ga-PSMA-11, are promising small molecules for targeting prostate cancer (PCa). Although this radiopharmaceutical was produced mostly by means of manual synthesis and automated synthesis modules, a sterile cold kit was recently introduced. The aim of our study was to evaluate the image quality of 68Ga-PSMA-11 PET/CT (PSMA-PET) in a population of PCa patients after the injection of comparable activities of 68Ga-PSMA-11 obtained with the 2 different synthetic procedures. A secondary aim was to identify secondary factors that may have an impact on image quality and, thus, final interpretation. Methods: Two different groups of 100 consecutive PCa patients who underwent PSMA-PET were included in the study. The first group of patients was imaged with 68Ga-PSMA-11 obtained using synthesis modules, whereas the second group’s tracer activity was synthesized using a sterile cold kit. All PET images were independently reviewed by 2 nuclear medicine diagnosticians with at least 2 y of experience in PSMA-based imaging and unaware of the patients’ clinical history. The 2 reviewers independently rated the quality of each PSMA-PET scan using a 3-point Likert-type scale. In cases of discordance, the operators together reviewed the images and reached a consensus. Performance was evaluated on the basis of the expected biodistribution, lesion detection rate, and physiologic background uptake. Results: Overall, 104 of 200 (52%) PSMA-PET scans were positive for PCa-related findings. No significant differences in image quality between cold kits and synthesis modules were found (P = 0.13), although a higher proportion of images was rated as excellent by the observers for kits than for modules (45% vs. 34%). Furthermore, after image quality had been dichotomized as excellent or not excellent, multivariate regression analysis found several factors to be significantly associated with a not-excellent quality: an increase in patient age (+5 y: odds ratio [OR], 1.40; 95% confidence interval [CI], 1.12–1.75), an increase in patient weight (+5 kg: OR, 1.89; 95% CI, 1.53–2.32), an increase in 68Ga-PSMA-11 uptake time (+10 min: OR, 1.45; 95% CI, 1.08–1.96), and a decrease in injected activity (–10 MBq: OR, 1.28; 95% CI, 1.07–1.52). Conclusion: No significant differences were identified between the 2 groups of patients undergoing PSMA-PET; therefore, we were not able to ascertain any significant influences of tracer production methodology on final scan quality. However, increased patient age, increased patient weight, decreased injected activity, and increased 68Ga-PSMA-11 uptake time were significantly associated with an overall poorer image quality. Full Article
is Histologically Confirmed Diagnostic Efficacy of 18F-rhPSMA-7 PET for N-Staging of Patients with Primary High-Risk Prostate Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 18F-rhPSMA-7 (radiohybrid prostate-specific membrane antigen [PSMA]) is a novel ligand for PET imaging. Here, we present data from a retrospective analysis using PET/CT and PET/MRI examinations to investigate the efficacy of 18F-rhPSMA-7 PET for primary N-staging of patients with prostate cancer (PC) compared with morphologic imaging (CT or MRI) and validated by histopathology. Methods: Data from 58 patients with high-risk PC (according to the D’Amico criteria) who were staged with 18F-rhPSMA-7 PET/CT or PET/MRI at our institution between July 2017 and June 2018 were reviewed. The patients had a median prescan prostate-specific antigen value of 12.2 ng/mL (range, 1.2–81.6 ng/mL). The median injected activity of 18F-rhPSMA-7 was 327 MBq (range, 132–410 MBq), with a median uptake time of 79.5 min (range, 60–153 min). All patients underwent subsequent radical prostatectomy and extended pelvic lymph node dissection. The presence of lymph node metastases was determined by an experienced reader independently for both the PET and the morphologic datasets using a template-based analysis on a 5-point scale. Patient-level and template-based results were both compared with histopathologic findings. Results: Lymph node metastases were present in 18 patients (31.0%) and were located in 52 of 375 templates (13.9%). Receiver-operating-characteristic analyses showed 18F-rhPSMA-7 PET to perform significantly better than morphologic imaging on both patient-based and template-based analyses (areas under curve, 0.858 vs. 0.649 [P = 0.012] and 0.765 vs. 0.589 [P < 0.001], respectively). On patient-based analyses, the sensitivity, specificity, and accuracy of 18F-rhPSMA-7 PET were 72.2%, 92.5%, and 86.2%, respectively, and those of morphologic imaging were 50.0%, 72.5%, and 65.5%, respectively. On template-based analyses, the sensitivity, specificity, and accuracy of 18F-rhPSMA-7 PET were 53.8%, 96.9%, and 90.9%, respectively, and those of morphologic imaging were 9.6%, 95.0%, and 83.2%, respectively. Conclusion: 18F-rhPSMA-7 PET is superior to morphologic imaging for N-staging of high-risk primary PC. The efficacy of 18F-rhPSMA-7 is similar to published data for 68Ga-PSMA-11. Full Article
is Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, 18F-rhPSMA-7, in Patients with Prostate Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Radiohybrid PSMA (rhPSMA) ligands, a new class of theranostic prostate-specific membrane antigen (PSMA)–targeting agents, feature fast 18F synthesis and utility for labeling with radiometals. Here, we assessed the biodistribution and image quality of 18F-rhPSMA-7 to determine the best imaging time point for patients with prostate cancer. Methods: In total, 202 prostate cancer patients who underwent a clinically indicated 18F-rhPSMA-7 PET/CT were retrospectively analyzed, and 12 groups based on the administered activity and uptake time of PET scanning were created: 3 administered activities (low, 222–296 MBq; moderate, 297–370 MBq; and high, 371–444 MBq) and 4 uptake time points (short, 50–70 min; intermediate, 71–90 min; long, 91–110 min; and extra long, ≥111 min). For quantitative analyses, SUVmean and organ- or tumor-to-background ratio were determined for background, healthy organs, and 3 representative tumor lesions. Qualitative analyses assessed overall image quality, nonspecific blood-pool activity, and background uptake in bone or marrow using 3- or 4-point scales. Results: In quantitative analyses, SUVmean showed a significant decrease in the blood pool and lungs and an increase in the kidneys, bladder, and bones as the uptake time increased. SUVmean showed a trend to increase in the blood pool and bones as the administered activity increased. However, no significant differences were found in 377 tumor lesions with respect to the administered activity or uptake time. In qualitative analyses, the overall image quality was stable along with the uptake time, but the proportion rated to have good image quality decreased as the administered activity increased. All other qualitative image parameters showed no significant differences for the administered activities, but they showed significant trends with increasing uptake time: less nonspecific blood activity, more frequent background uptake in the bone marrow, and increased negative impact on clinical decision making. Conclusion: The biodistribution of 18F-rhPSMA-7 was similar to that of established PSMA ligands, and tumor uptake of 18F-rhPSMA-7 was stable across the administered activities and uptake times. An early imaging time point (50–70 min) is recommended for 18F-rhPSMA-7 PET/CT to achieve the highest overall image quality. Full Article
is Patients Resistant Against PSMA-Targeting {alpha}-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair-Associated Genes By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Prostate-specific membrane antigen (PSMA)–targeting α-radiation therapy (TAT) is an emerging treatment modality for metastatic castration-resistant prostate cancer. There is a subgroup of patients with poor response despite sufficient expression of PSMA in their tumors. The aim of this work was to characterize PSMA-TAT–nonresponding lesions by targeted next-generation sequencing. Methods: Of 60 patients treated with 225Ac-PSMA-617, we identified 10 patients who presented with a poor response despite sufficient tumor uptake in PSMA PET/CT. We were able to perform CT-guided biopsies with histologic validation of the nonresponding lesions in 7 of these nonresponding patients. Specimens were analyzed by targeted next-generation sequencing interrogating 37 DNA damage-repair–associated genes. Results: In the 7 tumor samples analyzed, we found a total of 15 whole-gene deletions, deleterious or presumably deleterious mutations affecting TP53 (n = 3), CHEK2 (n = 2), ATM (n = 2), and BRCA1, BRCA2, PALB2, MSH2, MSH6, NBN, FANCB, and PMS1 (n = 1 each). The average number of deleterious or presumably deleterious mutations was 2.2 (range, 0–6) per patient. In addition, several variants of unknown significance in ATM, BRCA1, MSH2, SLX4, ERCC, and various FANC genes were detected. Conclusion: Patients with resistance to PSMA-TAT despite PSMA positivity frequently harbor mutations in DNA damage-repair and checkpoint genes. Although the causal role of these alterations in the patient outcome remains to be determined, our findings encourage future studies combining PSMA-TAT and DNA damage-repair–targeting agents such as poly(ADP-ribose)-polymerase inhibitors. Full Article
