at

Tools and methods for processing microelectronic workpieces using process chamber designs that easily transition between open and closed modes of operation

Strategies for tool designs and their uses wherein the tools can operate in either closed or open modes of operation. The tools easily transition between open and closed modes on demand. According to one general strategy, environmentally controlled pathway(s) couple the ambient to one or more process chambers. Air amplification capabilities upstream from the process chamber(s) allow substantial flows of air to be introduced into the process chamber(s) on demand. Alternatively, the fluid pathways are easily closed, such as by simple valve actuation, to block egress to the ambient through these pathways. Alternative flows of nonambient fluids can then be introduced into the process chamber(s) via pathways that are at least partially in common with the pathways used for ambient air introduction. In other strategies, gap(s) between moveable components are sealed at least with flowing gas curtains rather than by relying only upon direct physical contact for sealing.




at

Steam cleaning apparatus

A steam cleaning apparatus including a main body having a main switch, a steam cleaning head coupled to the main body, and a position sensitive switch having a first state when the steam apparatus is in a substantially vertical storage position and a second state when the steam cleaning apparatus is in a tilted, cleaning position, the position sensitive switch being connected in electrical series with the main switch such that when the position-sensitive switch is in the first state the position-sensitive switch interrupts the flow of electrical current from the main switch and when the position-sensitive switch is in the second state, electrical power is supplied by the main switch.




at

Antiseptic applicators and packaging techniques

This disclosure describes example antiseptic applicators that may be used in combination with one or more cleansing, antimicrobial and/or antiseptic agents to reduce or eliminate contaminates on a surface. According to some embodiments, the disclosure describes that the applicators may contain an impermeable layer and a permeable layer, where the impermeable layer prevents contaminates for transferring from a user's hand to the permeable layer and the surface.




at

Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig

In a method for multiple cutoff machining a rare earth magnet block, a cutting fluid feed nozzle having a plurality of slits is combined with a plurality of cutoff abrasive blades coaxially mounted on a rotating shaft, each said blade comprising a base disk and a peripheral cutting part. The slits in the feed nozzle into which the outer peripheral portions of cutoff abrasive blades are inserted serve to restrict any axial run-out of the cutoff abrasive blades during rotation. Cutting fluid is fed from the feed nozzle through slits to the rotating cutoff abrasive blades and eventually to points of cutoff machining on the magnet block.




at

Wafer dicing blade and wafer dicing apparatus including the same

A wafer dicing blade includes a cutting part including a protrusion, the protrusion having a uniform region with a substantially uniform width, and a support covering at least one sidewall of the cutting part, the protrusion of the cutting part extending beyond an edge of the support.




at

Masonry block multi-splitting apparatus and method

An apparatus for splitting a plurality of masonry blocks is provided. The apparatus includes a plurality of first splitting blades that are configured to simultaneously move in a first direction, so as to split one of each of the plurality of masonry blocks into two or more sections during a single splitting operation. Each section has a first split surface. A plurality of second splitting blades is provided, where each is perpendicular and adjacent to one of the first splitting blades. Each of the second splitting blades is configured to form a second split surface on one of the masonry block sections that is perpendicular to at least one of the first split surfaces.




at

Methods, wires, and apparatus for slicing hard materials

Methods, wires, and apparatus for use in cutting (e.g., slicing) hard, brittle materials is provided. The wire can be a super-abrasive wire that includes a wire core and super-abrasive particles bonded to the wire core via a metal bonding layer. This wire, or another type of wire, can be used to slice workpieces useful for producing wafers. The workpieces can be aligned within a holder to produce wafers using the device and methods presently provided. The holder rotates about its central axis, which translates to workpieces moving in orbit around this axis. A single abrasive wire, or multiple turns of wire stretched tightly between wire guides, is then contacted with the rotating holder to slice the workpieces.




at

Methods, wires, and apparatus for slicing hard materials

Methods, wires, and apparatus for use in cutting (e.g., slicing) hard, brittle materials is provided. The wire can be a super-abrasive wire that includes a wire core and super-abrasive particles bonded to the wire core via a metal bonding layer. This wire, or another type of wire, can be used to slice workpieces useful for producing wafers. The workpieces can be aligned within a holder to produce wafers using the device and methods presently provided. The holder rotates about its central axis, which translates to workpieces moving in orbit around this axis. A single abrasive wire, or multiple turns of wire stretched tightly between wire guides, is then contacted with the rotating holder to slice the workpieces.




