at

Touchless faucet assembly and method of operation

A faucet assembly includes a base for mounting adjacent a basin of a sink and a spout projecting upward and outward away from the base and terminating at a water outlet. A light emitter is mounted to one section of the spout and emits a beam of light directed toward another section of the spout, wherein the beam of light does not intersect a region beneath the outlet. A light sensor, mounted to the spout, produces a signal indicating whether the beam of light is striking the light sensor. A control circuit responds to the signal by opening a valve that thereby conveys water to the spout.




at

Combination sink and countertop with a drawer

A vanity assembly is provided. The vanity assembly can comprise a base, side walls, and a combination sink and countertop. The sink can have a drainage section located near a back side of the sink. The vanity assembly can further comprise a drawer configured to move relative to the sink, the drawer extending in front of the sink and utilizing a substantial portion of the space in front of the sink's drain section for storage. The drawer can have side wall sections and a bottom section configured to facilitate storage of common household items.




at

Toilet overfill regulator

A kit for calibrating an amount of water required by a toilet with an amount of water to be supplied to the toilet has a first recorder for determining an amount of water in a toilet bowl, a second recorder for determining an amount of water in a toilet tank if the water in the toilet bowl reaches a determined level, and a valve for setting an amount of water delivered to the tank if the water reaches a determined level in the tank.




at

Swim spa with plenum arrangement at head end

A swimming pool with a circulating water flow includes a plurality of side walls adjacent a swimming compartment, one of the side walls including an outlet, at least one inlet positioned at each lateral side of the outlet, and a plenum arrangement on a side of the one wall opposite the swimming compartment. The plenum arrangement is in communication with each inlet and the outlet. A water propulsion device is positioned within the plenum arrangement and effects a pair of circuitous water flow paths within the swimming compartment.




at

Portable shower apparatus

A portable shower apparatus includes a shower head, funnel adapter, mounted on an air evacuator tube, for use with a conventional fluid container. The shower head includes a shower face plate having a plurality of fluid dispensing holes; shower face plate is circumvented by a ring connector having internal threads. The funnel adapter includes two opposing openings having cylindrical connector pieces, a first cylindrical connector piece and a second cylindrical connector piece; first connector piece having a greater diameter than the second connector pieces. The shower head ring connector is threadably coupled to the first connector piece while a preexisting filled fluid container is coupled to the second connector piece. When the portable shower is inverted, fluid, preferably water, flows from the fluid container towards the user. Other embodiments are disclosed including a variety of transitional adapters to use with a variety of sizes of conventional fluid containers.




at

Shower curtain incorporating entertainment system

A shower curtain is provided with two pockets adapted to receive spaced apart stereo speakers and a third pocket adapted to receive a personal entertainment system. The third pocket is provided with a clear inside window pane facing the inside of the shower and adapted for finger-touch control through the window pane. A closure system integral with the shower curtain is provided for external access to the pockets. In one embodiment, the closure system for access to the pockets is a tongue-in-groove fastening arrangement that provides external access to a personal entertainment system as well as a channel through which wires run to couple the entertainment system to the speakers.




at

Integrally formed water and space saving lavatory-toilet fixture

This integrally formed water and space saving lavatory-toilet fixture enables hand washing with potable water from an existing toilet, recycles effluent completely, and provides sanitary, seamless, one-piece, full perimeter tank closure. A flexible hose re-directs supply away from the overflow through an interior fixture cavity and top cast opening toward a basin, that drains back into the reservoir as effluent; supplementing the required volume of water to complete one flush cycle. A cast sidewall basin opening is formed allowing potential drainage to flow through an internal hollow cavity directly into the tank reservoir below. The integrally formed fixture also includes a sloped front wall allowing additional hand washing space, vertically aligned space saving side and rear walls, and, an integrally formed perimeter rim conforming to the shape of the toilet tank edging below, providing hygienic, continuous tank containment and secure, detachable mounting.




at

Automatic roll-back and return-to-position for header tilt on an agricultural machine