is Assessing Radiographic Response to 223Ra with an Automated Bone Scan Index in Metastatic Castration-Resistant Prostate Cancer Patients By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 For effective clinical management of patients being treated with 223Ra, there is a need for radiographic response biomarkers to minimize disease progression and to stratify patients for subsequent treatment options. The objective of this study was to evaluate an automated bone scan index (aBSI) as a quantitative assessment of bone scans for radiographic response in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: In a multicenter retrospective study, bone scans from patients with mCRPC treated with monthly injections of 223Ra were collected from 7 hospitals in Sweden. Patients with available bone scans before treatment with 223Ra and at treatment discontinuation were eligible for the study. The aBSI was generated at baseline and at treatment discontinuation. The Spearman rank correlation was used to correlate aBSI with the baseline covariates: alkaline phosphatase (ALP) and prostate-specific antigen (PSA). The Cox proportional-hazards model and Kaplan–Meier curve were used to evaluate the association of covariates at baseline and their change at treatment discontinuation with overall survival (OS). The concordance index (C-index) was used to evaluate the discriminating strength of covariates in predicting OS. Results: Bone scan images at baseline were available from 156 patients, and 67 patients had both a baseline and a treatment discontinuation bone scan (median, 5 doses; interquartile range, 3–6 doses). Baseline aBSI (median, 4.5; interquartile range, 2.4–6.5) was moderately correlated with ALP (r = 0.60, P < 0.0001) and with PSA (r = 0.38, P = 0.003). Among baseline covariates, aBSI (P = 0.01) and ALP (P = 0.001) were significantly associated with OS, whereas PSA values were not (P = 0.059). After treatment discontinuation, 36% (24/67), 80% (54/67), and 13% (9/67) of patients demonstrated a decline in aBSI, ALP, and PSA, respectively. As a continuous variable, the relative change in aBSI after treatment, compared with baseline, was significantly associated with OS (P < 0.0001), with a C-index of 0.67. Median OS in patients with both aBSI and ALP decline (median, 134 wk) was significantly longer than in patients with ALP decline only (median, 77 wk; P = 0.029). Conclusion: Both aBSI at baseline and its change at treatment discontinuation were significant parameters associated with OS. The study warrants prospective validation of aBSI as a quantitative imaging response biomarker to predict OS in patients with mCRPC treated with 223Ra. Full Article
is Breast Cancer 18F-ISO-1 Uptake as a Marker of Proliferation Status By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 The 2 receptor is a potential in vivo target for measuring proliferative status in cancer. The feasibility of using N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-18F-fluoroethoxy)-5-methylbenzamide (18F-ISO-1) to image solid tumors in lymphoma, breast cancer, and head and neck cancer has been previously established. Here, we report the results of the first dedicated clinical trial of 18F-ISO-1 in women with primary breast cancer. Our study objective was to determine whether 18F-ISO-1 PET could provide an in vivo measure of tumor proliferative status, and we hypothesized that uptake would correlate with a tissue-based assay of proliferation, namely Ki-67 expression. Methods: Twenty-eight women with 29 primary invasive breast cancers were prospectively enrolled in a clinical trial (NCT 02284919) between March 2015 and January 2017. Each received an injection of 278–527 MBq of 18F-ISO-1 and then underwent PET/CT imaging of the breasts 50–55 min later. In vivo uptake of 18F-ISO-1 was quantitated by SUVmax and distribution volume ratios and was compared with ex vivo immunohistochemistry for Ki-67. Wilcoxon rank-sum tests assessed uptake differences across Ki-67 thresholds, and Spearman correlation tested associations between uptake and Ki-67. Results: Tumor SUVmax (median, 2.0 g/mL; range, 1.3–3.3 g/mL), partial-volume–corrected SUVmax, and SUV ratios were tested against Ki-67. Tumors stratified into the high–Ki-67 (≥20%) group had SUVmax greater than the low–Ki-67 (<20%) group (P = 0.02). SUVmax exhibited a positive correlation with Ki-67 across all breast cancer subtypes ( = 0.46, P = 0.01, n = 29). Partial-volume–corrected SUVmax was positively correlated with Ki-67 for invasive ductal carcinoma ( = 0.51, P = 0.02, n = 21). Tumor–to–normal-tissue ratios and tumor distribution volume ratio did not correlate with Ki-67 (P > 0.05). Conclusion: 18F-ISO-1 uptake in breast cancer modestly correlates with an in vitro assay of proliferation. Full Article