at

Apparatus, system and method for using a diamond-impregnated wire to cut an object

An apparatus, a system and a method may use a diamond-impregnated wire loop to cut an underwater pipeline. The apparatus may have a frame, a carriage attached to the frame and/or pulleys connected to the carriage. The diamond-impregnated wire loop may be connected to the pulleys. The carriage may move relative to the frame to direct the diamond-impregnated wire loop in a forward direction relative to the frame and/or through the pipeline.




at

Hydraulically-actuated, horizontal flush-cut radial concrete saw and trip hazard removal method

A concrete saw is disclosed having a rigid metal frame, a hydraulic drive system, a water-cooled hub, and an axially rotatable trigger assembly comprising a 12 volt switch. The saw may include a hydraulic pump operable to supply pressurized hydraulic fluid to the drive system. In some embodiments, the saw may includes a flow sharing valve fluidly coupled to the hydraulic drive system to distribute the pressurized hydraulic fluid from the a hydraulic pump in a portable power pack. A method of removing trip hazards with the saw is also disclosed.




at

Method for slicing a multiplicity of wafers from a crystal composed of semiconductor material

A method for slicing a plurality of wafers from a crystal includes providing a crystal of semiconductor material having a longitudinal axis, a cross section and at least one pulling edge. The crystal is fixed on a table and guided through a wire gang defined by sawing wire so as to form the wafers. The guiding is provided by a relative movement between the table and the wire gang such that entry sawing or exit sawing using the sawing wire occurs in a vicinity of the at least one pulling edge of the crystal.




at

Slot wear indicator for a grinding tool

Wear indicators for abrasive articles are presented. Specifically, indicator marks that are parallel to a bonding edge of a grinding element are presented. Tools comprising a carrier element and one or more grinding elements comprising one or more indicators are also presented.




at

Self-cleaning wiresaw apparatus and method

The present invention provides a self-cleaning wiresaw cutting apparatus including a cleaning mechanism adapted to clean the components of the wiresaw before, during, or after a cutting process or to humidify the cutting region of the apparatus. The apparatus contains at least one dispenser adapted to dispense an aqueous fluid onto various components of the wiresaw.




at

Hand-operated implement comprising a cutting chain for cutting mineral and metal materials

A hand-operated implement has a guide bar on which is fitted a cutting chain for cutting mineral and metal materials. The cutting chain is driven around the guide bar by a chain sprocket. The chain sprocket is arranged in a chain sprocket chamber which is delimited by a chain sprocket cover. A cutting element has an outer side facing a sidewall of the chain sprocket cover which lies in a first notional plane. The distance between the sidewall and the first notional plane measured perpendicular to the first notional plane and centrally between the top of the cutting element and the peripheral wall is less than approximately 0.8 cm over at least 30% of the section between a second notional plane containing the central axis of a fixing bolt on the guide bar and the exit opening at which the cutting chain leaves the chain sprocket chamber.




at

Ductile mode machining methods for hard and brittle components of plasma processing apparatuses

A method of ductile mode machining a component of a plasma processing apparatus wherein the component is made of nonmetallic hard and brittle material wherein the method comprises single point turning the component with a diamond cutting tool causing a portion of the nonmetallic hard and brittle material to undergo a high pressure phase transformation to form a ductile phase portion of the hard and brittle material during chip formation wherein a turned surface is formed from a phase changed material and the turned surface is a grooved textured surface of phase changed material.




at

Movable saw apparatus and method

Disclosed is a movable cutting tool apparatus and/or methods for cutting workpieces; either generally including a cutting tool apparatus having a cutting tool unit support apparatus including at least a substantially stationary support structure and one or more rear-mount glide rails; a cutting tool unit which is supported by the support apparatus; a cutting implement held by the cutting tool unit, whereby the cutting tool unit operates and controls the cutting implement; and, at least one fluid coolant and/or lubricant tube connected to the cutting tool unit and adapted to flow a fluid to the cutting implement in operation; wherein the cutting tool unit and the cutting implement are directly movable with the glide rails to provide reciprocal and translational movability for the cutting tool unit and the cutting implement.




at

Method of dressing an abrasive wheel using a polycrystalline CVD synthetic diamond dresser and method of fabricating the same