A windrower with a harvesting header with a crop cutting assembly for severing crop from the ground windrower has a header pitch sensor for measuring a fore/aft pitch angle and a hydraulic system. The hydraulic system moves the header between an operating height and a raised position, and also controls a fore/aft pitch angle. An electronics control module provides an output to activate solenoid valves in the hydraulic system to move the header between the operating height and the raised position and to select a desired pitch angle. When the header moves from the operating height to the raised position, the electronics control module operates the header hydraulic system to move the header to the zero-tilt condition, and upon lowering the header back the operating height, the electronics control module automatically returns the header to the selected pitch angle it was in at the start of the cycle.




at

Control apparatus for unmanned autonomous operating vehicle

In an apparatus for controlling an unmanned autonomous operating vehicle having an electric motor supplied with power from a battery for operating an operating machine, and magnetic sensors for detecting intensity of a magnetic field of an area wire and controlled to run about in an operating area defined by the area wire through wheels driven by the prime movers to perform an operation using the operating machine and to return to a charging device installed on the area wire so as to charge the battery, there is provided with a turn-back portion formed by bending the area wire at an appropriate position and again bending the area wire to return in a same direction with a predetermined space so as to divide the operating area into a plurality of parts and vehicle running is controlled to be prohibited from going across the turn-back portion.




at

Initiating tractor stop and bale wrap function

A combination tractor and baler is provided to automate tractor stopping and baler wrapping while incorporating operator interaction to improve the efficiency of the tractor and baler combination in operation. Automated control systems and manual operator devices are utilized to improve the timing of the tractor stop and baler wrapping time sequences. Various methods to improve efficiency, including methods to synchronize tractor stop with wrapping activation are provided.




at

Automatic driveshaft coupler for auto header hookup

An agricultural harvester (100) comprises a self-propelled vehicle (102); a feederhouse (104); a driveshaft (114) supported on the feederhouse (104), the driveshaft (114) having a first coupler (116) fixed to one end of the driveshaft (114), the first coupler (116) comprising a coupler body (420), a piston (416) disposed in the coupler body (420), and a first key (302) mechanically coupled to the piston (416) to be extended or retracted by the piston (416) to engage a mating coupler on a second driveshaft (120) of an agricultural harvesting head (106) that is supported on the feederhouse (104).




at

Drive assembly for an agricultural harvesting platform

A drive arrangement for driving a first sickle bar section (42) and a second sickle bar section (36) of a harvesting platform (20) comprises a first gearbox (54) and the second gearbox (74) having an output drivingly connected to a respective first end of a respective sickle bar section (36, 42). Drive trains connect the first gearbox (54) and the second gearbox (74) to an input drive shaft (24). At least one of the drive trains comprises a belt drive. A synchronization transmission (82) is coupled to the second ends of the sickle bar sections (36, 42) and couples them in opposite movement directions.




at

Baler attachment for optionally changing the orientation of bales being released from a baler

A bale turning apparatus for attachment to a baler to generally align the cylindrical of the bales in each row as the bales are released from the baler. Using the disclosed invention, the bales are essentially turned ninety degrees from the orientation of bales from the position that they are typically released from a round baler. By accomplishing this general alignment of the cylindrical axis of each bale in each row, when baling corn stover or other row crops, the bale loading operation can later be done more efficiently by driving down the rows in the same direction as the combine and baler have traveled.




at

Air intake configuration for an agricultural harvesting machine

An agricultural work vehicle includes a vehicle body having longitudinally extending sides. An enclosed engine compartment is configured within the vehicle body. An air inlet is defined in side of the vehicle body for intake of air into the engine compartment. A grain bin forward of the engine compartment includes a grain bin extension skirt mounted above the grain bin. An intake housing is mounted over the air inlet in the vehicle body side and includes a forwardly extending portion mounted alongside the grain bin extension with an inlet opening oriented so as draw air primarily from an area forward of the engine compartment and above the vehicle body.




at

Chopper attachment to improve conditioning of bio-mass type crops

A harvesting header includes a cutter bed having a plurality of cutting elements arranged transverse to the header and a crop chopping and conditioning region having a crop chopping device and a crop conditioning device. The crop chopping device is configured to chop crop cut by the cutter bed into smaller lengths and the crop conditioning device is configured to crimp the crop to aid in drying. The first chopping roller has a tubular, cylindrically-shaped body and a plurality of parallel knife-mounting lugs extending radially outward along substantially the full length of the body. A plurality of chopping knives are attached to the knife-mounting lugs and arranged around the body, each chopping knife having a length that is shorter than the length of the knife-mounting lug to which it is attached such that each chopping knife covers only a portion of the lateral length of the first chopping roller.