is Molecular Imaging in the Era of Precision Medicine: Paraganglioma as a Template for Understanding Multiple Levels of Analysis By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
is Diagnostic Evaluation of Pulmonary Embolism During the COVID-19 Pandemic By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
is Monitoring Radioisotope Production and Transport By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
is DOE Accepting Isotope Production R&D Applications By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
is The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832. We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases. Full Article
is Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly. Full Article
is Embryo integrity regulates maternal proteostasis and stress resilience [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 The proteostasis network is regulated by transcellular communication to promote health and fitness in metazoans. In Caenorhabditis elegans, signals from the germline initiate the decline of proteostasis and repression of cell stress responses at reproductive maturity, indicating that commitment to reproduction is detrimental to somatic health. Here we show that proteostasis and stress resilience are also regulated by embryo-to-mother communication in reproductive adults. To identify genes that act directly in the reproductive system to regulate somatic proteostasis, we performed a tissue targeted genetic screen for germline modifiers of polyglutamine aggregation in muscle cells. We found that inhibiting the formation of the extracellular vitelline layer of the fertilized embryo inside the uterus suppresses aggregation, improves stress resilience in an HSF-1-dependent manner, and restores the heat-shock response in the somatic tissues of the parent. This pathway relies on DAF-16/FOXO activation in vulval tissues to maintain stress resilience in the mother, suggesting that the integrity of the embryo is monitored by the vulva to detect damage and initiate an organismal protective response. Our findings reveal a previously undescribed transcellular pathway that links the integrity of the developing progeny to proteostasis regulation in the parent. Full Article
is Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. Full Article
is Targeted chemotherapy overcomes drug resistance in melanoma [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 The emergence of drug resistance is a major obstacle for the success of targeted therapy in melanoma. Additionally, conventional chemotherapy has not been effective as drug-resistant cells escape lethal DNA damage effects by inducing growth arrest commonly referred to as cellular dormancy. We present a therapeutic strategy termed "targeted chemotherapy" by depleting protein phosphatase 2A (PP2A) or its inhibition using a small molecule inhibitor (1,10-phenanthroline-5,6-dione [phendione]) in drug-resistant melanoma. Targeted chemotherapy induces the DNA damage response without causing DNA breaks or allowing cellular dormancy. Phendione treatment reduces tumor growth of BRAFV600E-driven melanoma patient-derived xenografts (PDX) and diminishes growth of NRASQ61R-driven melanoma, a cancer with no effective therapy. Remarkably, phendione treatment inhibits the acquisition of resistance to BRAF inhibition in BRAFV600E PDX highlighting its effectiveness in combating the advent of drug resistance. Full Article
is Getting started: altering promoter choice as a mechanism for cell type differentiation [Outlook] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 In this issue of Genes & Development, Lu and colleagues (pp. 663–677) have discovered a key new mechanism of alternative promoter choice that is involved in differentiation of spermatocytes. Promoter choice has strong potential as mechanism for differentiation of many different cell types. Full Article
is The Most Important Thing We Give to People Is Hope: Overcoming Stigma in Diabetes and Obesity By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Editor’s Note: This article is adapted from the address Ms. Valentine delivered as the recipient of the American Diabetes Association’s (ADA’s) Outstanding Educator in Diabetes Award for 2019. She delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. A webcast of this speech is available for viewing at the ADA website (professional.diabetes.org/webcast/outstanding-educator-diabetes-award-lecture%E2%80%94-most-important-thing-we-give-people-hope). Full Article
