at

Gas cutting borehole drilling apparatus

A drilling apparatus for drilling boreholes in an underground formation includes a tool body that can be positioned in a borehole where drilling is to take place. The apparatus further includes a gas cutting torch having a nozzle, a supply of a cutting gas connected to the gas cutting torch. In some embodiments, the gas cutting torch and supply of cutting gas may be connected by an umbilical link. The tool body may be advanced through the borehole as drilling takes place. In some embodiments, the tool body may be advanced via a tractor device that forms part of the tool body or attached to the tool body.




at

Methods and systems for improved drilling operations using real-time and historical drilling data

Methods and systems are described for improved drilling operations through the use of real-time drilling data to predict bit wear, lithology, pore pressure, a rotating friction coefficient, permeability, and cost in real-time and to adjust drilling parameters in real-time based on the predictions. The real-time lithology prediction is made by processing the real-time drilling data through a multilayer neural network. The real-time bit wear prediction is made by using the real-time drilling data to predict a bit efficiency factor and to detect changes in the bit efficiency factor over time. These predictions may be used to adjust drilling parameters in the drilling operation in real-time, subject to override by the operator. The methods and systems may also include determining various downhole hydraulics parameters and a rotary friction factor. Historical data may be used in combination with real-time data to provide expert system assistance and to identify safety concerns.




at

Directional drilling attitude hold controller

An attitude hold controller method includes receiving at a navigable apparatus a demand inclination and a demand azimuth with respect to a global coordinate system and determining at the navigable apparatus a demand attitude vector according to the received demand inclination and the demand azimuth. Determining at the navigable apparatus a current navigable apparatus attitude vector. Evaluating a control law using the current navigable apparatus vector and the navigable apparatus demand attitude to derive a control law tool face, converting the control law tool face to an equivalent tool face, and applying the equivalent tool face with the navigable apparatus to control the navigable apparatus attitude.




at

Method and apparatus for opening threaded joints of drilling equipment

The invention relates to a method and apparatus for opening threaded joints of drilling equipment (6) by striking the drilling equipment (6) with the percussion device of a rock drilling rig (1) and by measuring vibration originating from the drilling equipment (6) during striking. In addition to vibration, measuring means (9) measure a parameter defining at least one additional condition, on the basis of which the decision to stop striking is made.




at

Wear indicators for drilling equipment

Described herein is a wear indicator (100) for use in a drill bit or a core head. The wear indicator (100) comprises an elongate element that forms part of the drill bit. The elongate element has a plurality of numbers (110, 120, 130, 140, 150, 160, 170, 180) formed along its length, each number (110, 120, 130, 140, 150, 160, 170, 180) being formed as a void and corresponds to a level of wear in accordance with the IADC dull grading system. As the drill becomes worn, the wear indicator (100) wears at the same rate to reveal one of the numbers (110, 120, 130, 140, 150, 160, 170, 180). The numbers range from “1” to “8” where the number “1” illustrates the least wear and the number “8” indicates the most wear. When unworn, none of the numbers are visible.




at

Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties

A drill bit assembly for measuring reservoir formation properties comprises a bit head and a pin body, and an electrically insulated gap joint between two conductive parts of the drill bit assembly. The bit head has a cutting end and an opposite connecting end with an engagement section. The pin body comprises a connecting end with an engagement section. The pin connecting end is connected to the bit head connecting end such that the engagement sections overlap. The electrically insulating gap joint can fill a gap between the bit head and pin body engagement sections such that the bit head and pin body are mechanically connected together at the connecting ends but electrically separated. Alternatively or additionally, the pin body can have two pieces which are separated by an electrically insulating gap joint. An electrical conductor is electrically connected at a first end to the bit head and is communicable at a second end with an alternating current signal to transmit an alternating current into the bit head, thereby inducing an electric current into a reservoir formation adjacent the bit head. Electronic equipment includes measurement circuitry configured to determine the alternating current at the bit head, the alternating current being inversely proportional to a bit resistivity of the formation.