at

Shield apparatus for agricultural implement header

A shield apparatus is mounted on the header of an agricultural implement which includes a rotatable collecting member to direct collected material rearwardly towards a rear discharge opening. The shield apparatus includes a panel member and a mounting bracket assembly which supports the panel member above the rear discharge opening of the header spanning in a lateral direction transversely to the forward working direction such that the panel member extends from a rear edge rearward of the collecting member to a front edge which is spaced forward and upwardly in relation to the rear edge. The shield apparatus ensures that material thrown upwardly above the rear of the header frame is redirected downwardly into the rear discharge opening of the header for collection by the implement in the usual manner. The shield apparatus does not interfere with the visibility of the operator when the panel member is clear.




at

Pneumatic fruit decelerator body

A decelerator apparatus for mounting at the end of a pneumatic or gravity-fed fruit harvesting or delivery tube. The decelerator comprises a housing with a moving decelerator body aligned with a fruit-receiving inlet connected to the delivery tube. The decelerator body, for example a padded rotating wheel, moves at a speed slower than the speed at which the fruit is delivered into the housing, includes multiple depressions or indentations for receiving and separating fruit, and further defines a compressive deceleration path that moves the fruit in a compressive but protective fit toward a housing exit, releasing the fruit after the fruit has been decelerated to the speed of the moving body.




at

Agricultural working machine having at least one control unit

An agricultural working machine has a one control/regulating unit designed to adjust and monitor working parameters, quality parameters or both of the agricultural working machine that influence a harvesting process. The adjusting and monitoring are carried out in an automatable manner by the control/regulating unit using stored families of characteristics. The agricultural working machine also has at least one display device for depicting setpoint values and actual values of the working parameters, quality parameters or both. The control/regulating unit actuates defined measurement points in the stored families of characteristics and the specifically actuated measurement points are located in the boundary regions of the family of characteristics or outside the active working region of the particular family of characteristics.




at

Mower cutting deck having a height of cut adjustment system with deck suspension linkages that each have an easily acessible threaded adjuster for deck truing or rake angle setting purposes

A mower carrying a rotary cutting deck has a height of cut system for adjusting the vertical position of the deck relative to the mower frame for changing or adjusting the height of cut. The height of cut system comprises a pair of parallel cross shafts that carry a plurality of pivotal suspension linkages that connect to the deck, the cross shafts and linkages pivoting jointly with one another and with a pivotal control lever. One of the cross shafts carries a torsion spring to counterbalance the weight of the deck. The control lever is maintained in a plurality of adjusted pivotal positions by a height selection bracket fixed to the frame with the height selection bracket being capable of having its position changed or adjusted relative to the frame by a single adjustment bolt. Each suspension linkage has its effective length adjusted by turning a threaded adjuster carried at the upper end of a connecting rod that is part of each linkage to allow the deck to be leveled relative to a reference plane. The adjustment of the height selection bracket is accomplished without affecting the length adjustments previously made to any of the suspension linkages.




at

Harvesting machine for erecting and threshing and collecting crop materials

A harvesting machine for threshing crop materials includes a platform supported in front of a chassis, an erecting device having a number pairs of guiding bars attached to the platform and having a channel formed between two bar members of each pair of guiding bars, a guiding element disposed between every two adjacent pairs of guiding bars for guiding a stalk of the crop materials into the channel of the guiding bars, a number of pawls extended into the channel for sending the stalk of the crop materials into the channel, and a cutting device having two or more cutting elements for cutting the stalk into a lower base segment that carries no grain and an upper straw segment that carries grains.




at

Method and apparatus for measuring reflective intensity of display surface

The present invention provides a method for measuring reflective intensity of display surface, including: obtaining a luminance value of a first display and a luminance value of a second display when displaying, the first display and the second display having the same observed luminance, the peripheral of the surface of the first display being surrounded by light-shielding object, the first display and the second display being placed side by side; and obtaining the reflective intensity of the display surface in the ambient based on the luminance value of the first display and the luminance values of the second display when displaying. As such, the present invention provides convenient and accurate means to measure the reflective intensity of display surface.