is Impact of a Multidisciplinary, Endocrinologist-Led Shared Medical Appointment Model on Diabetes-Related Outcomes in an Underserved Population By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 A multidisciplinary endocrinologist-led shared medical appointment (SMA) model showed statistically significant reductions in A1C from baseline over 3 years that were not significantly different from appointments with endocrinologists or primary care providers alone within a resource-poor population. Similarly, the SMA model achieved clinical outcomes on par with endocrinologist-only visits with the added benefit of improving endocrine provider productivity and specialty access for patients. Greater patient engagement with the SMA model was associated with significantly lower A1C. Full Article
is Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model By openres.ersjournals.com Published On :: 2020-05-04T00:29:32-07:00 Background and objectives The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB. Methods In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance. Results We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively. Conclusion Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community. Full Article
is Ivacaftor decreases monocyte sensitivity to interferon-{gamma} in people with cystic fibrosis By openres.ersjournals.com Published On :: 2020-04-19T07:30:12-07:00 Management of cystic fibrosis has been revolutionised by the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators. These compounds treat the underlying molecular basis of the disease by increasing activity of defective CFTR channels, which improves many clinical parameters and enhances patient quality of life [1]. Next-generation modulators, also known as triple combination therapy, promise to be highly efficacious in up to 90% of patients [2] and will likely dramatically change the landscape of cystic fibrosis disease. Studies examining individuals before and after initiation of CFTR modulators have revealed novel functions of CFTR and shown that CFTR modulators do not reverse all disease manifestations [3–5]. Thus, knowledge of the post-modulator cystic fibrosis disease state is crucial for understanding what continued therapies will be needed for people with cystic fibrosis and what new challenges may arise. Full Article
is Prognostic impact of pre-existing interstitial lung disease in non-HIV patients with Pneumocystis pneumonia By openres.ersjournals.com Published On :: 2020-05-04T00:29:32-07:00 Background The increasing incidence of life-threatening Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients is a global concern. Yet, no reports have examined the prognostic significance of pre-existing interstitial lung disease (ILD) in non-HIV PCP. Methods We retrospectively reviewed the medical records of non-HIV PCP patients with (ILD group) or without (non-ILD group) pre-existing ILD. The clinical features and outcomes of the ILD group were compared with those of the non-ILD group. Cox regression models were constructed to identify prognostic factors. Results 74 patients were enrolled in this study. The 90-day mortality was significantly higher in the ILD group than in the non-ILD group (62.5% versus 19.0%, p<0.001). In the ILD group, patients with a higher percentage of bronchoalveolar lavage fluid neutrophils had worse outcomes compared to those having a lower percentage (p=0.026). Multivariate analyses revealed that pre-existing ILD (p=0.002) and low levels of serum albumin (p=0.009) were independent risk factors for 90-day mortality. Serum levels of β-d-glucan were significantly reduced after treatment of PCP in both groups, whereas levels of Krebs von den Lungen-6 (KL-6) significantly increased in the ILD group. In the ILD group, the 90-day mortality of patients with increasing KL-6 levels after treatment was significantly higher than those with decreasing levels (78.9% versus 0%, p=0.019). Conclusion In non-HIV PCP patients, pre-existing ILD is associated with a poorer prognosis. Prophylaxis for PCP is needed in patients with pre-existing ILD under immunosuppression. Full Article