at

Vibration detection in a drill string based on multi-positioned sensors

In some example embodiments, a system includes a drill string having a drill bit. The drill string extends through at least part of a well bore. The system also includes a first vibrational sensor, positioned on the drill bit to measure, at a first location on the drill string, an amplitude of one or more of an axial vibration and a lateral vibration. The system also includes a second vibrational sensor, positioned above the drill bit and on the drill string. The second vibration sensor is to measure, at a second location on the drill string, one or more of an axial vibration and a lateral vibration. The system includes a processor unit to determine a type of vibration based on a comparison of the amplitude at the first location to the amplitude at the second location, wherein the type of vibration is at least one of bit whirl of the drill bit and a while of a bottom hole assembly that is part of the drill string.




at

Reverse circulation apparatus and methods of using same

In one aspect, an apparatus for drilling a wellbore into an earth formation is disclosed, which apparatus, according to one embodiment, may include a drill string configured to be conveyed into a wellbore, wherein an annulus is formed between the drill string and a wellbore wall, a first flow device configured to circulate a first fluid from an annulus to a bore of the drill string, and a second flow device positioned downhole of the first flow device, the second flow device configured to circulate a second fluid from the bore of the drill string to the annulus.




at

Drilling fluid that when mixed with a cement composition enhances physical properties of the cement composition

According to an embodiment, a drilling fluid comprises: water and a set accelerator, wherein the drilling fluid has a 10 minute gel strength of less than 20 lb*ft/100 sq ft, wherein the drilling fluid has a density in the range of about 9 to about 14 pounds per gallon, wherein the drilling fluid remains pourable for at least 5 days, and wherein when at least one part of the drilling fluid mixes with three parts of a cement composition consisting of water and cement, the drilling fluid cement composition mixture develops a compressive strength of at least 1,200 psi. According to another embodiment, a method of using the drilling fluid comprises the steps of: introducing the drilling fluid into at least a portion of a subterranean formation, wherein at least a portion of the drilling fluid is capable of mixing with a cement composition.




at

Shaped cutting elements for earth-boring tools, earth-boring tools including such cutting elements, and related methods

A cutting element for an earth-boring tool. The cutting element comprises a substrate base, and a volume of polycrystalline diamond material on an end of the substrate base. The volume of polycrystalline diamond material comprises a generally conical surface, an apex centered about a longitudinal axis extending through a center of the substrate base, a flat cutting surface extending from a first point at least substantially proximate the apex to a second point on the cutting element more proximate a lateral side surface of the substrate base. Another cutting element is disclosed, as are a method of manufacturing and a method of using such cutting elements.




at

Dust collecting attachment

It is an object of the invention to provide a technique that contributes to rationalization of dust collection, in a dust collecting attachment for use on a power tool. Dust collecting attachments 250, 350 are used on a power tool 201 having a tool body 203, a tool bit 209 which can be coupled to a front end region of the tool body 203, and an auxiliary handle 208 attached to the tool body 203. The dust collecting attachments 250, 350 include dust collecting members 251, 351, respectively, which can be attached to the auxiliary handle 208 in such a manner as to surround the front end region of the tool body 203 around a longitudinal axis of the front end region in order to collect dust generated during operation by the power tool 201, and a connecting hose 273 for connecting the dust collecting members 251, 351 to a dust collector.




at

Active compensation for mud telemetry modulator and turbine

An arrangement having a piston configured to move along an axial pathway a rotating seal configured to seal an inside environment from an outside environment, the rotating seal configured to be acted upon by a pressure exerted from the piston, a differential pressure sensor measuring a pressure difference between a first fluid from the outside environment and a second fluid on the inside environment, a motor connected to the piston, the motor configured to actuate the piston to a position along an axial pathway and an electronic feedback control system connected to the motor, the electronic feedback system configured to interface with the differential pressure sensor and maintain a pressure generated by the piston onto the rotating seal to a desired pressure.




at

Systems and methods for processing drilling data

Systems and methods for processing drilling data. One embodiment provides a method comprising building user-designed contexts (which can be designated as built-in contexts) for drilling structures. The method also comprises orchestrating module execution within the user-designed contexts. The method further comprises providing data from the user-designed contexts to such modules via an interface. Some methods include monitoring drilling data to detect events (for instance departure from a pseudolog) and orchestrating module execution responsive thereto. The method can include exposing the orchestration of the execution of the module instances as a service. Moreover, some embodiments provide extra-contextual application program interfaces. In addition, or in the alternative, some embodiments schedule the orchestration of the modules based on declarations related to the inputs and/or outputs of the modules.