at

Baler automatic stopping sequence

A system is provided that automatically stops a tractor as a function of a status of a round baler. This may include a controller such as a baler controller directly or indirectly detecting initial movement of an actuator that moves a wrapper assembly. Based on this detection, conditions for starting a wrap procedure may be determined either by actuator position or by a time period required for moving the wrapper assembly from a home position to a wrap start position. A time period required to bring the tractor to stop may be determined and compared with the time period required for the wrapper assembly to move from the home position to the wrap start position. The baler controller may send a tractor halt command signal for stopping the tractor to coordinate and synchronize bringing the tractor to a complete stop at the same time that the wrapping material is inserted and applied onto the bale at the beginning of a wrapping procedure.




at

Weed trimmer with a wingnut plate

The weed trimmer head is comprised of a sole plate having a diameter; a circumference; a plurality of pivot pins extending upwardly therefrom near the circumference. The sole plate also has a driving shaft extending upwardly therefrom from a center thereof. The driving shaft has a threaded segment thereon. A plurality of cutting blades are pivotally mounted to the plurality of pivot pins. A wingnut plate is also provided. This wingnut plate has a disc-like portion and wing blades extending on an upper side thereof. The wingnut plate has a threaded hole in its disc-like portion. The threaded hole is mounted to the threaded segment of the driving shaft and the wingnut plate is movable along the threaded segment, for selectively contacting or exposing the ends of the pivot pins.




at

Combine harvester and associated method for gathering grain

A combine harvester is provided that separates grain material from material other than grain using multiple processing areas, including a harvesting area, a feederhouse area, a threshing area, a cleaning area, and a grain delivery area. In a location at or prior to entering one of the processing areas, the material may be collected and held until a collection threshold is reached. Once it is determined that the collection threshold is reached, the material forming a first group of material may be transported from the location to the processing area or a subsequent processing area. The first group of material is transported from the location to the processing area or the subsequent processing area substantially simultaneously and thus simulates the gathering of a large amount of crop material even when small plots are involved. In this way, reduced cycle times may be achieved, and the efficiency benefits of large-plot harvesting may be extended to small-plot applications.




at

Dynamometer vehicle operating mode control

A vehicle and a method of controlling a dynamometer mode operation of a vehicle that includes requesting the dynamometer mode; monitoring for at least one non-dynamometer vehicle operating condition; if at least one of the non-dynamometer vehicle operating conditions is detected, prohibiting dynamometer mode; and if none of the non-dynamometer vehicle operating conditions is detected, operating the vehicle in dynamometer mode.




at

Reel mower grass catcher carrier

A reel mower grass catcher carrier includes a bail having side rods under the left and right sides of a grass catcher, a front link having an inverted U-shape and having connected to the left and right side rods and a central portion extending forwardly in front of the grass catcher, and a hanger extending forwardly over the grass catcher and connected to the central portion of the front link. The grass catcher can be installed or removed from the side of the carrier while the bail, front link and hanger stay connected together.




at

Reel lawn mower with main body, reel cutting unit, and connection structure for connecting reel cutting unit to main body such that reel cutting unit is rollable

A reel lawn mower which has a connection structure for connecting a reel cutting unit to a main body. The reel cutting unit has a spiral cutting reel which is rotated by a prime mover to cut grass together with a bedknife. In the connection structure, in order to connect the reel cutting unit to the main body so that the reel cutting unit rolls around a virtual horizontal line perpendicular to the shaft center of the cutting reel in the center of the axial direction of the cutting reel, the reel cutting unit includes a connecting arm with an arc portion shaped so as to follow a virtual arc centered on the virtual horizontal line. The connecting arm is slidably supported so as to prevent the arc portion from coming off the virtual arc.