is Prevalence and incidence of, and risk factors for chronic cough in the adult population: the Rotterdam Study By openres.ersjournals.com Published On :: 2020-04-19T07:30:12-07:00 Chronic cough is a common complaint in the general population but there are no precise data on the incidence of, and prospectively examined risk factors for chronic cough in a population-based setting. Therefore, we investigated the period prevalence, incidence and risk factors for chronic cough in adult subjects. In a prospective population-based cohort study among subjects aged ≥45 years, data on chronic cough were collected on two separate occasions using a standardised questionnaire. Chronic cough was defined as daily coughing for at least 3 months duration during the preceding 2 years. Potential risk factors were gathered by interview, physical examination and several investigations. Of the 9824 participants in this study, 1073 (10.9%) subjects had chronic cough at baseline. The prevalence of chronic cough increased with age and peaked in the eighth decade. In subjects aged <70 years, chronic cough was more common in women. During an average follow-up of 6 years, 439 incident cases of chronic cough occurred with an overall incidence rate of 11.6 per 1000 person-years (95% CI 10.6–12.8). In current smokers, the incidence of chronic cough was higher in men. In the multivariable analysis, current smoking, gastro-oesophageal reflux disease (GORD), asthma and COPD were identified as risk factors for chronic cough. Chronic cough is common among adults and highly prevalent in the older population. Current smoking, GORD, asthma and COPD are independent risk factors for chronic cough. Individuals at risk of developing chronic cough may benefit from smoking cessation and control of the underlying disease. Full Article
is Low adherence to inhaled corticosteroids/long-acting {beta}2-agonists and biologic treatment in severe asthmatics By openres.ersjournals.com Published On :: 2020-04-27T00:30:10-07:00 Eligibility criteria for a biologic treatment for severe asthma include poor disease control despite a full medication plan according to Global Initiative for Asthma steps 4–5 [1]. Adherence to inhaled therapy should be verified as part of that prescription requirement [2]. In fact, it has been demonstrated that poor adherence is a major cause of uncontrolled asthma, regardless of its severity [3]. Furthermore, biologics do not exert a disease-modifying effect [4]; in contrast to allergen immunotherapy, which is able to permanently modulate the way the immune system reacts to allergens beyond the immunotherapy treatment course [5], biologic therapy withdrawal usually leads to asthma relapse [4]. Thus, a low adherence rate to inhaled treatment in patients undergoing biologic therapy raises some issues related to sustainability. Full Article
is The Transcriptional Aftermath in Two Independently Formed Hybrids of the Opportunistic Pathogen Candida orthopsilosis By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT Interspecific hybridization can drive evolutionary adaptation to novel environments. The Saccharomycotina clade of budding yeasts includes many hybrid lineages, and hybridization has been proposed as a source for new pathogenic species. Candida orthopsilosis is an emerging opportunistic pathogen for which most clinical isolates are hybrids, each derived from one of at least four independent crosses between the same two parental lineages. To gain insight into the transcriptomic aftermath of hybridization in these pathogens, we analyzed allele-specific gene expression in two independently formed hybrid strains and in a homozygous strain representative of one parental lineage. Our results show that the effect of hybridization on overall gene expression is rather limited, affecting ~4% of the genes studied. However, we identified a larger effect in terms of imbalanced allelic expression, affecting ~9.5% of the heterozygous genes in the hybrids. This effect was larger in the hybrid with more extensive loss of heterozygosity, which may indicate a tendency to avoid loss of heterozygosity in these genes. Consistently, the number of shared genes with allele-specific expression in the two independently formed hybrids was higher than random expectation, suggesting selective retention. Some of the imbalanced genes have functions related to pathogenicity, including zinc transport and superoxide dismutase activities. While it remains unclear whether the observed imbalanced genes play a role in virulence, our results suggest that differences in allele-specific expression may add an additional layer of phenotypic plasticity to traits related to virulence in C. orthopsilosis hybrids. IMPORTANCE How new pathogens emerge is an important question that remains largely unanswered. Some emerging yeast pathogens are hybrids originated through the crossing of two different species, but how hybridization contributes to higher virulence is unclear. Here, we show that hybrids selectively retain gene regulation plasticity inherited from the two parents and that this plasticity affects genes involved in virulence. Full Article