A method of dressing a wheel using a polycrystalline CVD synthetic diamond dresser, the method comprising: rotating the wheel; and contacting a working surface of the wheel with a working surface of the polycrystalline CVD synthetic diamond dresser, wherein the polycrystalline CVD synthetic diamond dresser is oriented such that a leading edge of the working surface of the polycrystalline CVD synthetic diamond dresser is formed of larger grains than a trailing edge of the working surface of the polycrystalline CVD synthetic diamond dresser.




at

Method for shaping and slicing ingots using an aqueous phosphate solution

A method for slicing a workpiece into wafers in which a polyphosphate solution is applied to the workpiece during the slicing process. The method comprises the steps of positioning the workpiece, such as a silicon ingot, in the vicinity of a wire saw that can cut through the workpiece without the use of an abrasive slurry; causing an aqueous polyphosphate solution to contact the workpiece; and causing the wire saw to cut into the workpiece while the polyphosphate solution is in contact with the workpiece. After the workpiece has been cut into wafers, the polyphosphate solution is rinsed off of the wafers. Preferably, the wire saw used in this method is a diamond wire saw.




at

Cutting chain for a hand-operated implement and hand-operated implement

A cutting chain for a hand-operated implement for cutting metal and mineral materials such as a stone cutter has central connecting links which are connected to one another by lateral connecting links. The central connecting links comprise first central connecting links which each have a drive tooth. The cutting chain has two central connecting links with drive teeth shaped differently to the drive teeth on the first central connecting links; or located a different distance from the leading drive teeth; or having no drive teeth. A hand-operated implement for cutting mineral materials has a drive motor which drives the cutting chain around a guide bar by a drive sprocket. The cutting chain is guided round part of the circumference of the drive sprocket and round a nose sprocket on the guide bar. The drive sprocket or nose sprocket have different first and second areas matched to the cutting chain.




at

Method for cooling a workpiece made of semiconductor material during wire sawing

A method for cooling a cylindrical workpiece during wire sawing includes applying a liquid coolant to a surface of the workpiece. The workpiece is made of semiconductor material having a surface including two end faces and a lateral face. The method includes sawing the workpiece with a wire saw including a wire web having wire sections arranged in parallel by penetrating the wire sections into the workpiece by an oppositely directed relative movement of the wire sections and the workpiece. Wipers are disposed so as to bear on the surface of the workpiece. The temperature of the workpiece is controlled during the wire sawing using a liquid coolant applied onto the workpiece above the wipers so as to remove the liquid coolant with the wipers bearing on the workpiece surface.




at

Independently supported concrete saw apparatus and method

A saw apparatus for sawing paving slabs has a frame mounted on a ground contacting propulsion member such that the frame may move above a slab to be cut without touching the slab. A first saw support assembly disposes a blade of a saw in cutting engagement with the slab for a transverse cut. A second saw support assembly disposes a blade of another saw in cutting engagement with the slab for a longitudinal cut. The saws are mounted on the saw assemblies and the saw assemblies are mounted on the frame and the frame is mounted on the ground contact propulsion members such that no part of said frame need contact the slab during cutting.




at

Apparatus, system and method for using a diamond-impregnated wire to cut an object

An apparatus, a system and a method may use a diamond-impregnated wire loop to cut an underwater pipeline. The apparatus may have a frame, a carriage attached to the frame and/or pulleys connected to the carriage. The diamond-impregnated wire loop may be connected to the pulleys. The carriage may move relative to the frame to direct the diamond-impregnated wire loop in a forward direction relative to the frame and/or through the pipeline.




at

Powered saw including dust capture apparatus

A novel cutting method and apparatus includes a cutting blade adapted to consistently and easily form a desirable kerf in a concrete substrate while capturing substantially all resulting concrete dust.




at

Mold, casting apparatus, and method for producing cast rod

Arnold (13) includes a recessed portion (21) for receiving a melt (2). The recessed portion (21) is constituted by an inner wall surface (29) for converting the melt (2) into a solidified portion when the inner wall surface (29) contacts the melt (2), and opens in a withdrawal direction (D1) of the solidified portion. A curved line formed by a first contour (23p) and a second contour (25p) has a cusp at a position of start points (43 and 45). The distance between the first contour (23p) and the second contour (25p) in a width direction (D2) increases continuously from an upstream side to a downstream side of the withdrawal direction (D1). The shape of the inner wall surface (29) of the recessed portion (21) is determined so that a cast rod (3) can be rotationally displaced clockwise or counterclockwise about an axis passing through a first end point (33) or a second end point (35) and perpendicular to a section of the mold 13.