at

Nut tree pickup and debris separator

A nut tree pickup and debris separator comprising three separate but serially interconnected stages, each including optimized structural and functional features for nut harvesting. The first stage includes a rotary pickup brush and an endless conveyor. The conveyor is constructed from a plurality of parallel bars with flights therebetween, the rods being arranged in spaced relation to retain nuts and pass debris. The second stage comprises an inclined rotating drum whose sidewall includes a plurality of elongated apertures passing therethrough, sized to retain nuts and pass debris. An inner side of the sidewall has a helical flight, sized, configured, and arranged to convey and tumble nuts and debris through the drum, with debris falling through the apertures. The third stage includes vertically offset, tandem conveyors and a cleaning fan to remove any remaining debris from the nuts as the stream falls from the end of one conveyor onto the other.




at

Folding divider assembly for corn header and method of operation

A corn header has a row unit frame and an auger sweeping ears of corn toward a center of the corn header. A corn row divider assembly has a snout and gatherer hood hingeably coupled to, and aft of, the snout. An aft end of the gatherer hood is located beneath and to the rear of the fore end of the auger in an operational configuration of the divider assembly. The divider assembly further has a four-point hinge assembly coupling the aft end of the gatherer hood to the row unit frame. The four-point hinge assembly is configured to pivot the gatherer hood between the operational configuration and a non-operational configuration in which the gatherer hood is in a raised condition. The four-point hinge assembly moves the aft end of the gatherer hood forward so that the gatherer hood clears the auger when pivoting to the non-operational configuration.




at

Packaging Device Having Plural Microstructures Disposed Proximate to Die Mounting Region

An example method includes providing a packaging device includes a substrate having an integrated circuit die mounting region. A plurality of microstructures, each including an outer insulating layer over a conductive material, are disposed proximate a side of the integrated circuit die mounting region. An underfill material is disposed between the substrate and the integrated circuit die, the microstructures preventing spread of the underfill. In another example method, a via can be formed in a substrate and the substrate etched to form a bump or pillar from the via. An insulating material can be formed over the bump or pillar. In another example method, a photoresist deposited over a seed layer and patterned to form openings. A conductive material is plated in the openings, forming a plurality of pillars or bumps. The photoresist and exposed seed layer are removed. The conductive material is oxidized to form an insulating material.




at

FABRICATION METHOD OF SEMICONDUCTOR PACKAGE

A semiconductor package is provided, including: an insulating base body having a first surface with an opening and a second surface opposite to the first surface; an insulating extending body extending outward from an edge of the first surface of the insulating base body, wherein the insulating extending body is less in thickness than the insulating base body; an electronic element having opposite active and inactive surfaces and disposed in the opening with its inactive surface facing the insulating base body; a dielectric layer formed in the opening of the insulating base body and on the first surface of the insulating base body, the insulating extending body and the active surface of the electronic element; and a circuit layer formed on the dielectric layer and electrically connected to the electronic element. The configuration of the insulating layer of the invention facilitates to enhance the overall structural rigidity of the package.




at

MANUFACTURING METHOD OF CHIP PACKAGE AND PACKAGE SUBSTRATE

A manufacturing method of a package substrate is provided. The method includes forming a first circuit layer on a carrier. A passive component is disposed on the first circuit layer and the carrier. A dielectric layer is formed on the carrier to embed the passive component and the first circuit layer in the dielectric layer. A second circuit layer is formed on the dielectric layer. The carrier is removed from the dielectric layer. A manufacturing method of a chip package is also provided.




at

SEMICONDUCTOR MOUNTING APPARATUS, HEAD THEREOF, AND METHOD FOR MANUFACTURING LAMINATED CHIP

A semiconductor mounting apparatus includes a storing unit that stores a liquid or a gas, a contact unit that comes into contact with a semiconductor chip when the storing unit is filled with the liquid or the gas, and a sucking unit that sucks up the semiconductor chip to bring the semiconductor chip into close contact with the contact unit.




at

SYSTEMS AND PROCESSES FOR MEASURING THICKNESS VALUES OF SEMICONDUCTOR SUBSTRATES

A system for determining thickness variation values of a semiconductor substrate comprises a substrate vacuumed to a pedestal that defines a reference plane for measuring the substrate. A measurement probe assembly determines substrate CTV and BTV values, and defines a substrate slope angle. A thermal bonding assembly attaches a die to the substrate at a bonding angle congruent with the substrate slope angle. A plurality of substrates are measured using the same reference plane on the pedestal. Associated methods and processes are disclosed.