is Tetanus Toxin cis-Loop Contributes to Light-Chain Translocation By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT The clostridial neurotoxins (CNTs) comprise tetanus toxin (TT) and botulinum neurotoxin (BoNT [BT]) serotypes (A to G and X) and several recently identified CNT-like proteins, including BT/En and the mosquito BoNT-like toxin Pmp1. CNTs are produced as single proteins cleaved to a light chain (LC) and a heavy chain (HC) connected by an interchain disulfide bond. LC is a zinc metalloprotease (cleaving soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]), while HC contains an N-terminal translocation domain (HCN) and a C-terminal receptor binding domain (HCC). HCN-mediated LC translocation is the least understood function of CNT action. Here, β-lactamase (βlac) was used as a reporter in discovery-based live-cell assays to characterize TT-mediated LC translocation. Directed mutagenesis identified a role for a charged loop (767DKE769) connecting α15 and α16 (cis-loop) within HCN in LC translocation; aliphatic substitution inhibited LC translocation but not other toxin functions such as cell binding, intracellular trafficking, or HCN-mediated pore formation. K768 was conserved among the CNTs. In molecular simulations of the HCN with a membrane, the cis-loop did not bind with the cell membrane. Taken together, the results of these studies implicate the cis-loop in LC translocation, independently of pore formation. IMPORTANCE How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation. Full Article
is Lack of Evidence for Microbiota in the Placental and Fetal Tissues of Rhesus Macaques By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT The prevailing paradigm in obstetrics has been the sterile womb hypothesis. However, some are asserting that the placenta, intra-amniotic environment, and fetus harbor microbial communities. The objective of this study was to determine whether the fetal and placental tissues of rhesus macaques harbor bacterial communities. Fetal, placental, and uterine wall samples were obtained from cesarean deliveries without labor (~130/166 days gestation). The presence of bacteria in the fetal intestine and placenta was investigated through culture. The bacterial burden and profiles of the placenta, umbilical cord, and fetal brain, heart, liver, and colon were determined through quantitative real-time PCR and DNA sequencing. These data were compared with those of the uterine wall as well as to negative and positive technical controls. Bacterial cultures of fetal and placental tissues yielded only a single colony of Cutibacterium acnes. This bacterium was detected at a low relative abundance (0.02%) in the 16S rRNA gene profile of the villous tree sample from which it was cultured, yet it was also identified in 12/29 background technical controls. The bacterial burden and profiles of fetal and placental tissues did not exceed or differ from those of background technical controls. By contrast, the bacterial burden and profiles of positive controls exceeded and differed from those of background controls. Among the macaque samples, distinct microbial signals were limited to the uterine wall. Therefore, using multiple modes of microbiologic inquiry, there was not consistent evidence of bacterial communities in the fetal and placental tissues of rhesus macaques. IMPORTANCE Microbial invasion of the amniotic cavity (i.e., intra-amniotic infection) has been causally linked to pregnancy complications, especially preterm birth. Therefore, if the placenta and the fetus are typically populated by low-biomass microbial communities, current understanding of the role of microbes in reproduction and pregnancy outcomes will need to be fundamentally reconsidered. Could these communities be of benefit by competitively excluding potential pathogens or priming the fetal immune system for the microbial bombardment it will experience upon delivery? If so, what properties (e.g., microbial load and community membership) of these microbial communities preclude versus promote intra-amniotic infection? Given the ramifications of the in utero colonization hypothesis, critical evaluation is required. In this study, using multiple modes of microbiologic inquiry (i.e., culture, quantitative real-time PCR [qPCR], and DNA sequencing) and controlling for potential background DNA contamination, we did not find consistent evidence for microbial communities in the placental and fetal tissues of rhesus macaques. Full Article