at

Structure for gunpowder charge in combined fracturing perforation device

This invention provides a structure for gunpowder charge for charging gunpowders of different rates in combined fracturing perforation devices. The structure for gunpowder charge is convenient to mount and transport. In one embodiment, said structure for gunpowder charge comprises an inner gunpowder box located between adjacent perforating charges in the charge frame of a perforation device, and an outer gunpowder box attached to the outer wall of the charge frame, wherein said outer gunpowder box comprises one or two box units (2 or 4) with at least one claw at the inner side of said box unit, said claw can be locked into a groove or installation hole of the charge frame, and wherein said inner gunpowder box and said outer gunpowder box are charged with gunpowders of different burning rates.




at

Drilling speed and depth computation for downhole tools

A method for managing a drilling operation, including generating, by a first sensor and a second sensor of a bottom hole assembly (BHA), a first time based data log and a second time based data log, respectively, representing a borehole parameter along a drilling trajectory, determining, by a computer processor of the BHA and during the drilling operation, a time shift by comparing the first time based data log and the second time based data log, where offsetting the first and second time based data logs by the time shift maximizes a correlation factor of the first and second time based data logs, and determining, within a pre-determined time period from generating the first and second time based data logs, a drilling speed based on the time shift and a pre-determined distance between the first sensor and the second sensor.




at

Apparatus and method for automated drilling of a borehole in a subsurface formation

Apparatus and method for automated drilling of a borehole in a subsurface formation. In one embodiment, a method includes selecting at least one control variable. A drilling performance objective having a value that is influenced by drilling of the borehole using the at least one control variable is defined. A first interval of the borehole is drilled maintaining the at least one control variable at a first value. A second interval of the borehole is drilled maintaining the at least one control variable at a second value. A third interval of the borehole is drilled maintaining the at least one control variable at a third value. The third value is selected based on a comparison of the values of the drilling performance objective while drilling the first interval and second interval to a predetermined optimal value of the drilling performance objective.




at

Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor

Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including at least a portion having aluminum carbide disposed interstitially between bonded-together diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of bonded-together diamond grains defining a plurality of interstitial regions. The PCD table further includes aluminum carbide disposed in at least a portion of the plurality of interstitial regions.




at

Method and system for delineating a second wellbore from a first wellbore

Disclosed herein is a method of delineating a second wellbore from a first wellbore. The method includes, emitting acoustic waves from a tool in the first wellbore, receiving acoustic waves at the tool reflected from the second wellbore, and determining orientation and distance of at least a portion of the second wellbore relative to the tool.




at

Method and system for monitoring a well for unwanted formation fluid influx

A method of monitoring a well for unwanted formation fluid influx is disclosed. Measurements of well outflow are acquired during a period in which drilling operations are performed for the well. Occurrences of stagnant flow events during the period are determined. An outflow signature is generated from the well outflow measurements for each stagnant flow event. The outflow signatures are displayed sequentially in time of occurrence. Each outflow signature is analyzed for an anomaly.




at

Method and apparatus for controlling rock drilling

Method and apparatus for controlling rock drilling with a percussion device belonging to a rock drill to deliver stress waves to rock through a tool by pushing the tool against the rock by means of a feed motor and rotating simultaneously the tool by means of a rotation motor, whereby the maximum feed force is determined, pressure medium is supplied to the feed motor and to the rotation motor and the feed force is controlled according to the drilling conditions. The feed force is controlled on the basis of the feed speed and the rotation torque. The apparatus has a load control valve which controls the feed.




at

Nozzles including secondary passages, drill assemblies including same and associated methods

Nozzles for drilling tools, such as rotary-type drag bits and roller cone bits, a drilling tool and drilling assembly comprising nozzles, and methods of conveying drilling fluid through a nozzle for use in drilling subterranean formations are provided. A nozzle may include a substantially cylindrical nozzle body having an axis and an inlet port with a primary passage extending therethrough, and at least one secondary passage that diverges from the primary passage at an exit port.