at

PACKAGING OPTOELECTRONIC COMPONENTS AND CMOS CIRCUITRY USING SILICON-ON-INSULATOR SUBSTRATES FOR PHOTONICS APPLICATIONS

Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.




at

SEMICONDUCTOR DEVICE HAVING BURIED GATE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME, MEMORY CELL HAVING THE SAME AND ELECTRONIC DEVICE HAVING THE SAME

A semiconductor device includes a substrate comprising a trench; a gate dielectric layer formed over a surface of the trench; a gate electrode positioned at a level lower than a top surface of the substrate, and comprising a lower buried portion embedded in a lower portion of the trench over the gate dielectric layer and an upper buried portion positioned over the lower buried portion; and a dielectric work function adjusting liner positioned between the lower buried portion and the gate dielectric layer; and a dipole formed between the dielectric work function adjusting liner and the gate dielectric layer.




at

ATOMIC LAYER DEPOSITION OF III-V COMPOUNDS TO FORM V-NAND DEVICES

A method for forming a V-NAND device is disclosed. Specifically, the method involves deposition of at least one of semiconductive material, conductive material, or dielectric material to form a channel for the V-NAND device. In addition, the method may involve a pretreatment step where ALD, CVD, or other cyclical deposition processes may be used to improve adhesion of the material in the channel.




at

METHODS OF MANUFACTURING THIN FILM TRANSISTOR AND ARRAY SUBSTRATE

A method of manufacturing a thin film transistor is disclosed. The method of manufacturing the thin film transistor includes: manufacturing a substrate; forming an oxide semiconductor layer on the substrate; forming a pattern including an active layer through a patterning process; forming a source and drain metal layer on the active layer; and forming a pattern including a source electrode and a drain electrode through a patterning process, an opening being formed between the source electrode and the drain electrode at a position corresponding to a region of the active layer used as a channel, wherein the step of forming the pattern including the source electrode and the drain electrode through a patterning process includes: removing a portion of the source and drain metal layer corresponding to the position of the opening through dry etching. The method may also be used to manufacturing a thin film transistor.




at

METHODS OF FORMING IMAGE SENSOR INTEGRATED CIRCUIT PACKAGES

A method of forming image sensor packages may include performing a molding process. Mold material may be formed either on a transparent substrate in between image sensor dies, or on a removable panel in between transparent substrates attached to image sensor dies. Redistribution layers may be formed before or after the molding process. Mold material may be formed after forming redistribution layers so that the mold material covers the redistribution layers. In these cases, holes may be formed in the mold material to expose solder pads on the redistribution layers. Alternatively, redistribution layers may be formed after the molding process and the redistribution layers may extend over the mold material. Image sensor dies may be attached to a glass or notched glass substrate with dam structures. The methods of forming image sensor packages may result in hermetic image sensor packages that prevent exterior materials from reaching the image sensor.




at

METHOD OF USING A SURFACTANT-CONTAINING SHRINKAGE MATERIAL TO PREVENT PHOTORESIST PATTERN COLLAPSE CAUSED BY CAPILLARY FORCES

A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.




at

TFT AND MANUFACTURING METHOD THEREOF, ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF, X-RAY DETECTOR AND DISPLAY DEVICE

A TFT and manufacturing method thereof, an array substrate and manufacturing method thereof, an X-ray detector and a display device are disclosed. The manufacturing method includes: forming a gate-insulating-layer thin film (3'), a semiconductor-layer thin film (4') and a passivation-shielding-layer thin film (5') successively; forming a pattern (5') that includes a passivation shielding layer through one patterning process, so that a portion, sheltered by the passivation shielding layer, of the semiconductor-layer thin film forms a pattern of an active layer (4a'); and performing an ion doping process to a portion, not sheltered by the passivation shielding layer, of the semiconductor-layer thin film to form a pattern comprising a source electrode (4c') and a drain electrode (4b'). The source electrode (4c') and the drain electrode (4b') are disposed on two sides of the active layer (4a') respectively and in a same layer as the active layer (4a'). The manufacturing method can reduce the number of patterning processes and improve the performance of the thin film transistor in the array substrate.