at

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques

Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.




at

Method of fabricating micrometer scale components

A method for manufacturing micrometer scale components comprises depositing a first metal on a substrate, depositing a second metal in a mold, and alloying the first and second metals together to form the component.




at

Method of producing ingot with variable composition using planar solidification

Molten metal of a first composition is fed into a mold cavity, via a first control apparatus, wherein the control apparatus is open, wherein the feeding includes at least flowing out of a first feed chamber. The first control apparatus is closed. A second control apparatus is opened. Molten metal of a second composition is fed into the mold cavity, via the second control apparatus, wherein at least a portion of the metal of the first composition in the mold cavity is sufficiently molten so that an initial feed of molten metal of the second composition mixes with the molten metal of the first composition in the mold cavity, wherein the feeding includes at least flowing out of a second feed chamber, wherein the second composition is different from the first composition. An ingot is removed from the mold cavity, wherein the ingot as a top section, a middle section, and a bottom section, wherein the bottom section is composed of metal of the first composition, wherein the top section is composed of metal of the second composition, wherein the middle section is composed of a mixture of metal of the first composition and the second composition.




at

Method and apparatus for press casting

An apparatus for press casting includes a casting mold formed of a fixed mold and a first moving mold operable to move relative to the fixed mold. The apparatus further includes a second moving mold operable to move relative to the first moving mold. A mold cavity, which forms a cast product, is configured by the fixed mold and the second moving mold. When the first moving mold is moved to a first predetermined position, a molten metal passage and a gas exhaust port, which communicate with the mold cavity, are formed at positions outside the mold cavity. A communication between the mold cavity and the molten metal passage, and the gas exhaust port is cut off by the second moving mold when the second moving mold is moved to a second predetermined position while the first moving mold is maintained at the first predetermined position thereof.




at

Temperature regulated melt crucible for cold chamber die casting

Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.




at

Method and apparatus for interlocking load carrying elements

A method for interlocking structural steel components with a metal-filled interlock is disclosed herein. The method comprises placing a mold about aligned contoured portions of structural steel components and attaching a crucible and a spout to the mold. The crucible is charged with exothermic reactive metals which are ignited, forming a molten metal filler. The molten metal filler melts a metal plug in the crucible or spout and the molten metal filler flows into the mold and about the aligned contoured portions of the structural steel components. Cooling of the molten metal filler forms a metal-filled interlock. Molds for performing the disclosed method are also disclosed herein.




at

Tower pump casting apparatus

A casting apparatus having a main chamber connected to at least one casting tower. The main chamber may contain molten metal and the temperature within the main chamber may be maintained by a furnace. A pump may pump the molten metal up the tower and into an upper pool chamber. A feeder nozzle may feed the molten metal from the upper pool chamber and onto a chilling wheel, which may turn the molten metal into metal flakes.




at

Method and installation for manufacturing thin metal strip

A method for manufacturing a thin metal strip by pouring and rapidly solidifying molten metal onto a cooling roll rotating at a high speed to form a thin metal strip having a width of 50˜350 mm, blowing compression gas from substantially a tangential direction of the cooling roll toward the thin metal strip to separate the thin metal strip from the cooling roll, adsorbing the separated thin metal strip with a permeable belt of a suction type belt conveyor, and transporting to a take-up reel to wind in form of a coil, the thin metal strip is adsorbed by the belt under conditions that a nearest approaching distance L between the cooling roll and the suction type belt conveyor is 2˜50 mm and a suction width S of a suction box arranged in the suction type belt conveyor is 1.2˜2.5 times of a width W of the thin metal strip.




at

Multiple casting apparatus and method

Apparatuses and methods of forming battery parts are disclosed herein. In one embodiment, a method of forming a battery part includes receiving a flowable material into a cavity, and reducing a volume of the cavity while a pin extending through at least a portion of the cavity remains at least generally stationary therein. The method further includes sealing the cavity by slidably engaging at least a portion of the pin with a recess in the piston proximate the end face of the piston.




at

Process and refractory metal core for creating varying thickness microcircuits for turbine engine components