at

Vibrational tool with rotating engagement surfaces and method

A vibrational tool and method is disclosed, which may be utilized to assist in lowering a drill string into a wellbore. In one embodiment, a reciprocating member and a symmetrical rotating member are mounted within a vibrational tool housing. The reciprocating member is urged in one embodiment by a spring assembly toward the rotating member whereby engagement surfaces on the reciprocating member and rotating member encounter each other. As the rotating member rotates, variable surfaces on the engagement surface cause the reciprocating member to reciprocate as the variable surfaces follow or cam with respect to each other during rotation. The resistance to rotation by engagement surfaces and spring assembly, and mass of the rotating member, result in vibrational forces, when drilling fluid flows through the vibration tool housing.




at

Tools for use in subterranean boreholes having expandable members and related methods

Expandable apparatus for use in subterranean boreholes include at least one member configured to move between a retracted position and an extended position. A latching member disposed in the tubular body may selectively retain the at least one member in the retracted position. Methods of operating an expandable apparatus include securing at least one member of the expandable apparatus in a retracted position by engaging an inner wall of a tubular body with at least one latch member disposed in at least one aperture formed in a latch sleeve.




at

Tools for use in subterranean boreholes having expandable members and related methods

Expandable apparatus for use in subterranean boreholes include at least one member configured to move between a retracted position and an extended position. Components of the expandable apparatus may include at least one surface for removing debris proximate to the tubular body. Components of the expandable apparatus may be configured to enable the expandable apparatus to increase a diameter of a subterranean borehole by greater than twenty percent. Components of the expandable apparatus may be configured to restrict fluid flow to nozzle assemblies. The expandable apparatus may include a protect sleeve having a push sleeve disposed therein. Methods of operating an expandable apparatus may include removing debris with a surface of the expandable apparatus. Methods of operating an expandable apparatus may also include selectively flowing fluid to nozzle assemblies.




at

Eye tracking system and related methods

A tracking system for tracking an eye including a light source projecting light toward a display surface in a sequential pattern, one or more reflectors associated with an optical device, where the one or more reflectors reflect the pulses of light from the display source, one or more photo detectors, where the photo detectors detect reflected pulses of light from the light source, and a system that measures pulse timing relative to horizontal and vertical pattern to compute a gaze angle of the eye.




at

Optical-interface patterning for radiation detector crystals

A radiation detector is disclosed that includes a scintillation crystal and a plurality of photodetectors positioned to detect low-energy scintillation photons generated within the scintillation crystal. The scintillation crystals are processed using subsurface laser engraving to generate point-like defects within the crystal to alter the path of the scintillation photons. In one embodiment, the defects define a plurality of boundaries within a monolithic crystal to delineate individual detector elements. In another embodiment, the defects define a depth-of-interaction boundary that varies longitudinally to vary the amount of light shared by neighboring portions of the crystal. In another embodiment the defects are evenly distributed to reduce the lateral spread of light from a scintillation event. Two or more of these different aspects may be combined in a single scintillation crystal. Additionally, or alternatively, similar SSLE defects may be produced in other light-guiding elements of the radiation detector.




at

Spatially-aware radiation probe system and method

A spatially-aware radiation probe system/method allowing for detection and correction of radiation readings based on the position and/or movement of a radiation detector is disclosed. The system incorporates a radiation detector combined with a spatially-aware sensor to permit detection of spatial context parameters associated with the radiation detector and/or object being probed. This spatial context information is then used by analysis software to modify the detected radiation values and/or instruct the radiation probe operator as to appropriate measurement activity to ensure accurate radiation measurements. The spatially-aware sensor may include but is not limited to: distance sensors to determine the distance between the radiation detector and the object being monitored; accelerometers integrated within the radiation detector to detect movement of the radiation detector; and/or axial orientation sensors to determine the axial orientation of the radiation detector.




at

Rugged scintillation crystal assembly

A rugged scintillation crystal assembly includes several scintillator crystals, which are optically coupled to each other by resilient optical-coupling material such as silicone pads and/or grease. The scintillator crystals are configured to collectively emit optical signals. Such a stack may combine the advantages of both a long form-factor for the overall assembly with the ruggedness of the assembly's component short crystals.