at

METHOD OF FORMING GATE STRUCTURE OF A SEMICONDUCTOR DEVICE

A method of fabricating a semiconductor device includes forming a gate strip including a dummy electrode and a TiN layer. The method includes removing a first portion of the dummy electrode to form a first opening over a P-active region and an isolation region. The method includes performing an oxygen-containing plasma treatment on a first portion of the TiN layer; and filling the first opening with a first metal material. The method includes removing a second portion of the dummy electrode to form a second opening over an N-active region and the isolation region. The method includes performing a nitrogen-containing plasma treatment on a second portion of the TiN layer; and filling the second opening with a second metal material. The second portion of the TiN layer connects to the first portion of the TiN layer over the isolation region.




at

EXTREMELY THIN SILICON-ON-INSULATOR SILICON GERMANIUM DEVICE WITHOUT EDGE STRAIN RELAXATION

A method for forming a semiconductor structure includes forming a strained silicon germanium layer on top of a substrate. At least one patterned hard mask layer is formed on and in contact with at least a first portion of the strained silicon germanium layer. At least a first exposed portion and a second exposed portion of the strained silicon germanium layer are oxidized. The oxidizing process forms a first oxide region and a second oxide region within the first and second exposed portions, respectively, of the strained silicon germanium.




at

GATE STRUCTURE OF FIELD EFFECT TRANSISTOR WITH FOOTING

In some embodiments, a field effect transistor structure includes a first semiconductor structure and a gate structure. The first semiconductor structure includes a channel region, and a source region and a drain region. The source region and the drain region are formed on opposite ends of the channel region, respectively. The gate structure includes a central region and footing regions. The central region is formed over the first semiconductor structure. The footing regions are formed on opposite sides of the central region and along where the central region is adjacent to the first semiconductor structure.




at

SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

The on-state characteristics of a transistor are improved and thus, a semiconductor device capable of high-speed response and high-speed operation is provided. A highly reliable semiconductor device showing stable electric characteristics is made. The semiconductor device includes a transistor including a first oxide layer; an oxide semiconductor layer over the first oxide layer; a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer; a second oxide layer over the oxide semiconductor layer; a gate insulating layer over the second oxide layer; and a gate electrode layer over the gate insulating layer. An end portion of the second oxide layer and an end portion of the gate insulating layer overlap with the source electrode layer and the drain electrode layer.




at

Method of Forming a Semiconductor Structure Having Integrated Snubber Resistance

A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.




at

Method of Producing an Integrated Power Transistor Circuit Having a Current-Measuring Cell

A method for producing an integrated power transistor circuit includes forming at least one transistor cell in a cell array, each transistor cell having a doped region formed in a semiconductor substrate and adjoining a first surface of the semiconductor substrate on a first side of the semiconductor substrate, depositing a contact layer on the first side, structuring the contact layer to form a contact structure from the contact layer, the contact structure having, in a projection of the cell array orthogonal to the first surface, a first section and, outside the cell array, a second section which connects the first section to an interface structure, and forming an electrode structure on and in direct contact with the first section in the orthogonal projection of the cell array, the electrode structure being absent outside the cell array.




at

SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

A semiconductor device includes a substrate comprising a channel region and a recess, wherein the recess is located at both side of the channel region; a gate structure formed over the channel region; a first SiP layer covering bottom corners of the gate structure and the recess; and a second SiP layer formed over the first SiP layer and in the recess, wherein the second SiP layer has a phosphorus concentration higher than that of the first SiP layer.




at

ELECTRONIC DEVICE AND METHOD FOR FABRICATING THE SAME

Provided is a method for fabricating an electronic device, the method including: preparing a carrier substrate including an element region and a wiring region; forming a sacrificial layer on the carrier substrate; forming an electronic element on the sacrificial layer of the element region; forming a first elastic layer having a corrugated surface on the first elastic layer of the wiring region; forming a metal wirings electrically connecting the electronic element thereto, on the first elastic layer of the wiring region; forming a second elastic layer covering the metal wirings, on the first elastic layer; forming a high rigidity pattern filling in a recess of the second elastic layer above the electronic element so as to overlap the electronic element, and having a corrugated surface; forming a third elastic layer on the second elastic layer and the high rigidity pattern; and separating the carrier substrate.




at

CARBON NANOSTRUCTURE DEVICE FABRICATION UTILIZING PROTECT LAYERS

Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.