The present disclosure is directed to a refractory metal core for use in forming varying thickness microcircuits in turbine engine components, a process for forming the refractory metal core, and a process for forming the turbine engine components. The refractory metal core is used in the casting of a turbine engine component. The core is formed by a sheet of refractory metal material having a curved trailing edge portion integrally formed with a leading edge portion.




at

Systems and methods for producing a hardwearing alloy material

Described herein are systems and methods for producing a hardwearing or wear-resistant material. In one aspect, a first group of materials comprising zirconium dioxide (ZrO2), aluminum oxide (Al2O3), and one or both of calcium oxide (CaO) and yttrium oxide (Y2O3) may be mixed, heated, and cooled to yield a first mixture. The first mixture may be used to generate granules that may then be mixed with a second group of materials comprising iron, nickel, manganese, titanium, carbon, chromium, and optionally, a paraffin, to yield a second mixture. The second mixture may then be compressed, cast, cooled, and heat treated to yield the hardwearing or wear-resistant material.




at

Casting of internal features within a product

A method of forming a cast product (30) by providing a core (52) having a plurality of sections (54) and one or more gaps (55) there-between. The core further includes an insert member (60) spanning the gap (55) between adjacent sections (54). The core (52) is located within a mold (68) and a liquid phase material is introduced into gap (55) between the core sections. The liquid phase material is solidified in the gap so as to form a cast feature of a resulting solid product and the core sections (54) are removed from the solid product (30) such that the insert member (60) remains securely held within the feature (74).




at

Method for producing a trailing arm of a twist beam axle in which a drive unit of an electrical drive close to the wheel, comprising an electrical engine and a transmission, is integrated

A method of producing a trailing arm of a torsion beam axle in which an integrated drive unit of a wheel-adjacent electric drive has an electric machine and a transmission. By using the method, the trailing arm is produced in the form of a casting with a box profile. The contours for producing the area that accommodates the transmission, the connection point to the vehicle body, the bore that receives the cross-member which connects the two trailing arms to one another, the U-profile of the trailing arm, the box profile and the area that accommodates the electric machine, are modeled by cores such that the contours for producing the connection point of the trailing arm to the vehicle body, the bore that receives the cross-member and the U-profile of the trailing arm are modeled by one core.




at

Foundry mixture and related methods for casting and cleaning cast metal parts

A foundry mixture for making molds used for molding cast metal parts includes foundry sand, a non-aqueous binder, and a cleaning agent that includes calcium oxide. Residual foundry mixture remaining on the cast part after removal from the mold is removed by electrolytic cleaning of the cast part.




at

Fluid purification level control apparatuses and methods

Apparatuses and methods for level control in a fluid purification apparatus. The apparatuses and methods include a fluid purification apparatus and a level sensor that regulates operation of the fluid purification apparatus. The level sensor may further operate a bypass valve or a heater.




at

Oil recovery apparatus

A method and apparatus for recovering oil from oil-containing sorbents, such as drill cuttings obtained from drilling with an oil-based mud. The method includes peptizing the substrate with an acid reagent and direct thermal desorption with combustion effluent gases at high temperature under turbulent mixing conditions. Another method disclosed includes upgrading the oil in the substrate to improve one or more of the properties of the recovered oil relative to the oil in the substrate, such as, lower aromatics content, lower sulfur content, lower functional group content, higher saturates, higher viscosity, higher viscosity index, and any combination thereof. The apparatus provides for efficient recovery of oil from the substrate with a short residence time, high throughput, low residual oil content in the treated solids and/or high percentage of oil recovery. The apparatus may be transported to a remote location for on-site treatment of drill cuttings or other oil-containing solids.




at

Oil sands treatment system and process

Oil sands ore containing bitumen is treated in a reactor chamber by ultrasonic oscillations impact such that cavitation of ore molecules occurs. The disintegration of the pulsating bubbles in the cavitation results in the separation of the oil, water, sand and air fractions of the oil sands. The oil fraction may be continuously extracted for subsequent refining processes.