at

Radiation detection apparatus

A radiation detection apparatus according to an embodiment includes: a scintillator including a fluorescent material to convert radiation to visible radiation photon; a photon detection device array having a plurality of cells each of which includes a photon detection device to detect visible radiation photon emitted from a fluorescent material in the scintillator and convert the visible radiation photon to an electric signal; and a plurality of lenses provided on cells respectively in association with the cells to cause the visible radiation photon to be incident on the photon detection device in an associated cell.




at

Detection of ionising radiation

A detector for detecting ionizing radiation comprises a scintillator 10 selected to emit light in response to incidence thereon of radiation to be detected, at least one detector 16 for detecting said emitted light, and at least one optical waveguide 12 for transmitting said emitted light to said detector 16. The optical waveguide typically comprises a flexible solid or hollow fiber that can be incorporated into a flexible mat or into a fiber-reinforced structure, so that the detector is integrated therewith.




at

Charge sensors using inverted lateral bipolar junction transistors

A sensor includes a collector, an emitter and a base-region barrier formed as an inverted bipolar junction transistor having a base substrate forming a base electrode to activate the inverted bipolar junction transistor. A level surface is formed by the collector, the emitter and the base-region barrier opposite the base substrate such that when the level surface is exposed to charge, the charge is measured during operation of the bipolar junction transistor.




at

Method and apparatus for identifying CVD diamond

Method for identifying CVD diamond comprises (1) placing a clean diamond on a fixed platform; (2) illuminating the diamond with light having various wavelengths; (3) receiving reflected light from the diamond; (4) calculating a reflectance value at each wavelength based on a light intensity at each wavelength of the reflected light, generating a spectral reflectance curve; (5) determining whether the spectral reflectance curve has a sharp trough, then storing the diamond if the spectral reflectance curve thereof does not have the sharp trough, while selecting the diamond for a further identification if the spectral reflectance curve thereof has the sharp trough; and (6) determining whether the sharp trough of the diamond selected from the step (5) is at a wavelength between 227 nm and 233 nm, and identifying the diamond to be the CVD diamond if the sharp trough is at the wavelength between 227 nm and 233 nm.




at

Surface contamination monitoring system and method

A surface contamination monitoring system/method configured to correct the detected the radioactive net count rate (NCR) value of a whole-body surface contamination monitoring device based on monitored subject height and thickness is disclosed. The system includes a height detection means for determining the height of a monitored subject and a thickness detection means for determining the thickness of at least a portion of the monitored subject. The net count rate (NCR) is corrected based on the determined height and thickness of the monitored subject as applied to site calibration factor data and self-shielding factor data to produce a corrected net count rate (CNR). If the corrected net count rate (CNR) registers above a preset alarm threshold, the monitored subject is considered contaminated and an appropriate alarm is registered.




at

Controlling electromagnetic radiation in a data center

Controlling electromagnetic (‘EM’) radiation in a data center having a number EM sections, including: receiving, by an EM controller, a specification of preferred EM radiation characteristics for the data center; and setting, by the EM controller, a state of each EM section in accordance with the specification, where the state of each EM section may be one of: an absorption state in which the EM section absorbs EM radiation or a reflection state in which the EM section reflects EM radiation.




at

Two-dimensional detection system for neutron radiation in the field of neutron scattering spectrometry

This invention relates to a two-dimensional detection system for neutron radiation comprising a means (1) for emitting a neutron beam (10), a support means (2) adapted for receiving a sample (3), a photoemission means (5) adapted for being activated by a neutron radiation, a cooled low light level charge-coupled detection device (7). The emission means (1) emits a monochromatic neutron beam (10). The system further comprises a filter means (4), the filter means (4) being located between the support means (2) and the photoemission means (5) and being adapted for trapping at least a substantial part of the monochromatic neutron beam transmitted (12) by the sample (3), and an amplification means (6) located upstream the charge-coupled detection device (7) and coupled with the charge-coupled detection device (7).




at

Blanking apparatus, drawing apparatus, and method of manufacturing article

The present invention provides a blanking apparatus comprising a plurality of blankers configured to respectively blank a plurality of beams with respect to a target position on an object, and a driving device configured to drive the plurality of blankers, wherein the driving device includes a change device configured to change relation between a combination of beams of the plurality of beams, and a target dose.