at

Apparatus for removing a contaminant from a solvent separation process

The invention is a process and apparatus for removing a contaminant from an aromatic selective solvent. A feed stream comprising an aromatic hydrocarbon and a non-aromatic hydrocarbon is contacted with the aromatic selective solvent in an extractive distillation zone to produce a raffinate stream comprising the non-aromatic hydrocarbon, and a rich solvent stream comprising the aromatic hydrocarbon and the solvent. The rich solvent stream is separated in a second distillation zone to produce an extract stream comprising the aromatic hydrocarbon, and a lean solvent stream comprising the contaminant and the aromatic selective solvent. At least a portion of the lean solvent stream is washed with a non-aromatic hydrocarbon to produce a clean solvent stream, at least a portion of which is passed to at least one of the extractive distillation zone and the second distillation zone.




at

Carbon dioxide fractionalization process

A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.




at

Treatment of hydrocarbon fluids with ozone

A system for separating contaminants from wellbore cuttings that includes a processing chamber, a heat source connected to the processing chamber adapted to vaporize hydrocarbons and other contaminants disposed on the material, a condenser operatively connected to an outlet of the process chamber and adapted to condense the vaporized hydrocarbons and other contaminants, and an ozone source operatively connected to the condenser.




at

Apparatus and methods for utilizing heat exchanger tubes

In one aspect, the present techniques include a heat exchange apparatus including: a) a body comprising an interior cavity, the body including: a first surface and a second surface defining at least a portion of the body and the first surface positioned exterior with respect to the second surface and the interior cavity, and the second surface positioned exterior with respect to the interior cavity and interior with respect to the first surface; b) a first conduit for conveying a fluid to the body; c) a second conduit in fluid communication with the first conduit wherein the second conduit is positioned at least partially within the interior cavity of the body; and d) a joint between the first conduit and the second conduit, wherein the joint moves between a first location and a second location based on the temperature within the interior cavity, wherein at least one of said first location and said second location is positioned intermediate the first surface and the second surface.




at

Optimizing feed mixer performance in a paraffinic froth treatment process

The invention relates to improved bitumen recovery processes and systems. One process provides for operation of a bitumen froth treatment plant at optimum shear rates in the feed pipe carrying the bitumen froth to the froth settling unit. Another process provides for optimizing the design of a bitumen froth treatment plant by optimizing the diameter of the feed pipe to impart an optimum shear rate to the bitumen froth mixture and further optimizing the volume of the feed pipe to impart an optimum residence time for the bitumen froth stream in the feed pipe. An optimal plant design is also disclosed, the plant including optimal diameter and volume of the feed pipe.




at

Integrated hydrocarbon cracking and product olefin cracking

Processing scheme and arrangement for increasing the relative yield of light olefins involves integration of the cracking a heavy hydrocarbon feedstock to produce an effluent comprising a range of hydrocarbon products including C4-C7 olefins and the subsequent cracking at least a portion of the C4-C7 olefins to produce additional light olefins.




at

Crude treatment system

A crude treatment system includes a primary and second distillation tower for treating crude containing corrosive material. The primary distillation tower fractionates first crude into a target fraction. The secondary distillation tower fractionates second crude having a corrosive material content greater than that of the first crude into a light fraction and a remaining heavy fraction. Corrosive material in the light fraction is insufficient to corrode the primary distillation tower. A light fraction supply line supplies the light fraction from the secondary distillation tower to the primary distillation tower for treatment. The secondary distillation tower and the supply line are made from a corrosion resistant material.




at

Intertwined tube coil arrangement for a delayed coker heater

A tube coil for a double fired coker heater wherein the tube coil has at least two independent flow passes in an intertwined serpentine pattern. The tubes are located in a common plane and plumbed in parallel with one another. These tube coils can be used in a number of configurations within the radiant section of a coker heater.




at

Distillation apparatus

A modular distillation apparatus including at least one heat exchanger that preheats contaminated liquids: a heater that heats the contaminated liquid from the heat exchanger; an evaporator condenser adapted o boil the contaminated liquid coming out of the heater to produce water vapor and contaminant concentrate, and condenser the water vapor into distilled water; a vacuum chamber capable of operating at below atmospheric pressure, the vacuum chamber housing the evaporator condenser and including at least one partition to separate the distilled water from the contaminate concentrate; a vapor compressor operably associated with the vacuum chamber to receive water vapor from the evaporator condenser in the vacuum chamber and pump the water vapor at pressure back through the evaporator condenser, wherein the heat exchanger recovers sensible heat from outgoing condensed distilled water and contaminant concentrate recycled from the vacuum chamber.