at

Charged particle beam apparatus

In a pattern inspection of a semiconductor circuit, to specify a cause of a process defect, not only a distribution on and across wafer of the number of defects but also more detailed, that is, the fact that how many defects occurred where on the semiconductor pattern is needed to be specified in some cases. Accordingly, the present invention aims to provide an apparatus capable of easily specifying a cause of a process defect based upon a positional relationship of a distribution of defect occurrence frequency and a pattern. The apparatus includes: a charged particle beam optical system for detecting secondary charged particles by irradiating the charged particle beam to the sample; an image processing unit for, based upon a plurality of images to be inspected that are obtained by the secondary charged particles, obtaining an occurrence frequency of defect candidates for each of predetermined regions inside the detected image; and a display unit for displaying the distribution of the occurrence frequency of the defect candidates so that a positional relationship to the pattern is recognized.




at

Membrane supports with reinforcement features

A sample support structure with integrated support features and methods of making and using the reinforced membrane. The sample support structures are useful for supporting samples for analysis using microscopic techniques, such as electron microscopy, optical microscopy, x-ray microscopy, UV-VIS spectroscopy and nuclear magnetic resonance (NMR) techniques.




at

Scintillator panel and production method thereof, flat panel detector and production method thereof

Disclosed is a scintillator panel provided with on a support a phosphor layer comprising columnar crystals and a protective layer sequentially in this order, wherein degraded areas on lateral surfaces of columnar crystals at an end of the phosphor layer and produced by a cutting treatment account for not less than 0% and not more than 40% of an area of all of the side surfaces of the columnar crystals. A production method of the scintillator panel is also disclosed.




at

Cassette for containing accumulative fluorescent sheet

There is provided a cassette having: a flexible accommodating body that accommodates an accumulative fluorescent sheet in a light shielded state; an entrance/exit portion that is provided at one end portion of the flexible accommodating body, and through which the accumulative fluorescent sheet can be inserted and removed into and from the flexible accommodating body due to mounting to a radiographic image reading device; and opening/closing means for opening the flexible accommodating body such that a push-out member, that pushes the accumulative fluorescent sheet out toward the entrance/exit portion, can be inserted, or closing the flexible accommodating body in a light shielded state.




at

Chamber and extreme ultraviolet light generation apparatus

A chamber used in an extreme ultraviolet light generation apparatus that generates extreme ultraviolet light by irradiating a target material with a laser beam may include a chamber receptacle, a heat shield that is disposed within the chamber receptacle between a predetermined region where the target material turns into plasma and the chamber receptacle and that is configured to absorb heat produced at the predetermined region when the target material turns into plasma, and a support portion configured to attach the heat shield to the chamber receptacle, and further, the support portion may include an absorbing portion configured to absorb stress produced in the heat shield deforming due to the heat, by expanding/contracting in response to the thermal deformation of the heat shield.




at

Method of mechanically controlling the amount of energy to reach a patient undergoing intraoperative electron radiation therapy

Apparatus for performing electron radiation therapy on a breast cancer patient preferably includes an intraoperative electron radiation therapy machine, an intraoperative electron radiation therapy collimator tube connected to the intraoperative electron radiation therapy machine, and a plurality of filters made of a material having substantially the same density as human breast tissue for placement between the machine and the patient to change the energy of a monoenergetic beam after the beam has left the machine, allowing a filter to be chosen to reduce the energy traveling through the tube to a desired amount of energy to treat the patient. A method of controlling the amount of energy to reach a breast cancer patient undergoing electron radiation therapy includes selecting a filter made of a material having substantially the same density as human tissue and placing the filter between an intraoperative electron radiation therapy machine and a breast cancer patient to change the energy of a monoenergetic beam after it has left the machine, the filter being chosen to reduce the energy traveling from the machine to a desired amount of energy to treat the patient.




at

Thermal-conduction element for improving the manufacture of a package for transporting and/or storing radioactive materials

The invention relates to a thermal conduction element (20) for a package for transporting and/or storing radioactive materials, comprising: an internal part (30) intended to be in contact with a lateral body (14) of the package;an external part (34) intended to form a portion of an external envelope (24) of said package, holding radiological protection means (22);an intermediate part (32) arranged between the internal and external parts,the internal, external and intermediate parts being produced from copper and one of the alloys thereof. According to the invention, the external part (34) is equipped, at each of its two opposite ends, with an area (36) for connection by welding to another thermal conduction element (20), each connection area (36) being produced from steel.




at

Removable surface-wave networks for in-situ material health monitoring

A system for measuring properties of a surface under test with surface waves includes a surface wave network including a dielectric substrate, a reactive grid of a plurality of metallic patches on a first surface of the dielectric substrate, a plurality of electronic nodes on the first surface of the dielectric substrate, and a ground plane on a second surface of the dielectric substrate permeable to RF fields of the surface waves, and a controller configured for causing a respective one of the electronic nodes to transmit at least one surface wave and configured for collecting data for signals received by at least one other of the plurality of electronic nodes.




at

Thermally activated magnetic and resistive aging

Examples of the present invention include apparatus and methods for monitoring aging of an item. A solid-state structure is located within, adjacent to, or otherwise proximate the item, the solid-state structure including nanostructures. The electrical resistance and/or magnetization of the solid-state structure is determined to determine the degree of aging of the item. In representative examples, the solid-state structure includes nanostructures of a metal, such as a ferromagnetic metal, within a non-magnetic matrix, such as a semimetal, semiconductor, or insulator.




at

Identifying the presence of an individual near medical radiation emitting equipment

Systems and methods are disclosed herein to a radiation safety system comprising radiation emitting medical equipment; a radiation safety system controller connected to the radiation emitting medical equipment through a first communication means configured to determine a number of people within a radiation room housing the radiation emitting medical equipment and prevent the radiation emitting medical equipment from performing radiation emitting functions if the radiation safety system controller determines that more people than a maximum allowed number of people are presently in the radiation room; and a scanner connected to the radiation safety controller through a second communication means configured to detect people in the radiation room and communicate to the radiation safety system controller that a person has been detected.




at

Device for checking pharmaceutical products, in particular hard gelatin capsules

The invention relates to a device (10; 10a;10b; 10c; 50) for checking pharmaceutical products (1), in particular hard gelatin capsules, by means of at least one radiation source (30; 60) preferably embodied as an X-ray source, and a conveying device which conveys the products (1) in a clocked manner in a radiation area (31) of the radiation source (30; 60). The radiation emitted by the radiation source (30; 60) penetrating the products (1) preferably perpendicular to the longitudinal axes thereof (2), and the radiation is captured on the side of the products (1) opposite the radiation source (30) by means of at least one sensor element (35) which is coupled to an evaluation device (36). The invention is characterized in that the conveyor device is embodied as a conveyor wheel (15; 15a; 51) which can rotate in a stepped manner about an axis (12; 52), and the products (1) are arranged, while being conveyed in the radiation area (31), in receiving areas (28; 37; 56) of the conveyor wheel (15; 5a; 51).




at

Acquisition method and apparatus for mass spectrometer data

A method and apparatus for acquiring data from a mass spectrometer and its transmission to a computer system including a data acquisition engine, a network interface and a throughput optimization module which includes a ring buffer and a protocol stack. A compression engine may be provided between the acquisition engine and the ring buffer. The ring buffer is configured as a number of segments containing portions of memory matching the size of data words from the acquisition engine. When a segment is full of data corresponding to the words, or is partially full and has received data containing an end of scan marker, the number of words in the segment is written into a header word in the segment and the data in that segment are moved to the protocol stack. Subsequent data is received by the next segment in the buffer.




at

System and method of ion neutralization with multiple-zoned plasma flood gun

An apparatus comprises a plasma flood gun for neutralizing a positive charge buildup on a semiconductor wafer during a process of ion implantation using an ion beam. The plasma flood gun comprises more than two arc chambers, wherein each arc chamber is configured to generate and release electrons into the ion beam in a respective zone adjacent to the semiconductor wafer.




at

Airflow-organization testing method for a clean room and system using the same method

An airflow-organization testing method for a clean room and a system using the same method are disclosed. The airflow-organization testing method for a clean room uses a thermal imaging device to detect a sample gas-flow formed by a sample gas in the clean room, and the sample gas has a temperature difference from ambient air. The airflow-organization testing system for a clean room includes a sample gas supplier and a thermal imaging device, and the thermal imaging device can continuously detect a spatial position of the sample gas and display it on a display, thereby improving detection precision and expanding detection range.